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Scrambling and quantum chaos indicators from long-time properties of operator distributions
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Scrambling is a key concept in the analysis of nonequilibrium properties of quantum many-body systems.
Most studies focus on its characterization via out-of-time-ordered correlation (OTOC) functions, particularly
through the early-time decay of the OTOC. However, scrambling is a complex process which involves operator
spreading and operator entanglement, and a full characterization requires one to access more refined information
on the operator dynamics at several timescales. In this work we analyze operator scrambling by expanding
the target operator in a complete basis and studying the structure of the expansion coefficients treated as a
coarse-grained probability distribution in the space of operators. We study different features of this distribution,
such as its mean, variance, and participation ratio, for the Ising model with longitudinal and transverse fields,
kicked collective spin models, and random circuit models. We show that the long-time properties of the operator
distribution display common features across these cases and discuss how these properties can be used as a proxy
for the onset of quantum chaos. Finally, we discuss the connection with OTOCs and analyze the cost of probing
the operator distribution experimentally using these correlation functions.
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I. INTRODUCTION

Scrambling refers to the spreading of initially localized in-
formation to the rest of the degrees of freedom in a many-body
system [1–5]. It plays an important role in describing di-
verse phenomena such as closed-system thermalization [6,7],
dynamical phase transitions [8–10], sampling hardness in
random quantum circuits [11,12], and information retrieval
in black holes [1,2,13]. One of the most prominent quan-
tifiers of scrambling is the out-of-time-ordered correlator
(OTOC), which is a four-point correlation function of the
form 〈W †(t )V †(0)W (t )V (0)〉, together with the closely re-
lated square commutator 〈|[W (t ),V (0)]|2〉 [14–16].

Out-of-time-ordered correlators and scrambling have be-
come important actors in the dynamical characterization of
chaos in many-body quantum systems [17–19]. Quantum
chaos is typically defined in terms of kinematic features like
statistical properties of energy spectra and their connection
to random matrix theory [20–23]. However, a unifying dy-
namical description of chaos in general quantum systems
remains an outstanding challenge. Many studies of scrambling
in quantum systems have focused on understanding its early-
time behavior, particularly through the decay of OTOCs, and
have sought to define a quantum analog of the Lyapunov expo-
nent. Nevertheless, there are cases of quantum systems whose
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kinematic properties follow random matrix theory predictions
(and are thus quantum chaotic), for which the OTOC does not
decay exponentially [24–28]. Conversely, some quantum sys-
tems with classically integrable counterparts showing unstable
fixed points can lead to exponential decay of OTOCs [29–31].

More generally, scrambling is a complex process which
can be described by the way an initially simple operator
evolves into a complicated superposition of configurations
belonging to an exponentially large operator space [32,33].
As such, it is bound to require methods to characterize it
that go beyond the short-time behavior of a single correla-
tion function. Indeed, recent studies on operator growth have
developed a more thorough characterization of scrambling by
analyzing the dynamics of operators in operator space, most
notably using the Krylov representation [33,34]. Moreover,
some studies have found important links between quantum
chaos and the long-time behavior of the OTOC [24], rather
than its initial decay. In this context it is useful to further probe
the connection between the long-time properties of evolving
operators and quantum chaos and to explore other objects
of interest besides the OTOC which allow us to construct
diagnostics of scrambling in the long-time regime. An ad-
ditional motivation is the inherent complexity of accessing
OTOCs experimentally: Even with the extraordinary control
and isolation capabilities found in state-of-the-art quantum
simulation experiments [35–37], accessing OTOCs requires
costly resources such as the use of auxiliary systems or time-
reversal operations [5,38–40], among others, and thus requires
considerably more effort when compared to the usual quench-
dynamics experiments (with notable exceptions; see [41–43]).

