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Classification of four-qubit entangled states via machine learning
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We apply the support vector machine (SVM) algorithm to derive a set of entanglement witnesses (EW) to
identify entanglement patterns in families of four-qubit states. The effectiveness of SVM for practical EW
implementations stems from the coarse-grained description of families of equivalent entangled quantum states.
The equivalence criteria in our work is based on the stochastic local operations and classical communication
classification and the description of the four-qubit entangled Werner states. We numerically verify that the
SVM approach provides an effective tool to address the entanglement witness problem when the coarse-grained
description of a given family state is available. We also discuss and demonstrate the efficiency of nonlinear kernel
SVM methods as applied to four-qubit entangled state classification.
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I. INTRODUCTION

The ability to quantify, detect and analyze the struc-
ture of quantum entanglement [1] is essential for quantum
computation [2–4], quantum communication [5–7], quantum
networks [8–10], and quantum metrology [11,12]. Moreover,
an improper “amount” of entanglement, incorrect structure or
pattern of multipartite entangled state, or action of quantum
noise could all severely affect the overall efficiency of given
quantum computation tasks [13] or performance of given
quantum protocols, such as that of entanglement purifica-
tion [14]. Thus, it is crucial to detect and describe the structure
of entanglement in a set of states to maximize the efficiency
of a given protocol.

As a specific case of this, one can attempt to detect the
presence of entanglement in particular families of states rel-
evant in specific quantum protocols; note that the success
probability of the protocol may vary when one uses different
families of entangled states [15–17]. A characteristic example
of such a difference is that between the multipartite GHZ-
and W-type states. The GHZ-type states are fragile against
losses and are more utilized in quantum information sharing
protocols, whereas W-type states are robust against the noise
and are used in multi-party quantum network protocols [18].
For instance, in the case of tripartite W-state it is easy to verify
that each pair of qubits in this state is in an entangled state
in contrast to the tripartite GHZ-type state. This particular
example emphasizes robustness of the W state, e.g., we can
assume that the third qubit can be traced out to emulate losses.

The entanglement witness (EW) technique is one of the
most common, effective, and practical methods to detect the
presence of entanglement for a given multipartite quantum
state, see, e.g., Refs. [1,19], and references therein. In the
present work, we analyze this technique applied to arbitrary
four-qubit systems. The essence of the EW technique is briefly
summarized below. By finding a specific Hermitian operator,
called the entanglement witness Ŵ , one calculates a linear
functional (EW functional), which maps a given multipartite

quantum state described by density operator �̂ into a real
number.1 An EW functional has a non-negative value for all
separable states �̂sep. and that there exists a particular set of
entangled states for which the EW functional has negative
values [1,20,21].

More specifically, let us formally denote a set of arbitrary
multiqubit states as Snq := {�̂nq ∈ T (Hnq )| tr(�̂nq ) = 1, �̂nq �
O}. We denoted T (Hnq ) as a linear space of trace class opera-
tors acting on Hilbert space Hnq . The condition �̂nq � O states
that operator �̂ is a positive operator [22]. Mathematically, the
EW functional will have the following property:

tr(�̂sep.Ŵ ) � 0,∀�̂sep. ∈ S; tr(�̂ent.Ŵ ) < 0, (1)

where we denote S as a subset of all separable states. By
definition [1,22] a state �̂sep. is separable if and only if it can be
represented as a convex combination of factorized states: �̂ =∑k

i pi�̂
i
1 ⊗ · · · ⊗ �̂i

N ; where each �̂i is a state of the i-th qubit
subsystem, a density operator acting on a subspace Hi of a
N-partite quantum system with joint space H = Hi ⊗ . . .HN ;∑k

i=1 pi = 1, k � dimH2. Thus, the set of all separable states
is a convex subset of all states Snq defined above with respect
to the trace norm [22], while, by definition, the entangled
states are those states that are not separable.

Note that the EW operator Ŵ , which can detect the en-
tanglement for a given state �̂ent is not universal. There are
always other entangled states σ̂ent such that tr(Ŵ σ̂ent ) > 0,
but at the same time tr(Ŵ �̂ent ) < 0. Unfortunately, one cannot
determine the entanglement witness operator for all possible
entangled states for an arbitrary multipartite quantum sys-
tem [1,22]. It was shown that the problem of a general descrip-
tion of all entangled states, pure and mixed, for multipartite
quantum systems does not have a solution, see e.g., [23–26].
However, in some cases, the aforementioned disadvantage

1The usage of density operators allows the accommodation of both
mixed and pure states.
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might be partially overcome. The general idea is to split the
quantum states into specific families - sets of states that may
share certain symmetries or specific structure. Another pos-
sibility is if the quantum states can be created via a specific
protocol that maps a certain set of states to another set that can
be mathematically described via a specific parametrization.

The idea of splitting sets of entangled quantum states (gen-
erally, an infinite set of states) into families with some inner
mathematical structure can be termed a coarse-grained clas-
sification. For instance one can specify equivalence classes,
families of the pure entangled states. Each state within a
given family can be transformed into another state of the
same family with nonzero probability through local operations
and classical communications (LOCC) [27,28]. If one can
describe or specify a structure of entangled states one may ex-
pect that the complexity of finding entanglement witnesses for
such set of states will be significantly reduced. The mentioned
above GHZ and W states are members of two distinguishable
families of states that cannot be converted into one another
by any (SLOCC) as was emphasized in Ref. [28]. Other
possible approaches include inductive entanglement classifi-
cation [29], entanglement classification with matrix product
states [30], and coarse graining of entanglement classes in
2 × m × n systems [31].

