
PHYSICAL REVIEW A 107, 032420 (2023)

Nonlinear Landau-Zener tunneling under higher-order dispersion
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We studied nonlinear Landau-Zener tunneling under the effect of higher-order dispersion, transformed the
Gross-Pitaevskii (GP) equation with higher-order dispersion terms into a nonlinear two-energy level form using
a two-mode approximation, and comprehensively analyzed the loop structure of the lowest-energy band and
the nonlinear Landau-Zener tunneling. The results show that, when third-order dispersion coefficient is not
zero, there is a spatial inversion symmetry breaking of the energy band structure and unbalanced Landau-Zener
tunneling. By analyzing the fixed point’s nature of the classical Hamiltonian, we obtain a law for the variation
of the loop structure and adiabatic tunneling probability with the dispersion coefficient, consistent with our
numerical analysis results. In addition, we analyzed the real-time evolution of solitons with transverse bias and
observed the tunneling phenomenon. Consistent with our analysis, the adjustment of the dispersion term can
effectively control optical tunneling, which provides an alternative idea for optical switching.

DOI: 10.1103/PhysRevA.107.032420

I. INTRODUCTION

The phenomenon of quantum tunneling is one of the most
remarkable results in quantum mechanics, showing that par-
ticles can penetrate the classically forbidden zone and is the
best proof of the fluctuating nature of particles, which can
be found in the textbook on quantum mechanics. When the
system is in an external potential well, symmetry breaking
leads to splitting energy levels at the boundary of the Bril-
louin zone, forming tiny energy gaps where physical solutions
are forbidden and tunneling does not occur in the adiabatic
case. Wu et al. found that, as nonlinear intensity increases,
there are loop structures in the lowest energy band [1]. The
crossing of energy levels causes adiabatic tunneling to occur
[2], a finding that immediately attracted widespread atten-
tion. Subsequently, people began a large number of studies
on loop structures, which showed that in any external po-
tential well background, as long as the nonlinear intensity
is large enough, it gives rise to the loop structures [3,4] and
numerically gave the conditions for the appearance of loop
structures [5]. Then, based on the loop structure, the tunnel-
ing phenomenon [6,7] due to the loop structure was verified
both theoretically and experimentally and extended to various
applications, such as diode [8], waveguide arrays [9], solitons
[10], and so on. Thereafter, a vast amount of literature was de-
voted to the study of nonlinear Landau-Zener (LZ) tunneling
[6,11,12], in many recent studies, it is also called Landau-
Zener-Stückelberg-Majorana (LZSM) tunneling [13–16]. In
Bose-Einstein condensation (BEC), the possibility of apply-
ing various models has been extensively discussed [17], and
the laws of variation of linear and nonlinear tunneling prob-
abilities with parameters have been analyzed [18], laying the
theoretical foundation for future practical applications.
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Recently, Blanco Redondo et al. discovered pure quartic
solitons (PQS) [19] in silicon photonic crystal waveguides.
This soliton exists in the equilibrium of anomalous fourth-
order dispersion and Kerr nonlinearity. The team suggested
the possibility of pure quartic soliton lasers [20], which led
to a wide discussion of higher-order dispersions. Literature
[21] shows that the combination of second- and fourth-order
dispersion may improve the performance of soliton lasers.
In addition, the soliton dynamics under second-, third- and
fourth-order dispersions were analyzed [22]. These studies
showed that higher-order dispersion can no longer be con-
sidered a perturbation but plays an important role. Of course,
studying nonlinear LZSM tunneling under higher-order dis-
persion is also necessary.