In this work we purposely steer away from OTOCs
and focus on studying scrambling in quantum systems by
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analyzing directly the dynamical properties of a suitably de-
fined probability distribution {Pk (t )} over a coarse-grained
operator basis. This distribution can be defined for arbitrary
quantum systems and here we focus on the cases of mod-
els of many spin- 1

2 particles (including quantum circuits on
qubits) and models of collective spins, which are effectively
described by a single large spin J [44]. The dynamical tran-
sition from simple to complex operators is then encoded
in different properties of the distribution such as its mean,
variance, and (de)localization, which signify the growth and
spreading of operators over the degrees of freedom of the
system. We apply this framework to paradigmatic models of
quantum chaos such as the tilted-field Ising model [45] and the
quantum kicked top [46] and show that analysis of the long-
time averages of the distribution properties and their temporal
fluctuations are good indicators of the onset of chaos in these
systems. Furthermore, we discuss how some of these features
can distinguish different properties of the nonergodic regimes
and show that both models can show very similar behavior
in this picture even though their physical properties are quite
different. We also apply these tools to the study of random
quantum circuits [47–50] with a tunable number of T gates
and analyze how the properties of scrambling change as just
a small fraction of non-Clifford gates are included in the dy-
namics. Finally, the connection between averages of OTOCs
and the moments of the distribution {Pk (t )} is analyzed and
we discuss the number of OTOC measurements needed to
reconstruct the different measures we study.

Our work extends previous studies that have focused on
the properties of the operator distribution in the study of
scrambling [4,51–53]. Notably, these also include NMR ex-
periments, which routinely analyze the size of active clusters
of spins, a quantity that is closely related to the mean operator
size in the Heisenberg picture [54,55]. It also complements the
approach of Ref. [24], which studied the connection between
quantum chaos and the long-time properties of OTOCs by
considering the properties of the operator distribution directly
in a similar regime.

The rest of the work is organized as follows. In Sec. II we
discuss scrambling for general quantum systems and define
the coarse-grained probability distribution as the object that
characterizes it. In Sec. III the tilted-field Ising model is stud-
ied via numerical simulations and we analyze the evolution
of the probability distribution in its integrable and chaotic
regimes. In Sec. IV we study the quantum kicked top, which is
a collective spin model with a well-defined classical limit and
use it to relate the long-time properties of scrambling with the
chaotic properties of the model. In Sec. V we study a model
of random Clifford circuits perturbed by a tunable number of
T gates and study how the properties of the operator distri-
bution change as the number of non-Clifford gates increases.
Section VI discusses the connection between the operator
distribution {Pk (t )} and averages of OTOCs. We provide a
summary and discuss potential future work in Sec. VII.

II. OPERATOR EVOLUTION AND MEASURES
OF SCRAMBLING

Consider a quantum system on a finite-dimensional Hilbert
space of dimension d , with evolution from t = 0 to some

FIG. 1. Schematic picture of scrambling diagnosed via a coarse-
grained operator distribution. An operator basis, typically containing
exponentially many elements, is divided into sets with common char-
acteristics C1, C2, etc. A typical example of this is the size or weight
of a multibody Pauli operator in the case of spin- 1

2 particles. From
this grouping, a probability distribution is defined for the evolution
of an operator Ô(t ). At t = 0, the distribution is localized at low
complexity index. The scrambling process generated by U (t ) spreads
the distribution and shifts it towards higher complexity.

arbitrary time t described by an unitary operator Û (t ). We
will focus on the dynamics of a generic Hermitian operator
Ô, which can be expressed as

Ô(t ) = Û †(t )ÔÛ (t ) =
D∑

j=0

f [�̂ j ; Ô(t )]�̂ j, (1)

where {�̂ j}, j = 0, 1, . . . , d2 − 1 ≡ D, is an operator basis
which we take to be orthonormal, i.e., tr(�̂†

i �̂ j ) = δi j . We
also take �̂0 = I/

√
d throughout and consider trÔ = 0. The

scalar coefficients { f [�̂ j, Ô(t )]} describe the dynamics of
Ô(t ) in the chosen basis and at all times satisfy the normal-
ization condition∑

j

| f [�̂ j, Ô(t )]|2 = tr[Ô(t )2] = tr(Ô2). (2)

Equation (2) allows us to treat the set of squared coefficient
amplitudes as a probability distribution (after normalization).1

Additionally, in many situations of interest the operator basis
admits a natural ordering related to some notion of complexity
of the operator, which we schematically depict in Fig. 1.
Qualitatively, we consider this ordering to induce a natural
grouping of the basis, which has the form

{�̂ j} → {{�̂ j}C1, {�̂ j}C2 , . . . , {�̂ j}Ck , . . . , {�̂ j}Ckmax
}, (3)

1The coefficients { f [�̂ j, Ô(t )]} can also be regarded as the com-
plex amplitudes of an operator wave function [52] and thus Eq. (2)
represents the normalization of such a wave function.
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where the complexity of operators is considered to grow as
the index k = 1, 2, . . . , kmax increases and

∑
k dim(Ck ) = D.