Here we aim to employ the coarse-grained classifica-
tions of four-qubit quantum states, following the results of
Ref. [28], to construct a set of entanglement witness oper-
ators. We avoid difficulties of analytical derivation of the
entanglement witness operators by approaching the problem
numerically. The core of our numerical analysis is based on
the well-known support vector machine (SVM) method in
machine-learning (ML) [32,33]. The SVM-based algorithm
is designed to detect the presence of entanglement not only
in arbitrary four-qubit states but also to assign this state to a
particular family of states. To train our SVM model we sample
a data set of quantum states for each class of entangled and
separable states based on this coarse-grained classification.
We are sampling 20 000 states for each class of entangled
states, including separable states.

It is worth emphasizing that in recent years, ML-based
methods have demonstrated remarkable efficiency in appli-
cation to various areas of quantum physics [34–37]. For
instance, others have used the neural networks [38,39] and
also the SVM [40] to find EW operators, which efficiently dis-
tinguish between separable and entangled states of a particular
type.

The simplest linear SVM approach can classify quan-
tum states if they belong to one of two classes (entangled
and probably separable) by computing the decision function
and constructing a decision boundary. Thus, the SVM ap-
proach directly corresponds to the EW problem. Note that
SVM fits our problem naturally, as quantum states can be
equivalently considered as vectors in T (Hnq ) space. Conse-
quently, the SVM approach allows one to find a hyper-plane
in the T (Hnq ), which corresponds to the entanglement wit-
ness. We describe our approach and results of its application
in Sec. II. The Appendix provides a detailed description of
the SLOCC classification of four-qubit states used in this
work.

II. ENTANGLEMENT WITNESSES FOR FOUR-QUBIT
STATES AND APPLICATION OF SVM

In this section we construct a set of EW operators by
considering a set of four qubit states (nq = 4). As the first step,
let us provide a general mathematical description for the linear
space of trace class operators T (Hnq ) in the case of an arbi-
trary number of qubits nq. The space T (Hnq ) is endowed with
Hilbert-Schmidt inner product for any two operators R̂1, R̂2:
〈R̂1, R̂2〉HS = tr(R̂†

1R̂2), which induces the norm ||R||HS =√
〈R†R〉HS . Let us choose the standard multi-qubit Pauli

basis {Î/√2, σ̂x/
√

2, σ̂y/
√

2, σ̂z/
√

2}⊗nq as a self-adjoint or-
thonormal basis for T (Hnq ). For simplicity we denoted a
particular basis operator as Êi, i = 0, 4nq − 1 assuming Ê0 =
Î⊗nq , tr(Ei ) = 0, i �= 0 and 〈ÊiÊ j〉HS = δi j . Thus, an arbitrary
operator R̂ can be represented as a vector 	r:

R̂ =
∑

j

r j Ê j, rk = tr(ÊkR̂), 	r = (r0, . . . r4nq −1). (2)

If operator R̂ is Hermitian all elements of a corresponding
vector 	r are real numbers and ||R̂||HS = ||	r||e, the norm || · ||e
is the standard Euclidean norm of a vector. Consequently,
the Hilbert-Schmidt inner product of two Hermitian opera-
tors 〈R1, R2〉HS corresponds to the standard “Euclidean” inner
product (	r1, 	r2). The vector representation emphasizes the
direct correspondence between EW problems and the linear
SVM method, and, indeed, the EW problems can be viewed as
problems of classification. We consider two classes: the set of
all separable states and a subset of entangled states. In the vec-
tor representation an EW operator and an arbitrary state can
be denoted Ŵ ↔ 	w and �̂ ↔ 	� respectively, in accordance
with Eq. (2). Thus, the decision function used in SVM can be
written as follows:

tŴ (�̂) =
{

−1, if ( 	w, 	ρ ) < 0

1, if ( 	w, 	ρ ) > 0,
(3)

where we explicitly write the linear form of EW func-
tional fŴ (�) = ( 	w, 	ρ ) ≡ tr(Ŵ �̂). Accordingly, a training
data set DS = {�̂ j}Ndata

j=1 consists of separable and entangled
states in vector representation labeled with tŴ (�̂sep.) = 1 and
tŴ (�̂ent.) = −1 respectively, whereas a decision hyperplane is
defined by fŴ (�̂) = 0.

For a given sampled state of a train data set �̂ j we will
simplify the notation: fŴ (�̂ j ) ≡ f j and tŴ (�̂ j ) ≡ t j . The SVM
training objective is to find a decision boundary by maxi-
mizing the margin m, which is the smallest distance between
the decision hyperplane (i.e., the boundary) and the closest
quantum states, also named support vectors, from the training
data set. We illustrate the SVM approach in Fig. 1.