In the present paper, we consider the common two-energy
level systems and study the nonlinear LZSM tunneling phe-
nomenon under the effect of higher-order dispersion. We
predict the effect of each dispersion term on the loop structure
by analyzing the nature of the fixed points in the phase space
of the classical Hamiltonian system. We show analytically
that the lowest energy band shows a complex loop structure
due to the dissipative effect of third-order dispersion. Interest-
ingly, the nonlinear LZSM tunneling exhibits nonreciprocity
in different sweep directions due to the spatial inversion sym-
metry breaking by the dissipation. We reveal the physical
mechanism behind this phenomenon. We also discuss the
possible numerical simulation observation of our results with
gap solitons in optical lattices under transverse bias, giving
the possibilities of this model in practical applications.

The paper is structured as follows. In Sec. II, we intro-
duce the nonlinear Schrödinger equation under higher-order
dispersion, which can be described by a GP-like equation.
And under the two-mode approximation, we transform it into
a nonlinear two-energy level model and obtain its correspond-
ing classical Hamiltonian. Then we give the adiabatic energy
level, which is consistent with the results of the fixed point
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stability analysis. In Sec. III, we investigate the loop structure
by analyzing the fixed points in phase space to find the loop
structure pattern for different dispersion coefficients. Sec-
tion IV studies in detail the variation of the nonlinear LZSM
tunneling probability with different parameters. In Sec. V,
we consider the evolution of fundamental gap solitons under
transverse bias, which gives the possibility of application in
the optics. We have conclude in Sec. VI.

II. MODEL

In this paper, we consider the case of optical wave propa-
gation in a Kerr nonlinear periodic potential with higher-order
dispersion under the action of external transverse bias, where
the beam propagating is described by the following dimen-
sionless generalized Schrödinger-like equation [19,23,24]

i
∂ψ

∂z
= − β2

2

∂2ψ

∂x2
− i

β3

6

∂3ψ

∂x3
+ β4

24

∂4ψ

∂x4

+ v0 cos(x)ψ − βxψ + c|ψ |2ψ. (1)

Here, ψ is the dimensionless amplitude of the beam, x and
z are generalized coordinates. In optical fibers, z represents
the direction of propagation and x represents the retarded
time. Their units are mm and ps, respectively. The parameter
βi indicates the ith-order dispersion coefficient described by
∂ iK/∂ωi and its units are psimm−1 throughout this paper.
Here, K is used to distinguish it from k in the following
paper to represent light wave numbers. The βx denotes the
external transverse bias and β represents the strength of the
bias. In practical applications, we can control our sweep rate
by varying the intensity of the transverse bias. c is the Kerr
nonlinearity coefficient and its units is W−1mm−1 which is
the same as v0. The plus-minus sign characterizes the type
of nonlinearity, defocusing (or repulsion), when c is greater
than zero and focusing (or attraction) when c is less than zero.
When v0 is sufficiently small, the lowest two bands are very
close to each other and far away from other bands near the
boundary of the Brillouin zone kBZ = 1/2, LZSM tunneling
is more likely to occur here. To capture this tunneling ef-
fect analytically, we apply a two-mode approximation here in
which the plane wave is decomposed into the two modes at
the boundary and the higher modes are ignored. That is,

ψ (x, z) = a1(z) exp[ik(z)x] + a2(z) exp[i(k(z) − 1)x], (2)

where a1 and a2 denote the amplitudes of the two plane-wave
components, according to the normalization condition, the
two variables are required to satisfy |a1(z)|2 + |a2(z)|2 = 1
and k(z) denotes the Bloch wave vector. Due to the external
transverse bias, k(z) is no longer a constant but a function
of z. For the convenience of calculation, we define the term
dk/dz = β in the derivation of the two-energy level model
since the transverse bias can always be adjusted appropriately
such that this definition is satisfied. After bringing the two-
mode approximation into Eq. (1) and performing algebraic
operations [25,26], we obtain a nonlinear two-energy level
equation
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)
.