For instance, this structure could correspond to a multibody
Pauli basis where k corresponds to the weight or size of
each operator, as we will discuss in Sec. II A. Leveraging this
structure, we define the coarse-grained probability distribution
for the operator Ô(t ),

Pk (t ) = 1

tr(Ô2)

∑
� j∈Ck

| f [�̂ j, Ô(t )]|2, (4)

which naturally satisfies
∑

k Pk (t ) = 1. We are interested in
situations where the initial operator Ô is included within one
of the groups of low complexity (say, k = 1) and our goal is
to characterize the scrambling process in the system via the
evolution of the distribution Pk (t ) over time, as depicted in
Fig. 1. To characterize the distribution we will consider the
first two cumulants of the distribution

μ(t ) = k(t ) =
∑
k=1

kPk (t ), (5)

σ (t ) =
√

k(t )2 − μ(t )2 (6)

as well as its inverse participation ratio (IPR)

ηIPR(t ) =
∑

j

Pj (t )2. (7)

Here ηIPR � 1 indicates a very localized distribution (low
participation), while ηIPR � 1/kmax shows a delocalized distri-
bution (high participation). The IPR has been extensively used
to measure delocalization of eigenstates in quantum chaos
[56] and a similar object has been used in the context of re-
source theories of magic [57]. Here we will use it to assess the
delocalization of the operator distribution in the scrambling
process. We point out that higher-order cumulants of the full
distribution in the Krylov basis have been studied recently
in [58].

In Appendix A we show that for Haar-random evolution the
operator Ô(t ) will be uniformly spread in any operator basis.
The resulting distribution thus has the form

Pk → dim(Ck )

d2 − 1
(8)

and it is straightforward to compute the indicators introduced
once the sets {Ck} are defined. This limiting case will be
helpful in order to study the onset of chaos as dictated by the
randomization of the evolution. In the following sections we
investigate two cases of interest: systems of N spin- 1

2 particles
or qubits and collective spin systems described by a single
large collective spin J = N/2.

A. Systems of many spin- 1
2 particles

Consider a system of N spin- 1
2 particles (with d = 2N )

and the basis of multibody Pauli operators P⊗N , where P =
{I, X,Y, Z} = {I, σx, σy, σz}/

√
2. This scenario encompasses

many relevant models for the study of quantum chaos and
scrambling, like the Ising model with a longitudinal and
transverse field [45], random circuits on qubits [47–49], and
models of spin chains with impurities or interactions beyond

TABLE I. Asymptotic behavior of properties of the operator
distribution {Pk}. Detailed expressions are found in Appendix A.

Property Many spins 1
2 Collective spins

Mean μ 3
4 N 2

3 N

Variance σ 2 3
16 N 1

18 N2

IPR ηIPR ∼N−1/2 3
8 N−1

nearest neighbors [59–61]. Each element of the Pauli basis
can be assigned a size (or weight) 1 � s(Q̂) � N , which cor-
responds to the number of sites the operator acts nontrivially
on. For instance, for N = 3, s(IXY ) = 2, while s(IZI ) = 1.
We will consider s(Q̂) to be the measure of complexity of the
basis elements in these systems. With this, the grouping of
Eq. (3) takes the form

{Q̂j} → {{Q̂j}s=1, {Q̂j}s=2, . . . , {Q̂j}s=N }, (9)

where we have introduced the collective index j corresponding
to the length-N Pauli string that describes each operator, i.e.,
Q̂(021) = IY X . The dimension of each weight group is given
by

dim({Q̂j}s=k ) =
(

N

k

)
3k . (10)

We are interested in situations where the initial operator is
a single-site Pauli operator Ô, for which Eq. (4) takes the form

Pk (t ) =
∑

s(Qj )=k

| f [Q̂j, Ô(t )]|2. (11)

Using Eqs. (8) and (10) we can evaluate the mean, variance,
and IPR of this probability distribution for the case of Haar-
random evolution. Full expressions are shown in Appendix A
and their asymptotic behavior is shown in Table I.