To find the optimal margin m∗ one can consider mini-
mization of the following objective function argmin

	w,DS
L( 	w, DS)

named the hinge error function. The reader may find a com-
prehensive description in Refs. [33,41]:

L( 	w, DS) =
Ndata∑

j

max(0, 1 − f jt j ) + λ|| 	w||2e . (4)
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FIG. 1. Illustration of SVM approach in two dimensions. The
distance from a given sample state �̂ j ↔ 	� j to a decision boundary
fŴ = 0 is given by mj = t j f j/|| 	w||. Mathematically, the value of
an optimal margin value m∗ can be found by minimizing the hinge
error function (4). For simplicity we denote ξ j = max(0, 1 − f jt j ).
The location of the decision boundary is determined by a subset of
the data points, known as support vectors, which is located on the
margin boundary ( fŴ = 1 and fŴ = −1, respectively). The support
vectors are marked by the circles. Thus, for the states that are on
the correct side of the decision boundary ξ j = 0 and for the outliers
ξ j = 1 − t j f j . Note that adding new samples that lie outside of the
optimal margin region will not affect the decision boundary.

The parameter λ plays the role of regularization parameter to
control the model’s accuracy and generalization abilities.

Due to the given vector representation (2), the linear struc-
ture of entanglement witness functional (1) and relatively
small dimensionality of the linear space of operators T (Hnq )
[in our case nq = 4, n f = dim(T (Hnq )) = 256], the SVM ap-
proach is computationally feasible. We denoted the dimension
of a feature space as n f , which in our case coincides with the
dimension of space T (Hnq ). For instance, a rough estimate of
the SVM computational complexity is O(Ndatan f ), based on
the implementation of SCIKIT LEARN python package [41].
Thus, the SVM computational complexity can be estimated by
O(Ndata4nq ). Therefore, the SVM is a good match for analyzes
of complex but relatively small data sets.

In addition, the case of four qubits has another advantage,
the SLOCC classification of entangled states. This coarse-
grained classification of four-qubit entangled states further
reduces the complexity of the EW problem and allows ef-
ficient application of SVM. In Sec. II A we focus on this
classification following the results of [28] and applying it to
the construction of EW operators. Section II B provides results
of the SVM approach for construction of the EW operators
and entanglement detection of arbitrary four-qubit states.

A. Classification of four-qubit states

It was shown in Ref. [28] how one can classify all pure
states of four qubits into distinguishable classes of entangled
pure states. The authors specified nine equivalent classes of
this form. The equivalence criteria were determined with re-
spect to the SLOCC applied to a particular quantum state.
More specifically, states in a set can be treated as equivalent
if any state for this set can be transformed into any other state
with nonzero probability by means of LOCC. Note that in the
present analysis we restrict ourselves to only local operations
that are unitary transformations. A local unitary transforma-
tion of arbitrary four-qubit state can be written as

�̂′ = Û1 ⊗ Û2 ⊗ Û3 ⊗ Û4 �̂ Û †
1 ⊗ Û †

2 ⊗ Û †
3 ⊗ Û †

4 , (5)

FIG. 2. Schematic representation of results obtained with the
SVM approach. The decision boundaries between the set of sepa-
rable states S and each class of entangled states Ei are represented
by dashed lines. Each line corresponds to a particular class and is
specified by a vector representation 	wi of the entanglement witness
operator Ŵi in accordance with Eqs. (1) and Eqs. (3).

where Û are arbitrary unitary operators acting on Hilbert
space of a single qubit H2. Operationally, the states belonging
to the same class can be used in a given quantum protocol
but they will have a different protocol efficiency. We list the
explicit state classification in the Appendix based on results
of Ref. [28]. We denote these pure states via ket vectors
|G〉 , |E〉i , i = 1, . . . , 8, |F 〉0, where |G〉 represents a generic
state, as |E〉i we denoted “specific” classes of entangled states,
and |F 〉0 is a factorized state, so is a class member of separable
four-qubit states.

Some of the states, like the class representatives in
Eqs. (A1)–(A9), are parametrized with complex numbers,
e.g., the generic states such as |G〉 in Eq. (A1) and states
|E〉i , i = 1, 5 in Eqs. (A2)–(A6). However, some classes are
represented just by a single pure state. To form a data set
needed to train our SVM model we sample the complex
numbers for each class {Ei, i = 1, 5}. In addition, we sample
the random unitary matrices Û to increase the diversity of a
particular data set, in accordance with Eq. (5).

The sampling algorithm of random unitary matrices is im-
plemented via the QUTIP PYTHON PACKAGE [42,43] with a
slight modification as explained below. We took the standard
QUTIP function rand_unitary and added an additional pa-
rameter ε to control the value of Uε. For this we assumed that

Uε = exp(iεH), (6)

where H is a random 2 × 2 full rank Hermitian matrix.
The sampling of H is done with another QUTIP function,
rand_herm.

Summarizing, for each SLOCC class of four-qubit states
we create Ndata = 20000 samples of pure states, including
factorized states, utilizing the LOCC transformations for each
state (5) with random unitary operators in accordance with
Eq. (6). We normalize each sample by replacing �̂Ei →
�̂Ei/tr(�̂Ei ). As the next step, we find the EW operators via
a SVM algorithm, which can distinguish separable four-qubit
states �̂sep and each class of entangled states represented
in families Ei, i = 1, . . . 8. Figure 2 illustrates the expected
result.
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FIG. 3. Distribution of tr(�̂Ŵ ), mean value of the entanglement witness for (a) validation set and (b) test set of the trained EW model via
linear SVM algorithm in the case of E3 family of states. Both test set and validation set consist of 2000 samples: 1000 separable states and
1000 entangled states of E3 family. For both validation and test sets there were only few (� 5) miss-classifications of entangled states and zero
miss-classifications for separable states. Note that the training data set included mixed Werner states to achieve better generalization.