(3)

FIG. 1. Adiabatic energy levels and stability of fixed points
v0 = 0.1. (a,b) denote the lowest energy level at different nonlinear
constants. (c,d) Pi (i = 1, 2, 3) is the fixed point of the classi-
cal Hamiltonian Hc system whose corresponding trajectories are
P1 → IXR, P2 → LXF, P3 → LR. L and R are the left and right
limits of the loop, respectively, and X corresponds to the energy-level
crossing point.

This two-energy level model has the same form as in Ref. [1]
when third- and fourth-order dispersion coefficients are zero.
In Eq. (3), we have

L = β2

2
αz − β3

6

(
3

2
α2z2 + 1

8

)
+ β4

24

(
2α3z3 + 1

2
αz

)
. (4)

In numerical studies, we take k(z) = 1/2 + αz. In addition, α

is called the sweep rate, its magnitude is related to the external
transverse bias strength β. When α is equal to zero it denotes
an adiabatic process, namely, β = 0. We want to study non-
linear LZSM tunneling, that is, how the system evolves in the
z direction for different sweep rates. For simplicity, we define
γ = αz. We can obtain our nonlinear adiabatic energy levels
E (γ ) by solving Eq. (3) through diagonalizing the Hamilto-
nian H (γ ), see Fig. 1. It can be seen that, no matter how
the dispersion coefficient varies, the top of the energy band
is sharply pointed when c = v0. Here it can be considered as
the limiting case where the width of the loop structure is zero
and the width of the loop gradually increases as c increases,
which is consistent with the results of Ref. [2]. In Fig. 1(b),
it can be seen that the change in fourth-order dispersion co-
efficient has a particularly small effect on the loop structure,
but the change in the energy band outside the loop is partic-
ularly pronounced. As the fourth-order dispersion coefficient
increases, the energy band gradually decreases, corresponding
to an increase in the width of the energy band. When the
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third-order dispersion coefficient is not zero, the energy band
is no longer symmetric, which corresponds to our Hamilto-
nian’s spatial inversion symmetry breaking, namely, E (k) �=
E (−k). It is well known that, in nonlinear two-energy sys-
tems, the loop structure represents adiabatic nonlinear LZSM
tunneling. When spatial symmetry is broken, tunneling prob-
abilities are inconsistent under different sweep directions (α
in the case of different signs), resulting in unbalanced LZSM
tunneling. This phenomenon is referred to in Ref. [27] as
nonreciprocal LZSM tunneling and an exact numerical veri-
fication is given.

To better understand this interesting phenomenon, we con-
sider an equivalent classical Hamiltonian where the nonzero
adiabatic tunneling probability is considered as a conse-
quence of collisions between fixed points [1]. We define a =
|a|eiθa , b = |b|eiθb , and let θ = θb − θa, s = |b|2 − |a|2. s and
θ are a pair of canonical variables in a classical Hamiltonian
system [28] satisfying ds

dz = − ∂Hc
∂θ

, dθ
dz = ∂Hc

∂s . The classical
Hamiltonian is obtained by a simple calculation

Hc = − v0

√
1 − s2 cos θ + β2γ s − β3

6

(
3γ 2s + 1

4
s

)

+ β4

24
(4γ 3s + γ s) + 1

2
cs2. (5)

It has the form of a Josephson Hamiltonian [29] whose fixed
point is given by the following system of equations:

∂Hc

∂θ
= v0

√
1 − s2 sin θ = 0,

∂Hc

∂s
= v0

s√
1 − s2

cos θ + β2γ − β3

6

(
3γ 2 + 1

4

)

+ β4

24
(4γ 3 + γ ) + cs = 0. (6)

It can be obtained from the above Eq. (6) that the fixed point
in a period only exists on the θ = 0, π , and 2π . When the
loop structure appears, the eigenstate that corresponds to the
LR segment in Figs. 1(c) and 1(d) should be unstable, and
as the sweep proceeds, the eigenstate at R cannot remain in its
original state, the fixed point P3 corresponding to the classical
Hamiltonian is also unstable, and we obtain the corresponding
Hamilton-Jacobi matrix by linearizing the above set of equa-
tions near the fixed point