B. Collective spin systems or single large spins

A special case of interest in systems of N spin- 1
2 par-

ticles is when the Hamiltonian is written solely in terms
of the collective spin operators Ĵα = 1

2

∑N
i=1 σ̂ α

i , with α =
x, y, z. This describes a scenario where the particles show
homogeneous all-to-all interactions among themselves and
collective couplings to external fields. Such Hamiltonians
preserve the total angular momentum Ĵ2 = Ĵ2

x + Ĵ2
y + Ĵ2

z and
states which are fully symmetric under permutation of par-
ticles (corresponding to J = N/2) remain so throughout the
evolution. Many important models related to quantum chaos
and dynamical criticality belong to this class, for instance, the
Lipkin-Meshkov-Glick model [62,63], the quantum kicked
top [46], and the p-spin models [64,65].

The Hilbert space associated with evolution in the symmet-
ric manifold has dimension d = 2J + 1 = N + 1 and can be
spanned by the Dicke states {|J, m〉}, m = −J,−J + 1, . . . , J ,
which are the eigenstates of Ĵz. This space is thus formally
equivalent to that of a single particle of spin J . While products
of angular momentum operators can be used to span any
operator in this space, a more convenient choice is given by
the spherical tensor operators T̂LM , which for an arbitrary J
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has the form [66]

T̂LM =
√

2L + 1

2J + 1

J∑
m,m′=−J

CJm
Jm′,LM |Jm〉〈Jm′|, (12)

where CJm
Jm′,LM = 〈Jm′, LM|Jm〉 is the Clebsch-Gordan coeffi-

cient which couples two representations of spin J (projection
m′) and L (projection M) to a total spin J . The usual selec-
tion rules indicate that m = M + m′ and so the sum above is
restricted to m − m′ = M. The indices of T̂LM are typically re-
ferred to as the rank L, which is such that L − J � J � L + J ,
and hence 0 � L � 2J , and the projection M = −L,−L +
1, . . . , L. Spherical tensor operators form the basis for the spin
coherent state Wigner function, a generalization of the Wigner
function for the harmonic oscillator [67].

The spherical tensor operators form an orthonormal opera-
tor basis tr(T †

L1M1
TL2M2 ) = δL1,L2δM1,M2 and they are in general

non-Hermitian with the property T †
L,M = (−1)MTL,−M . The

low-rank elements are readily associated with familiar oper-
ators

T̂1,1 = α1,1Ĵ+, T̂1,0 = α1,0Ĵz, T̂1,−1 = α1,−1Ĵ−, (13)

where we have omitted the positive normalization constants
αLM to simplify the notation. Higher-rank elements corre-
spond to higher-order products of collective spin operators
and can be constructed (see, for instance, Appendix C of [68])
by noting that T̂L,L = (−1)LαL,LĴL

+ and using the commutation
relations [69] (we set h̄ = 1 throughout the paper)

[Ĵz, T̂LM] = M T̂LM, (14)

[Ĵ±, T̂LM] =
√

(L ∓ M )(L ± M + 1)T̂L,M±1. (15)

Physical Hamiltonians are typically written only in terms
of low-rank operators (such that L  N , say), a fact that
applies to both actual many-body collective systems and
single multilevel atoms [70].2 Following the discussion of
the preceding section, we will take the rank as the index
defining a notion of complexity of any basis operator, where
rank(T̂LM ) = L. This leads to a grouping of the basis set as

{T̂LM} → {{T̂L=1,M}, {T̂L=2,M}, {T̂L=3,M}, . . . }. (16)

We will consider our initial operator to be rank-1, e.g.,
Ô(0) = Ĵz, and so the probability distribution in Eq. (3) takes
the form