The set of separable states S is a closed convex set and
any separable state can be represented as a convex hull of
factorized states. We directly employ this property to cre-
ate a data set of separable states to train and validate our
results achieving high accuracy, see Sec. II B. To create a
single separable state we sample 4 ∗ 44 random factorized uni-
tary operators (matrices): Û (4)

f ≡ Û1 ⊗ Û2 ⊗ Û3 ⊗ Û4. Each

2x2 single qubit unitary operator Û is distributed according
to the Haar measure [44]. As a result one can get a random
pure factorized state |F 〉′ = Û (4)

f |F 〉0. The need for 4 ∗ 44 uni-
tary operators is driven by the requirement of Carathéodory’s
theorem for the convex sets and dimension of state space
Hnq , see [22] for a detailed discussion. To sample an arbi-
trary separable four-qubit state we construct a convex hull:
�̂S = ∑44

i=1 pi |F 〉′i 〈F |′i, where the probability distribution {pi}
is generated from the Dirichlet distribution [33]. Note that it is
possible to train SVM and find the EW operator by using only
pure factorized states. It follows directly from the definition
of separable states and properties of entanglement witnesses.
We will return to this topic in the next subsection.

Summarizing, our central goal is to demonstrate that the
SVM approach allows one to classify and detect the entangle-
ment for an arbitrary four-qubit state, not only for pure states.
In the next subsection we confirm that the presented above
SVM approach can achieve this goal with high accuracy.

B. Constructing entanglement witness operators via linear
support vector machines

To implement the linear SVM algorithm, we prepared
a data set comprised of pairs of entangled and separable
states. The data set had 20 000 samples of each family of
states {G, Ei, i = 1, . . . 8} and the same number of samples
of separable states S. Specifically, in the case of G, E1 − E5

we randomly sampled complex numbers a, b, c, d describing
parametrization of a particular family (A1)–(A9). All states
in the data set are normalized and converted to the density
operator form as we mentioned above.

It is important to emphasize that, in principle, an in-
crease of the training data set size will improve the overall
performance of any algorithm. However, the computational

resources required for such an improvement were not avail-
able for the full scope of this work. The doubling of
the training data set demonstrates at maximum ≈0.1%
improvements of overall accuracy but roughly doubling com-
putational time, plus one requires additional time to tune
the algorithm’s parameters. Based on performance results we
have chosen 20 000 as a reasonable number of samples. As a
result, for each member of {Ei, i = 1, . . . 8}, we constructed
a corresponding set of normalized EW operators such that
|tr(�̂Ŵ )| � 1.

To train an SVM model for a given family, we split the
corresponding data subset (for each pair of states) into three
parts: 18 000 samples were used for the training set, 1000
samples for a validation set to tune hyperparameters and 1000
samples for a test set to check the generalization capabilities
of an algorithm by evaluating the accuracy on another data set.
We presented the results of the trained model performance via
SVM in Figs. 3 and 4 for the cases of families E3 and G. His-
tograms of E3 and G consist of 75 bins versus tr(�̂Ŵ ) covering
the range of |tr(�̂ŴG)| � 1. Note that for the both presented
cases we have chosen the parameter ε = 0.5 in (6) to assemble
data sets of states. We set the regularization parameter in (4),
λ = 0.5 ∗ 10−4 to yield an acceptable generalization, based on
the performance on the validation data set.

We used the Adam optimizer implemented in TENSOR-
FLOW library [45] with the following parameters: learning
rate = 0.005, epsilon = 10−6. The total number of training
steps, or epochs, was chosen to be equal to 20 000 steps, but
an acceptable convergence of SVM algorithm with the batch
size 50 was achieved after approximately 5000–7000 training
steps. Based on the performance analysis on a validation set
we utilized the following regularization strategy. Each batch
consisting of 50 samples was randomly sampled from the
whole data set for each epoch. This additional randomization
strategy had demonstrated significant improvements on a test
data set. It is clear from the performance presented in Fig. 3
that the resulting witness can reliably distinguish separable
and entangled states. Let us further analyze the performance
of the linear SVM algorithm. It is worth mentioning that,
in accordance with the properties of multipartite EW (1)
fW (�) � 0 for all separable states but fW (�̂sep.) < 0 for at
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FIG. 4. Distribution of tr(�̂Ŵ ), mean value of entanglement witness, for (a) validation set and (b) test set of trained EW model via Linear
SVM algorithm in the case of generic G family of states. Both validation and test set consist of 2000 samples: 1000 separable states and
1000 entangled states of E3 family. For both validation and test sets there were only few (� 5) misclassifications of entangled states and zero
misclassifications for separable states. Note that the training data set included mixed Werner states to achieve better generalization.

least one entangled state �̂ent.; there does not exist an EW
operator that can detect all entangled states. We aim to find
the best possible EW operator that can detect the presence
of entanglement in a maximum number of states of a given
family of states.

Usually, the optimal EW implies an operator Ŵopt that
can detect the maximum number of entangled states [22]. In
geometrical terms it means that the decision hyperplane is
tangent to the set of all separable states S. Note that for a
single entangled state it is guaranteed that this entangled state
and all separable states can be linearly separated. On the other
hand, in terms of linear SVM we tend to find the maximal
distance to the closest sample of a given set of states from the
decision boundary. It is known [33] that the linear SVM works
perfectly for linearly separable data, but even for nonlinearly
separable data it might perform quite well [41]. Below we will
demonstrate that analysis of the SVM performance can help
to determine to what extent the entangled states from a given
family can be linearly separated from a set of all separable
states.