⎛
⎝− ∂2Hc

∂θ∂s − ∂2Hc
∂θ2

∂2Hc
∂s2

∂2Hc
∂s∂θ

⎞
⎠. (7)

By studying the eigenvalues of this matrix, we can obtain
the stability interval of the fixed point. When the real part of
this eigenvalue (λ) is zero, the fixed point is stable. On the
contrary, the fixed point is unstable [30], corresponding to the
loop structure in our adiabatic energy level. By comparing
the two methods, we obtain consistent results, as shown in
Figs. 1(c) and 1(d), which also shows that the nature of the
fixed point is closely related to the loop structure and even the
nature of the nonlinear LZSM tunneling is closely linked. In
the next section, we will discuss in detail the law of the fixed
point with respect to the variation of the parameters.

III. CLASSICAL PHASE DIAGRAMS AND FIXED
POINT ANALYSIS

First, we focus on the variation of the fixed point in phase
space in relation to the adiabatic energy level. Figure 2 shows
us the evolution of the phase space for different third-order
dispersion coefficients. When γ evolves from negative to pos-
itive infinity, the adiabatic energy level before the L point in
Fig. 1(c) corresponds to the fixed point P1 at the bottom of the
phase space. At the L point, a doubly split fixed point appears
at the top of the phase space, where the unstable fixed point
P3 moves towards the bottom after the split. As can be seen
from the phase diagram, at the R point (γ = γc), P1 collides
with P3 and the two fixed points disappear, which means that
adiabatic tunneling occurs [1]. The motion of P3 corresponds
to the LR segment in the adiabatic energy level, while the
R point represents the case where the fixed points collide
exactly at the bottom. The other stable fixed point P2, after
the split, then keeps moving towards the top until it finally
reaches the top at s = 1 when γ → ∞. At the same time, we
observe that the energy level crossing point X corresponds
to the case where P3 is exactly in the middle of the phase
space (s = 0) and the entire phase diagram is symmetric up
and down, see Figs. 2(a) to 2(d). The situation is also the same
for the points corresponding to Fig. 1(d) and Figs. 2(e) to 2(h)
when the third-order dispersion coefficient is not zero, but it
can be observed that P3 does not reach s = 0 at γb = 0 when
the third-order coefficient is not zero. This result represents
the presence of third-order coefficients that lead to a shift
in the loop structure, which is consistent with the spatial
inversion symmetry breaking conclusions we observe. The
offset of the loop structure is also discussed in another ref-
erence [18]. In summary, it can be seen that the unstable fixed
point P3 characterizes all the features of the loop structure
(L, R, X points). To better demonstrate the effect of different
coefficients on P3, we analyzed the nature of the motion of P3
in phase space with different parameters, see Fig. 3.

Here we compare the s-γ diagram with the classical case
of the s-t diagram (position-time diagram), where we assume
that γ here characterizes “time” and s denotes the position of
the fixed point in the phase diagram. By analyzing Eq. (3),
it is found that the effect of the second- and fourth-order
dispersion coefficient on the fixed point should be the same, so
afterward, we only discuss the effect of the second- and third-
order dispersion coefficient on the nature of the fixed point.
Figure 3(a) shows that the “existence time” of P3 decreases
as the second-order dispersion coefficient β2 increases, which
corresponds to a reduction in the width of the loop structure of
our adiabatic energy level when other parameters are constant,
that is, the increase of β2 acts as a suppressor of the loop
structure. However, it can be seen that, when the nonlinear
constant c is determined, the positions s of the splitting and
collision points corresponding to P3 do not change for dif-
ferent parameters and the absolute values of the two positions
are equal. According to our previous conclusion, all the curves
intersect at the point (0, 0), which corresponds to the fact that
the energy level crossing point X is all at γ = 0. The energy
levels do not shift as β2 and the nonlinear constant c change.
In Fig. 3(b), we compare the evolution of each fixed point for
different nonlinear constants. When c > v0, the collision and