Pk (t ) = 1

tr
(
Ĵ2

z

)
k∑

M=−k

| f [T̂L=k,M, Ĵz(t )]|2. (17)

As before, we can use that the dimension of each subset
Ck = {TL=k,M} is dim(Ck ) = 2k + 1 to compute the properties
of Pk for the case where the evolution is Haar random. Full
expressions are given in Appendix A and their asymptotic
behavior with N is indicated in Table I. Note that these results
admit a direct comparison to the many-body case if one recalls

2For example, a natural Hamiltonian for multilevel atoms consists
of rotating magnetic fields and a tensor light shift that can be written
as the sum of spherical tensors up to rank L = 2 [70].

that J = N/2. Moreover, rank(T̂LM ) = L implies that T̂LM con-
tains up to the Lth powers of the angular momentum operators
Ĵα = 1

2

∑N
i=1 σ̂ α

i and is thus composed of up to size-L Pauli
operators. The results in Table I show that, under random
evolution, collective spin systems reach smaller operator sizes
on average, but lead to broader distributions with variance
scaling as N2 instead of N .

III. SCRAMBLING AND CHAOS IN THE TILTED-FIELD
ISING MODEL

We begin by studying the properties of the operator dis-
tribution {Pk (t )} in the different regimes of the Ising model,
a standard paradigm in the study of many-body quantum sys-
tems [71–73]. This model describes a set of N spin- 1

2 particles
interacting in one dimension via nearest-neighbor interactions
and in the presence of an external magnetic field with a trans-
verse and a longitudinal component. The Hamiltonian can be
written as

HIsing(θ ) = J
N−1∑
n=1

σ z
nσ z

n+1 + B
N∑

n=1

(
σ x

n cos θ + σ z
n sin θ

)
,

(18)
where we take 0 � θ � π

2 . Here σα
n are the usual Pauli op-

erators on site n with α = x, y, z. For θ = 0 Eq. (18) is
the transverse-field Ising model (TIM), whose equilibrium
and nonequilibrium properties have been studied extensively
[74]. This model is integrable since it can be mapped to
a noninteracting system of fermions via the Jordan-Wigner
transformation [74,75]. The case of pure longitudinal field
θ = π

2 is diagonal in the computational basis and thus also
trivially integrable. For other values of θ (and generic choices
of B/J), this tilted-field Ising model is quantum chaotic as
revealed by several of the usual metrics, which have been
studied in previous works [45,76,77]. For completeness, we
revisit some of those results here. First, the eigenenergies of
HIsing in this chaotic regime display level repulsion as pre-
dicted by random matrix theory and this can be quantified by
the average adjacent spacing ratio r, the details of which we
present in Appendix B. We plot a normalized version of this
quantity rnorm as a function of θ in Fig. 2(a). Values close to
1 indicate agreement with the Gaussian orthogonal ensemble
predictions and thus quantum chaotic behavior, while devia-
tions towards 0 indicate uncorrelated level statistics typical of
integrable systems. As an additional metric, we also consider
the average entanglement entropy of the excited states of HIsing

for an equal bipartition of the chain [45]. This is defined as

S

(
N

2

)
=

∑
{|φi〉}

S
(
ρ

(i)
N/2

)
, (19)

where ρ
(i)
N/2 is the state resulting from tracing out half of the

particles from |φi〉〈φi|, |φi〉 is an eigenstate of HIsing, and the
sum is carried out over the bulk of the spectrum (i.e., avoid-
ing the ground and low-energy states of HIsing and −HIsing).
Regimes of maximum average bipartite entanglement are then
associated with quantum chaos, as can be verified from the
results shown in Fig. 2(b).