The analysis presented here directly tests the ability to
distinguish entangled and separable states for each SLOCC
family individually. The SVM generalization performance is
considered for the newly resampled entangled and separable
states. In what follows, we analyze a variety of states correctly
detected by EW without limiting them to only pure entangled
states from families {G, Ei, i = 1, . . . 8}, but also considering
a specific family of mixed entangled states, Werner states.
Note that doing this we also included mixed Werner states and
pure factorized states in the construction of a training data set.

Let us analyze the performance of a linear SVM classifier
to train the entanglement witnesses corresponding to each
family of quantum states. We consider three different cases
correspond to three parameters ε1, ε2, ε3. In these cases we
operate with different data sets of entangled states. The di-
versity of each sample is varying by parameter ε in Eq. (6),
in accordance with the SLOCC classification criteria (5).
We tested the procedure for the following parameters: ε1 =
0.5, ε2 = 0.75, ε3 = 1. The results are presented in Fig. 5. It
is clear from the figure that the ability to detect entanglement
with an already trained EW operator for the corresponding

family members drops dramatically for ε3 = 1: the score is
equal to about 50% on average for all classes compared to
almost 100% for ε1 = 0.5. In these cases, the value of ε has
a possible interpretation of ability to distinguish entangled
states from separable ones employing linear SVM and, there-
fore, the EW theory approach.

The approach works similarly for all families {Ei}, i =
1 . . . 8. In other words, one can roughly estimate the vicinity
for any state if it is a member of a given family of entangled
states, for which a linear model can detect the presence of
entanglement. We also analyzed the SVM generalization per-
formance in the worst case scenario. In this case, each state
is modified via Eq. (5) but each unitary operator Û (4)

f ≡ Û1 ⊗
Û2 ⊗ Û3 ⊗ Û4 is distributed according to the Haar measure.
As expected, in this case we have a much inferior perfor-
mance: scores � 1% for all SLOCC families. However, the
correct detection scores for separable and factorized states
have not changed and are still high, about 99.5%. Such be-
havior agrees with the EW properties.

A pure factorized state always has an infinitely large num-
ber of entangled states within ε, the vicinity, calculated, for
example, with respect to the trace norm or Hilbert-Schmidt
norm. This may lead to inferior performance of the SVM
algorithm in its attempt to derive EWs capable of detecting
the mixed entangled states. Consequently, to improve the algo-
rithm further we have included mixed entangled states in our
training model. For instance, let us consider another important
family of multipartite quantum states �̂W , so called Werner
states [46,47], which involve entanglement of mixed states.

It is known [1] that, in general, the detection of entan-
glement presence in Werner states utilizing entanglement
witnesses is not an easy task. Werner states are invariant under
the diagonal action of the unitary group U (2) ⊗ U (2). Thus,
in the case of four-qubit quantum states the Werner states are
defined as follows:

�̂W = [Û ⊗ Û]�̂W [Û† ⊗ Û†], (7)

where Û = Û1 ⊗ Û2, U1,U2 ∈ U (2).
To construct the sample data sets of both entangled and

separable Werner states we followed derivations presented in
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FIG. 5. General analysis of correct detection of entangled states based on trained set of EW operators. For each family G, E1, . . . E8 we
used 20 000 new samples of states. Each state is modified according to Eq. (5). The random unitary operators are controlled by parameters ε

according to Eq. (6). The depicted bars represent the probability (or score) to correctly detect entangled states of a given family for various
values of ε: 0.5, 0.75, 1, correspondingly for the bars 1, 2, 3 starting from the left. For each family index G, E1 − E8 the fourth bar 4 corresponds
to mixed separable states, the fifth bar 5 corresponds to pure separable (factorized) states. The set of EW is obtained employing SVM with
parameters described in the caption of Figs. 3 and 4.

Ref. [47]. An arbitrary Werner state can be obtained by action
of a twril channel: �̂W = τ [�̂W ] = ∫

[Û ⊗ Û]�̂[Û ⊗ Û]dHaarU
where dHaarU = dU1dU2, invariant Haar measure on group
U (2) ⊗ U (2). This operation can be considered as a projec-
tion on Û ⊗ Û, an invariant subspace.

On the other hand, any Werner state can be represented as
a decomposition �̂W = ∑

α qαQ̂α , where {Q̂α} is a set of four-
partite orthogonal projectors that characterize Û ⊗ Û invariant
subspace, see Ref. [47] where an explicit form of the operators
is presented). It is evident that action of the twirling channel
on a separable state results in a separable state. Thus, as it
was shown in Ref. [47], the Werner state is separable if and
only when the following conditions hold: q1 � 1, q2, q3 �
1/2, q4 � 1/4; q4 � q2, q3 � 1 for mentioned above decom-
position of �̂W . In our analysis we applied this criteria to
sample both separable and entangled states by considering the
following procedures. To sample the separable Werner states
one can sample a simple four-qubit separable state and then
apply a twirling channel.