032420-3



Y. CAO AND T. F. XU PHYSICAL REVIEW A 107, 032420 (2023)

FIG. 2. Evolution of classical Hamiltonian in phase space and distribution of fixed points. The evolutionary process of (a)–(d) corresponds
to Fig. 1(c) and (e)–(h) correspond to Fig. 1(d). Here, fixed point P corresponds to the eigenstate of the second energy level and the direction
indicated by the arrow is the direction in which the fixed point moves as γ increases. In (d) and (h), P1 collides exactly with P3, after which
the two fixed points disappear, implying that adiabatic LZSM tunneling has occurred.

splitting points move towards the two edges, respectively, as
c increases, which represents an increase in the loop struc-
ture. At c = v0, we can exactly see that both the collision
and splitting points are at s = 0, which means that the fixed
points just split and immediately collide, then disappear and
c is in a critical position, while at c < v0, neither splitting
nor collision exists. Even in the case of an asymmetric loop
structure, the curves intersect at the same point (γ ′

b, 0) as long
as the dispersion parameter does not change, which means that
the offset of the adiabatic energy level is only related to the
third-order dispersion coefficient. As β3 increases, the entire
loop structure moves in the positive direction of γ , the result
is shown in Fig. 3(c). As shown in Fig. 3(d), the “velocity”
of the entire fixed point decreases due to the presence of
β3. Moreover, the “velocity” at the split point is no longer
the same as at the collision point. The third-order dispersion
causes a decrease in velocity at collision. It can be predicted
that as β3 continues to increase, it may cause the “velocity” of
P3 at collision to decrease to zero or even cause the reversal
of P3. This phenomenon is because the third-order dispersion
acts as a dissipation in the system. According to our analysis
of the splitting point L, collision point R, and energy level
crossing point X , as β3 increases, the energy levels first shift,
due to the “velocity” decrease, see Fig. 4(b). Following the
increase of β3 will cause P3 first collides with P1. Then P3 re-
verses and collides with P2, showing a double-loop structure
in the center of the Brillouin zone, which is also mentioned
in Refs. [31,32], see Fig. 4(c). Then, based on the before
case, continuing to increase β3, P3 reverses to collide with P2

before it gets to collide with P1, and the energy level exhibits
the shape of a double-loop merger, see Fig. 4(d). It is worth
noting that there is also a possibility of double-loop merging.
On the basis of Fig. 4(c), that is, the double-loop appears case,
we increase the nonlinear constant c, which will also lead to
the generation of this phenomenon. The merger in this case is
due to an increase in the width of the loop structure causing
the two loops to collide, see Fig. 4(f). Finally, the increase of
β3 will cause the P3 point not to pass s = 0. In this case, the
energy level crossover will not occur and the loop will be out
of the lowest energy band, see Fig. 4(e). From the appearance
of the double-loop structure, the adiabatic energy levels that
follow all mean that eventually P3 will collide with P2 and
the adiabatic tunneling will disappear.

IV. NONLINEAR LZSM TUNNELING

Due to the effect of nonlinearity, it is difficult to obtain an
analytical expression for the nonlinear LZSM tunneling prob-
ability. To study this tunneling, we use numerical evolution
to solve Eq. (3), the initial value of (a, b) at γ → −∞ is
chosen to be (1, 0), namely, at the beginning of the system,
the particles are all in the lowest energy band. The tunneling
probability is defined as the value of |a|2 at γ → ∞.