We now study the scrambling process in the different
regimes of the Ising model by analyzing the probability
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FIG. 2. Scrambling from operator evolution and quantum chaos indicators in the tilted field Ising model defined in Eq. (18), as a function
of the external field angle θ . All cases use B = J . (a) Normalized mean adjacent level spacing ratio, a standard measure of quantum chaos
discussed in Appendix B, computed for two instances of the Ising Hamiltonian with different system size N . (b) Alternative proxy for quantum
chaos given by the averaged entanglement entropy of the eigenstates of HIsing located in the bulk of the spectrum. (c) and (d) Short-time
evolution of the coarse-grained operator distribution Pk (t ), defined in Eq. (11), for different values of θ and with N = 6. Cases shown
correspond to (c) Ô(0) = σ̂ (N/2)

y /
√

2 and (d) Ô(0) = σ̂ (1)
y /

√
2. Thin faint lines indicate the values of the Haar-random evolution, given in

Eqs. (8) and (10). From left to right, cases corresponding to different values of θ ∈ [0, π/2) are shown.

distribution Pk (t ) defined in Eq. (11). In Figs. 2(c) and 2(d)
we display exact numerical results of the time-dependent
distribution corresponding to a chain of N = 6 particles
where the initial operator sits either in middle of the chain
Ô(0) = σ̂ (N/2)

y /
√

2 [Fig. 2(c)] or at the edge Ô(0) = σ̂ (1)
y /

√
2

[Fig. 2(d)]. In both cases, the initial distribution is initially
concentrated in P1(0) = 1 and then evolves in time displaying
different features depending on the system parameters. All
cases with 0 � θ � π

4 show a rapid decrease of the initial
component P1 as the operator spreads into a superposition
of larger-size configurations. Crucially, however, the chaotic
case θ = π

6 shows a fast equilibration to the values corre-
sponding to the random distribution shown as dashed lines
[cf. Eq. (8)]. As θ → 0 and the model becomes integrable,
the distribution shows further oscillations and fails to equili-
brate completely in the timescale shown. The deviations from
ergodicity are enhanced when the initial operator sits at the
edge of the chain, a situation in which the initial configuration
has fewer options to equilibrate to since the site has a single
neighbor instead of two due to the open boundary conditions.

The other integrable regime, occurring at θ = π
2 but al-

ready noticeable for θ = π
3 , corresponds to a very different

type of evolution. In the diagonal case the external field
commutes with the interaction and thus a single site oper-
ator like σ̂ (l )

y evolves to only two- and three-site operators,
independently of the length of the chain. The distribution then
shows very little spreading as most of the elements are never
populated. The situation remains roughly the same even in the
presence of a small transverse field, as can be seen in the cases
corresponding to θ = 0.45π shown in Fig. 2.

While the operator probability distribution {Pk (t )} already
reduces the description of observable evolution from the

exponentially large basis to a set of only N numbers, it is
still helpful to analyze measures which describe particular
aspects of the distribution at each time. We thus turn to study
the quantities introduced in Sec. II, namely, the mean μ(t ),
variance σ (t ), and IPR ηIPR(t ) of the distribution. Figure 3(a)
shows the evolution of these three quantities for different
values of θ for the initial operator located in the middle of
the N = 6 particle chain (for completeness, the case where the
initial operator sits at the edge is shown in Appendix C). The
evolution of the mean μ(t ) shows an increase from μ(0) = 1
towards approximately N with different features depending
on the value of θ . The most chaotic case θ = π

6 grows until
reaching the random value 3N/4 (see Table I), while most
other cases show oscillations. Note that the TIM case (θ = 0)
grows beyond the random value, meaning that during certain
periods, the integrable model leads to mean operator sizes
which are larger than those found for Haar-random evolution.
Finally, as the other integrable limit is approached for θ ∼ π

2 ,
the distribution stops shifting beyond N = 3, as discussed
before, and shows indefinite large-amplitude oscillations.

For the evolution of the variance of the distribution σ 2(t ),
we observe that cases far from the diagonal case (i.e., θ  π

2 )
show an initial increase from σ 2(0) = 0 which shoots up sig-
nificantly above the Haar-random prediction of approximately
3N/16. Then most cases equilibrate to that value, albeit in
different timescales. Interestingly, as θ reaches π