The action of a twirling channel is equivalent to projection
of a quantum state �̂ by using operators {Q̂α} with coeffi-
cients qα (�̂) = tr(Q̂α�̂), α = 1, . . . 4. to obtain corresponding
�̂W (�̂) = ∑

α qα (�̂)Q̂α . Such construction of Werner states
works because the following properties of twirling channel
hold. First, the dual channel to the twirling channel is again
a twirling channel. Second, any Q̂α is invariant under action
of a twirling channel. Entangled Werner states are obtained
by sampling a random four-qubit state and collecting states
for which the separability criteria had been violated.

Utilizing already trained witness operators for each
SLOCC family we found that an entanglement detection for
the random entangled Werner states yielded poor accuracy.
We obtained correct entanglement detection scores of just
≈1% based on a trained witness operator that corresponded
to the family G, for all other families of states we got scores
≈ 0.1%. On the other hand, the separable states are again clas-
sified with almost 100% accuracy. Summarizing, almost all
sampled entangled Werner states were classified as separable
states. Thus, it was essential to train the SVM linear modes for
the Werner states and consider such states as a separate family.

The performance results of trained EW in the case of
Werner states is presented in Fig. 6. It is not surprising that the
linear SVM performance was poor because the Werner states
are not linearly separable in the space of trace class operators.
Nevertheless, it is clear from the separability criteria above
(see also details in work [47]) that the separable and entangled
Werner states Ref. can be distinguished in invariant subspace
Û ⊗ Û. Furthermore, one may project subsets of states param-
eterized with 	β from subsets (S	β) of a given SLOCC family
{�̂(Ei, 	β ), 	β ∈ S	β ⊆ Rm} onto invariant subspace Û ⊗ Û. In a
such case one may assume that even a linear SVM model can
yield good performance. Indeed, one may expect that know-
ing a trained entanglement witness Ŵ (	β ) : tr(Ŵ (	β )�̂(	β )) <

0,∀	β ∈ S	β one may construct an EW operator for the cor-
responding subset of Werner states obtained via a twirling
channel �̂W (	β ) = τ [�̂(	β )]. Mathematically, it is evident
from the following example. By choosing a family �̂(	β ) ∈
G, Ei, i = 1, . . . 8,∀β̃ ∈ Sβ̃ , and assuming that there exist

an EW operator Ŵ ′(	β ) such that sign[tr(τ [�̂(	β )]Ŵ ′(	β ))] =
sign[tr(�̂(	β )τ [Ŵ ′(	β )])] < 0 ∀	β ∈ S	β . In the above equality
we utilized the self-duality property of a twirling chan-
nel by swapping action of τ [�̂(	β )] −→ τ [Ŵ ′(	β )])] under
the trace operation. Thus, one may imply that τ [Ŵ ′(	β )] ⊂
span({P̂λ j (Ŵ (	β ))}). We denoted ′′span(·)′′ as linear span for
a set of operators.

In our case these sets of operators {P̂λ j (Ŵ (	β ))} are or-
thogonal projectors on an eigenspace that corresponds to an
eigenvalue λ j ∈ spec(Ŵ (	β )). It is evident that if the set S	β is
simple enough the correspondence can be specified straight-
forwardly. As we can see from Fig. 6 the direct numerical
evaluation of linear SVM algorithm support the discussed
assumption. Note, an approach discussed above might be gen-
eralized further to construct more sophisticated algorithm for
entanglement detection of multipartite quantum states.

In this subsection, we considered several families of entan-
gled states, including entangled Werner states. Our analysis
clearly indicates that a linear SVM algorithm can be effi-
ciently employed to construct a set of EW operators. However,
it was also demonstrated that the approach has fundamental
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FIG. 6. Distribution of tr(�̂Ŵ ), mean value of entanglement witness, for (a) validation set and (b) test set of trained EW model via the
linear SVM algorithm in the case of Werner family of entangled states. All parameters are the same as was described in Figs. 3 and 4. For the
first and second rows in a plot the corresponding Werner states are generated from Generic-G and E3 family of states by applying twirling
channel and separability criteria, in a third row provides performance in the case of general sampling strategy described in a main text.

limitations. It is evident because each family of states is quite
complex and cannot be separated by applying just a linear
SVM algorithm. In the following, we discuss possible non-
linear extensions of the SVM algorithms applicable to the
problem of entanglement detection.

C. Constructing entanglement witness operators via support
vector machines with nonlinear kernels

Let us consider possible improvements of the discussed
above approach. The SVM method is a quadratic constrained
programming problem, which can be seen from Eq. (4).
Importantly, the maximum margin problem has a dual rep-
resentation operating with kernel functions [33,41]. We can
upgrade our simple linear model (3) with the following
expression:

f 	φ (	�) = ( 	w(	�), 	φ(	�)), (8)

where a map 	φ(·) transforms the initial feature space, but the
overall model is still linear. One can write the error function

(loss) in the following form:

L̃(	a) =
N∑
i

an − 1

2

N∑
n,m

anamtntmk(	�n, 	�m), (9)

where we introduced a new vector 	a = (a1, . . . aN ) related to
	w(	�) as follows: 	w(	�) = ∑N

i antn 	φ(	�). The symbol k(	�n, 	�m)
represents a kernel function, which can be efficiently used to
evaluate nonlinear transformations. The optimization (training
by finding 	a) of quadratic function (9) yields the following
predictive model in terms of kernel function:

f 	φ (	�) −→ fk(	�n,·)(	�) =
N∑
i

antnk(	�n, 	�). (10)