In this section, we focus on two cases of tunneling. One
is tunneling in the adiabatic limit since, in a truly adiabatic
state, the system will always be in the transient ground state
and LZSM tunneling cannot occur, so we can only consider
the near-adiabatic case [33], namely, α → 0. Here, we choose

032420-4



NONLINEAR LANDAU-ZENER TUNNELING UNDER … PHYSICAL REVIEW A 107, 032420 (2023)

FIG. 3. Evolution of the position s of the fixed point in phase
space with γ . (a) For the fixed point P3, the constant parameters
are β3 = β4 = 0, v0 = 0.1, the solid and dashed lines denote c = 0.2
and c = 0.4, respectively. (b) Looking at the s > 0 part, from left
to right represents c = 0.4, 0.3, 0.2, 0.1, and 0, other parameters are
β2 = β3 = β4 = 1, v0 = 0.1. (c) For the fixed point P3, the constant
parameters are β2 = 1, β4 = 0, c = 2v0 = 0.2. (d) Corresponds to
the velocity at the fixed point under each parameter in Fig. 3(c).

α = 0.0001 as the case of the adiabatic limit. In the adia-
batic limit, the tunneling probability should be determined
by the topology of the adiabatic energy level and the nature
of the eigenstates, which corresponds to our analysis of the
fixed point of the classical Hamiltonian system in Sec. III. In
the previous section, we already know that the presence of
third-order dispersion can lead to spatial inversion symmetry
breaking and even double-loop structure can appear, which
we also can see by the evolution of the number density of
particles, see Fig. 5(a). When the third-order dispersion co-
efficient is small, the distribution of the number density of
particles hardly changes. It just tends to be more difficult
to stabilize at the same time. Moreover, as the third-order
dispersion coefficient increases, the double-loop structure ap-
pears and the particles will make second transition. When
continuing to increase the third-order dispersion coefficient,
the double-loop structure becomes closer, signaling that the
second transition of the particle will occur immediately after
the first. This makes it difficult to distinguish between the two
transitions, but eventually the particle will return to the ground
state, which corresponds to the return of the fixed point P3
to collide with the top stable fixed point P2 in phase space.
The larger the third-order dispersion coefficient, the faster

FIG. 4. Loop structure of the lowest energy band for different
third-order dispersion coefficients. Thick black line indicates the
adiabatic energy band and the thin red line indicates the stabil-
ity analysis of the fixed points. The other invariant parameters are
v0 = 0.1, β2 = 1, and β4 = 0. (a) β3 = 0; (b) β3 = 1; (c) β3 = 2.5;
(d) β3 = 3; (e) β3 = 3.8; (f) β3 = 2.5.

FIG. 5. Density distribution of particle number. The invariant
parameters are c = 2v0 = 0.2, β2 = 1, and β4 = 0. (a) α = 0.0001;
(b) α = 0.02.
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FIG. 6. Relationship between nonlinear LZSM tunneling proba-
bility and sweep rate α. Red (big symbol) for the forward sweep and
blue (small symbol) for the reverse sweep. Here v0 = 0.1, β2 = 2,
and β4 = 1. (a) β3 = 0; (b) β3 = 1.

this process occurs, which is an inevitable consequence of
the dissipative effect of third-order dispersion in the system.
We will subsequently discuss the effect of this coefficient
on the overall nonlinear LZSM tunneling. The second is the
tunneling in general, where the particles will get energy from
the outside due to transverse bias and more easily break
through the Bragg reflection at the edge of the energy band
into a higher energy state, see Fig. 5(b). We can see tunneling
occurs under transverse bias. Even if it does not occur in
adiabatic conditions, the particle number density distribution
becomes more complex. Due to dissipative effects, the spatial
inversion symmetry is broken and the tunneling probabil-
ity should behave inconsistently in different bias directions,
namely, in different sweep directions. It manifests itself as
a result of the combined effect of dissipation and transverse
bias and corresponds to the nonreciprocal LZSM tunneling
mentioned earlier. To study this tunneling phenomenon, we
define two sweep directions, forward sweep when α > 0, that
is, β > 0, and reverse sweep when the opposite is true. As
shown in Fig. 6, when the third-order dispersion coefficient
is zero, the probabilities of forward and reverse sweeps are
the same and independent of the nonlinear coefficient, which
manifests itself as our common tunneling. However, when the
third-order coefficient is not zero the two will no longer be in
agreement. Their difference becomes more pronounced as the
nonlinear coefficient increases and transverse bias intensity
but almost converges at near-adiabatic. To better investigate
the nonreciprocal LZSM tunneling, we restricted the third-
order dispersion coefficient to the case without double-loop
structure because the presence of the double-loop structure
will complicate the tunneling. From a physical point of view, it
can be analyzed that the effect of transverse bias in the forward
sweep provides energy for the particles to transition from a
lower energy state to a higher energy state. In contrast, the
effect of third-order dispersion is the opposite, so the presence
of the third-order dispersion coefficient is predicted to reduce
the tunneling probability. This conclusion is confirmed in
Fig. 7(b). However, in the reverse sweep case, we consider
the transition probability from a higher to a lower energy state.
The third-order dispersion has the opposite effect to the first
case, acting as a “gain,” but in this case, it is constrained