3 the vari-
ances become consistently larger than the Haar prediction.
This indicates a nontrivial behavior in which not necessarily
the most chaotic evolution leads to the largest width of the
operator distribution. A similar trend is observed in the IPR
of the distribution ηIPR(t ), shown also in Fig. 3(a). We point
out that μ(t ) and σ (t ) as a function of time for the chaotic
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FIG. 3. Measures of the probability distribution {Pk} for the
tilted-field Ising model with N = 6 and B/J = 1. (a) Mean μ(t ),
variance σ 2(t ), and IPR ηIPR(t ) of the operator distribution shown as
a function of time for the four values of θ displayed in Fig. 2. Dotted
lines correspond to the predictions for Haar-random evolution shown
in Table I. Results shown here correspond to Ô(0) = σ̂ (N/2)

y /
√

2.
(b) Long-time properties of the aforementioned measures, as calcu-
lated by the time-averaged value [cf. Eq. (20)] and the time-averaged
temporal fluctuations [cf. Eq. (21)]. Plots are shown as a function
of the parameter θ of the Ising model and for choices of the initial
operator on the middle site (dark lines) and at the edge (light lines)
of the chain.

case θ = π
6 show a remarkable similarity to the ones observed

for the Sachdev-Ye-Kitaev (SYK) model by Roberts et al. in
Ref. [52].

In order to obtain a more general picture of how the
different regimes of the Ising model with varying θ are
reflected in the properties of operator-size distribution, we
analyze the long-time behavior of these measures X (t ) ∈
{μ(t ), σ (t ), ηIPR(t )} by computing both the time-averaged
value

X (t ) ≡ 1

t f

∫ t f

t0

X (t ′)dt ′ (20)

and the time-averaged temporal fluctuations

�2
X ≡ 1

t f

∫ t f

t0

[X (t ′) − X (t )]2dt ′. (21)

For all numerical calculations we integrate the quantities from
t0 �= 0 such that the initial transient does not contribute and

take t f � t0 to estimate the infinite-time average in each
case. In Fig. 3(b) we show the time-averaged value and time-
averaged temporal fluctuations for each of the three measures
as a function of θ and for initial operators both in the middle
and at the edge of the chain. The results are for N = 6, Jt0 =
5, and Jt f = 40, but they do not depend significantly on these
choices. There are two overarching features that stand out
clearly in all cases shown. First, the quantum chaotic regime
spanning roughly the θ ∈ (0, π

3 ), as seen in Figs. 2(a) and
2(b), yields (i) long-time equilibration of all the distribution
measures to the Haar-random predictions, as can be seen from
the agreement between the time-averaged values in the first
row with with the Haar predictions from Table I, and (ii)
suppression of temporal fluctuations �X � 0 for all cases.
Second, the trivially integrable regime, which is reached as
θ → π

2 , can be clearly distinguished from the features of the
distribution, since the mean and the spread are greatly reduced
as the distribution tends to be confined to k = 1, 2, 3 inde-
pendently of system size. Moreover, this highly nonergodic
case leads to greatly enhanced temporal fluctuations, as seen
in particular from the behavior of �μ and �IPR.

On the other hand, we observe that the studied properties
of the distribution have a harder time distinguishing the inte-
grable model at θ → 0 from the ergodic case. For instance,
the time-averaged values of the mean, variance, and IPR stay
very close to the random predictions as θ → 0, indicating
that the integrable transverse Ising model leads to significant
randomlike operator spreading at long times. This is true for
most choices of the initial operator; however, we find that
choosing Ô(0) at the edge leads to somewhat different fea-
tures, particularly in the θ � 0 regime. For this regime and
choice of initial operator, we see that the time-averaged mean
drops and the time-averaged variance rises, signaling a clear
deviation from ergodicity. Interestingly, while the behavior of
the mean is similar to the other integrable limit, the case of the
variance is opposite: The width of the distribution increases
above the chaotic case in the transverse-field regime.

More generally, we observe that the integrability of the
model at θ = 0 consistently leads to increased long-time
temporal fluctuations in all quantities, independently of the
choice of the initial operator. Enhanced oscillations in the
mean, variance, and IPR are seen in both integrable regimes
as compared to the chaotic case. We thus find that these
temporal fluctuations can be used to distinguish chaotic and
nonchaotic regimes of the model. These results are aligned
with the findings of Ref. [24], which showed that the long-
time behavior (particularly the properties of the frequency
spectra) of OTOCs serves as a good indicator to distinguish
quantum chaos for integrability in various models, including
the Ising model considered here. In Sec. VI we will further
discuss the connection between the quantities studied here and
OTOCs.