Note that working with kernel functions allows one to
avoid explicit operations with the featured space, though
it could produce, in principle, more successful and com-
plex models. For instance, it could happen that one finds a
specific kernel that can perfectly distinguish separable states
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FIG. 7. Distribution of f 	φ (	�) described in Eqs. (8) and (10), and comparison of trained linear and nonlinear SVM algorithm with RBF
kernel using SciKit Learn Python package. Cases (a) and (d) correspond to the standard SVM classification with linear kernel on a newly
generated test set, whereas (b) and (c) correspond to the generic and entangled Werner states classified with a nonlinear SVM with RBF kernel.
We verify results by sampling 5000 states of each family and for each case. Note that the assembled data set of Generic states is obtained by
modifying each sample by unitary operators distributed according to the Haar measure and Eq. (5). It is clear that the performance of nonlinear
SVM is very good, 100% and 99.8% in the cases of Generic and Werner states, respectively.

and the whole family of entangled states based on the SLOCC
classification. Indeed, we verified this assumption directly
applying a nonlinear SVM using SCIKIT LEARN package.
Figure 7 provides a comparison of models with linear and
nonlinear kernels to classify the entangled Werner, generic,
and separable states. Furthermore, we modify the generic
states according to the Haar measure to assemble a new data
set of 1000 samples. We observe 100% accuracy on a test set
in the case of nonlinear SVM with radial basis function (RBF)
kernel: k(	�, 	σ ) = exp(−γ ||	� − 	σ ||22), compared to the linear
model.

Unfortunately, there are constraints among the feature val-
ues that restrict the dimension of feature space so evaluating
kernel functions for all samples might be computationally
demanding. To reduce the problem complexity, one needs
to find certain heuristics or another advanced coarse-grained
classification. In the next section we summarize the obtained
results and discuss possible applications and further steps.

III. DISCUSSION

Let us summarize the salient points regarding the problem
of entanglement detection in multipartite states using the sup-
port vector machine algorithms as we considered in our work.

The entanglement detection problem is rather complex.
Ideally, one would aim to find tangent hyperplanes at each
point of a set of separable states. Several methods were

proposed to find an approximate distance between a given
witness and a set of separable states, which help to detect
the entanglement of a particular state [25]. In this context the
considered SVM approach has a similar objective to the one
mentioned above. The SVM aims to maximize the shortest
distance between the decision boundary and “support” state
(vector). However, as it was shown in Refs. [23–25] the
characterization of all EWs for a given multipartite system
has non-deterministic polynomial time hardness (NP-hard)
problem as the dimensionality increases. The geometrical
interpretation of this problem is also a highly nontrivial
task [26].

Nevertheless, the EW problem complexity can be reduced
by employing a coarse-grained classification such as the con-
sidered four-qubit SLOCC classification or description in
terms of Werner states. We demonstrated successful applica-
tions of the linear SVM algorithm for both of these cases.
It is important to mention that our analysis is akin to that
proposed in Ref. [40], where the authors also emphasized the
direct relationship of the entanglement witness functional and
linear SVM. In our work here, we focus on the successful
applicability of the SVM technique specifically for the coarse-
grained classification of entangled states joined in to certain
families. However, the success of linear models comes with a
price owing to the above mentioned NP-hardness of the EW
problem. In general, the linear SVM approach cannot provide
high accuracy for all states in a particular family. As we
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showed, one can detect the entanglement with high accuracy
for all family members only within a vicinity of a fiducial state
of the family. Thus, one can interpret the accuracy of a trained
EW model based on linear SVM as a measure of complexity
for a given family or parametrization of entangled states.

One of the main advantages of the discussed linear
SVM approach is its universality in terms of implemen-
tation. Note that the modern Python packages such as
QUTIP,TENSORFLOW, SCIKIT LEARN [42,43,48,49] provide all
necessary tools for implementation of both linear and nonlin-
ear SVM to find EW. The source code used for this work is
also provided in a GitHub repository [50]. In addition, a non-
linear version of SVM can be a valuable tool for theoretical
analysis, especially in the case of coarse-grained classifica-
tions. We demonstrated that nonlinear SVM allows us to
detect the entanglement with almost perfect accuracy for any
arbitrary state from a given family, while the linear SVM has
almost zero accuracy. It is not surprising because an arbitrary
family of states based on a given classification or parametriza-
tion is highly likely to be not linearly separable from a convex
set of separable states. We also showed that introduction of the
kernel function could be useful for specific cases. At the same
time it may require considerable computing resources making
the nonlinear kernels less attractive in general.

It is important to mention that local unitary transforma-
tions limit our analysis. These limitations are dictated by the
simplicity of analysis and implementation of the SVM algo-
rithm. Nevertheless, we believe that our results are sufficient
to demonstrate the universality of the proposed approach. It
is also worth noting that the previously described problematic
Werner states are not members of the SLOCC family, as their
definition is based on the unitary group structure described
above. In addition, we tailored our work to specific practi-
cal problems, such as quantum astrometry [51–53], where
the local unitary operations are reasonable models for the
information encoding present in those environments. On the
other hand, it is also crucial to emphasize that the general
analysis of the symmetry of quantum states and operations,
for example, by applying group theory, plays a prominent role
in the construction of the coarse-grained description.