FIG. 7. Relationship between nonlinear LZSM tunneling prob-
ability and sweep rate α. v0 = 0.1. (a,b) β2 = 2, β4 = 1. The red
(thin) and black (thick) colors indicate the third-order dispersion
coefficients β3 = 0 and β3 = 2, respectively. Here (a) for the reverse
sweep, and in the c = 0.1 case, blue and yellow represent β3 = 1 and
β3 = 1.5, respectively. (b) For the forward sweep. (c) β3 = 0, black
(small symbol), red (thin), and blue (thick) indicate the exact linear
value, the numerical simulation results in the linear case, and in the
c = 2v0 case, respectively.

by nonlinear constants, as seen in Fig. 7(a). The presence
of the third-order dispersion coefficient reduces the tunneling
probability when the loop structure is absent. Nevertheless, at
the critical value of the loop structure, namely, when c = v0,
the effect of the magnitude of the third-order coefficient on
the tunneling probability is almost zero. To avoid chance we
tested a variety of third-order dispersion coefficients in this
case. The results show that this is a common situation and
that the “gain” effect of third-order dispersion coefficients
manifests itself as the loop structure emerges. The presence
of third-order dispersion coefficients increases the tunneling
probability. Since the third-order dispersion coefficient works
differently on the tunneling probability in different sweep
directions, this leads to the appearance of nonreciprocal tun-
neling. In addition, we are also interested in the effect of
second- and fourth-order dispersion coefficients on the tunnel-
ing probability and when the third-order dispersion coefficient
is zero, according to the Refs. [34,35], we obtain the linear
tunneling probability of the system as follows:

PL = e− πv2
0

2(β2+β4/24)|α| , (8)

which is consistent with our numerical simulation results, see
Fig. 7(c), we can see from the structure of Eq. (8) that, in
this case, the tunneling is balanced and independent of the
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sweep direction. Figure 7(c) shows that as second- and fourth-
order dispersion coefficients increase, both contribute to the
tunneling probability, except that the second-order dispersion
is much more powerful than the fourth-order dispersion. In
practice, we can use adjusting the second-order dispersion to
achieve coarse-tuning and adjust the fourth-order dispersion
to achieve more precise control. Furthermore, the effect of
the two diminishes as the nonlinear constant increases. In
the next section, we will discuss more specific cases and use
simulations to prove our conclusions.

V. TUNNELING PHENOMENON OF SOLITONS

In the absence of an external transverse bias, we use the
separation of variables method ψ (x, z) = φ(x) exp(−iμz) for
Eq. (1) to obtain a nonlinear Schrödinger equation indepen-
dent of the z direction and then solve this equation by using
Newton’s iteration method to get the soliton solution.