Application of the group theory and symmetry analysis are
some of the most powerful tools in theoretical physics. In
particular, these approaches led to a significant progress in
developing novel theoretical and practical tools for quantum
technologies and their applications, such as entanglement de-
tection, foundations of quantum theory [54–57], randomized
benchmarking [58–60], etc. The aim for the next stage of
research is to elaborate on the developments of SVM, such
as algorithms to train more sophisticated and, if possible,
universal frameworks of classifiers to combine specific sets of
multipartite quantum states. It is our hope that the synthesis of
machine learning-based group theory methods and symmetry
analysis of states and quantum channels can be valuable tools
to accelerate further developments of quantum technology.

Another advantage of linear models is that they allow for a
physical interpretation of EW operators, as observables that
can be measured directly in an experiment. An interesting
goal would be to analyze further the connection between
kernel methods and optimal collective measurements within
the concept of collective entanglement witnesses [61].

The presented SVM-based analysis of EW can be useful
for practical applications. For instance, the SLOCC opera-
tions described above directly relate to the field of quantum
metrology. In particular, optical interferometers were pro-
posed where an entangled ancilla was shared between two or
more stations to improve the accuracy of astrometrical mea-
surements [51–53,62,63]. Each ancilla’s subsystem interacts
locally with a fiducial state in the station that carries valuable
information to be extracted. For practical implementation of
such schemes, one needs to understand how the noise affects
the ancilla’s state and also specifics of local interactions to
optimize the measurement protocol and to quantify the struc-
ture of the entangled states. Simple and effective tools such
as the proposed SVM approach can help to solve the problem
of detecting and classifying the structure of entangled states
used in those quantum astrometry schemes.

Finally, another promising application of this approach is
its employment in quantum-enhanced sensor networks [64]
and quantum reservoir computing [65,66]. It was already
demonstrated that both SVM and EW problems could be
mapped and processed by such multipartite quantum sys-
tems working as quantum-enhanced processors [64]. These
promising developments open new directions for applications
of multipartite quantum systems to address the cross-cutting
interdisciplinary problems of machine learning and quantum
metrology.
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APPENDIX: SLOCC CLASSIFICATION OF FOUR-QUBIT
PURE STATES

All trained SVM models discussed above were derived by
combining all states of one family based on a given prop-
erty such as the SLOCC equivalence or another particular
state property (parametrization) intrinsic to the Werner states.
This Appendix provides an explicit description of the SLOCC
classification used in this manuscript. This classification was
investigated in detail in Ref. [28], where the authors derived
nine families of states corresponding to nine different ways of
entangling four qubits.

The main idea of derivation follows from the equivalence
of groups SU(2) ⊗ SU(2) and SO(4) in the Lie-group theory,
where SU(2) is a special group of 2x2 unitary matrices and
SO(4) is a group of orthogonal matrices with unit determinant.
Mathematically, this equivalence is represented by ∀U1,U2 ∈
SU(2) ∃T : O = T (U1 ⊗ U2)T † ∈ SO(4). Additionally, each
four-qubit pure state can be represented as a 4x4 complex ma-
trix R = T ψ(i1i2 )(i3i4 )T †, where ψ(i1i2 )(i3i4 ) is a reshaped matrix
element of four-qubit state representation in the computational
basis. Thus, the aforementioned equivalence and state repre-
sentation allows one to represent the SLOCC transformation
of four-qubit state in (5) as an action of orthogonal matrices:
R′ = O1RO2. On the other hand it was proven that a given 4x4
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complex matrix R can always be transformed via O1 and O2

to the Jordan block normal form. This means that the normal
form encodes the genuine nonlocal properties of the four-
qubit state and allows classification of the states. Entangled

states from the same family can perform the same quantum
protocol but with a different probability. The following dis-
tinct classes of (unnormalized) pure states were specified in
the computational basis:

|Gabcd〉 = a + d

2
(|0000〉 + (|1111〉) + a − d

2
(|0011〉 + |1100〉) + b + c

2
(|0101〉 + |1010〉) + b − c

2
(|0110〉 + |1001〉), (A1)

|E1〉 = a + b

2
(|0000〉 + |1111〉) + a − b

2
(|0011〉 + |1100〉) + c(|0101〉 + |1010〉) + |0110〉 , (A2)

|E2〉 = a(|0000〉 + |1111〉) + b(|0101〉 + |1010〉) + |0110〉 + |0011〉 , (A3)

|E3〉 = a(|0000〉 + |1111〉) + a + b

2
(|0101〉 + |1010〉) + a − b

2
(|0110〉 + |1001〉) + i√

2
(|0001〉 + |0010〉 + |0111〉+|1011〉),

(A4)

|E4〉 = a(|0000〉 + |0101〉) + |1010〉 + |1111〉) + (i |0001〉 + |0110〉 − i |1011〉), (A5)

|E5〉 = a(|0000〉 + |1111〉) + (|0011〉 + |0101〉 + |0110〉), (A6)

|E6〉 = |0000〉 + |0101〉 + |1000〉 + |1110〉 , (A7)

|E7〉 = |0000〉 + |1011〉 + |1101〉 + |1110〉 , (A8)

|E8〉 = |0000〉 + |0111〉 , (A9)

|S0〉 = |0110〉 ≡ |E〉1 : a = b = c = 0. (A10)

The state |S0〉 represents a subclass of the pure factorized state. All other states (classes) possess unique properties and
entanglement structure. For instance, the state |G〉abcd represents a class of generic pure states. It is claimed that this is a class
of states with maximal four-partite entanglement on the orbit generated by SLOCC measured in accordance with majorization
criteria [28].
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Phys. 396, 1051 (2022).
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