We use the Crank-Nicolson method and the second-order
time-splitting step method [36,37] to monitor the evolution
of solitons in the z direction. We already concluded in the
previous section that tunneling will occur when the strength
of the transverse bias is sufficiently large. To observe the
LZSM tunneling of solitons, we chose different bias strengths,
see Fig. 8. First, we start with β = 0, which is the same
as our known conclusion that solitons can maintain stable
propagation. As β increases, we first observe the phenomenon
of Bloch oscillations. This is due to the strength of the trans-
verse bias not being sufficient to support the soliton breaking
through the Bragg reflection at the edge of the first Brillouin
zone, leading to the phenomenon of oscillations of the soliton
in the Brillouin zone [38,39], see Figs. 8(a) and 8(b). The same
phenomenon was mentioned in the literature [40]. Abdullaev
et al. analyzed the Bloch oscillation phenomenon in the BEC
system in detail through numerical analysis and simulation.
They pointed out that, when the scattering length is positive,
which corresponds to our case, the nonlinear constant c is
greater than zero. The excitation generated on the BEC array
can occur in Bloch oscillation when the initial pulse velocity
is small but not zero. In our model, the external transverse
bias is equivalent to adding an initial lateral velocity to the
initial soliton wave and when β = 0.1, compared with stable
propagation can be found that there is an obvious oscillation of
Fig. 8(b). Then we continue to increase the bias strength and
the soliton breaks through the edge of the first Brillouin zone,
which shows in Fig. 8(c), oscillations are suppressed, and
tunneling occurs [41]. In Figs. 8(c) and 8(d), it is shown that
increasing the second-order dispersion coefficient makes tun-
neling more likely to occur when the transverse bias strength
is given, signifying an increase in the tunneling probability.
This can also be seen from the strength of the solitons that
maintain straight-line propagation. The higher the tunneling
probability, the weaker the strength that maintains straight-
line propagation. As can be seen from Fig. 8(d), although
the increase of fourth-order dispersion coefficient enhances
the tunneling strength, it can be clearly observed that the
effect of fourth-order dispersion is much weaker compared
with the increase of second-order. Figure 8(f) shows the
evolution of the soliton when the third-order dispersion co-
efficient increases, the tunneling phenomenon is obviously

FIG. 8. Real-time evolutionary results of solitons for c = v0 = 1
in the first gap which is μ = 0 and the color is expressed as |φ(x)|.
(a)–(c) have the same dispersion coefficient β2 = 1, β3 = 0, β4 = 0
and strength of different transverse biases β. (a) Stable propagation
for β = 0. (b) Bloch oscillation for β = 0.1. (c) Optical tunneling
for β = 0.5. (d) Optical tunneling for β = 0.5, β2 = 1, β3 = 0, and
β4 = 1. (e,f) differ only in third-order dispersion coefficients which
have β3 = 0 and 1, respectively. The other identical parameters are
β2 = 2, β4 = 0, and β = 0.5.

suppressed. Although the tunneling intensity almost does
not change, it is mainly concentrated near the main soliton
wave. The monitoring results are consistent with the previous
findings.

VI. CONCLUSION

In summary, we studied the nonlinear LZSM tunneling
under higher-order dispersion, given the law of variation of
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the loop structure by analyzing the fixed points of the classical
Hamiltonian, and systematically discussed the effect of the
dispersion term on the loop structure and tunneling prob-
ability. Our results showed that the effect of second- and
fourth-order dispersion on tunneling was the same, except
that fourth-order dispersion affects it to a lesser extent than
second-order dispersion. We gave exact values for the lin-
ear case, in agreement with the simulations. However, when
third-order dispersion was present, it dramatically affected the
tunneling, breaking the loop structure’s symmetry and leading
to nonreciprocal LZSM tunneling. In the end, we gave the

real-time evolution of solitons under transverse bias, which
gave consistent results by comparison with the laws of the
nonlinear two-energy level model. The findings in the present
work have enriched our alternative understanding of the loop
structure and nonlinear LZSM tunneling.
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