Finally, we point out that the results shown here for a fixed
system size of N = 6 are representative of other cases, which
we show in Appendix C. In particular, we show in Fig. 9 that
cases with N = 5, 6, 7 behave very similarly and essentially
coincide (when properly normalized) in the chaotic regime.
We also observe that the magnitude of temporal fluctuations
decay with increasing system size, a behavior typical of er-
godic systems.
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IV. SCRAMBLING AND CHAOS IN THE QUANTUM
KICKED TOP

We now turn our attention to the study of operator spread-
ing and scrambling in collective spin systems, which we
introduced in Sec. II B. We will consider the dynamics of a
quantum kicked top (QKT), a paradigmatic model of quantum
chaos first introduced by Haake et al. [46], which has been
the subject of many theoretical [56,78,79] and experimental
[80–82] studies. The QKT time-evolution operator of interest
for this study can be written as

ÛQKT = ÛzÛyÛx, (22)

with Ûμ = e−i[αμ Ĵμ+(γμ/2J )Ĵ2
μ], where μ = x, y, z and the to-

tal angular momentum is J = 2N . The model in Eq. (22)
is constructed in such a way as to avoid parity and time-
reversal symmetry, which are present in the original QKT
of Ref. [46]; see also [83] for the study of similar models.
Each of the unitaries Ûμ can be regarded as generated by a
twisting and turning collective Hamiltonian [56], composed
of a rotation term Ĵμ and a twisting or interaction term
Ĵ2
μ = ∑

i j σ̂
(μ)
i σ̂

(μ)
i /4. Since the symmetric subspace dimen-

sion scales linearly with the number of particles d = N + 1,
large values of N can be accessed numerically in these types
of systems.

The quantum chaotic properties of the QKT can be fully
understood by studying the associated classical kicked top,
which can be recovered as the mean-field limit of the map gen-
erated by Eq. (22) [46]. The resulting classical area-preserving
map acts on a spherical phase space whose coordinates are
R ≡ (X,Y, Z ) = limJ→∞〈Ĵ〉/J . In Fig. 4(a) we show the
Poincaré sections corresponding to this map, where we have
chosen the system parameters to be αx = 1.7, αy = 1, αz =
0.8, γx = 0.85γ , γy = 0.9γ , and γz = γ . For γ = 0 the sys-
tem is trivially integrable as ÛQKT generates only rotations,
and as γ is increased the classical phase space becomes
mixed, with islands of regular motion separated by areas of
chaos. For γ � 2, most of the phase space becomes chaotic.
This transition to chaos can be clearly observed from the
normalized average adjacent spacing ratio rnorm, introduced in
the preceding section (see also Appendix B), which we show
in Fig. 4(b).

Being able to access large system sizes also means that,
even when coarse grained, it can be hard to visualize the
evolution of each component of the probability distribution
{Pk (t )} defined in Eq. (17) in a manner similar to what was
done for a small instance of the Ising model in Fig. 2. In
Fig. 5(a) we present density plots of the distribution at short
times for four representative values of γ and an initial choice
of operator Ô(0) = Ĵz. Each horizontal slice corresponds to
a snapshot of the distribution at a given time, while verti-
cal slices show the evolution of individual components. The
plots illustrate how the distribution, which is concentrated
at rank k = 1 at t = 0, spreads onto higher ranks faster as
γ is increased. In order to capture the long-time properties
of this evolution, we display in Fig. 5(b) the mean μ(t ),
variance σ (t ), and IPR ηIPR(t ) of the operator distribution as
a function of time. As expected, we observe how the values
predicted for Haar-random evolution (dashed lines) are readily
attained as γ increases and the QKT becomes chaotic. We also

FIG. 4. Quantum and classical chaos in the kicked top model
of Eq. (22), with the parameters αx = 1.7, αy = 1, αz = 0.8, γx =
0.85γ , γy = 0.9γ , and γz = γ . (a) Phase-space portraits (Poincaré
sections) of the classical kicked top for different values of the non-
linearity parameter γ . The system transitions from a regular regime
at small γ to a mixed phase space for γ ∼ 1 to a full chaotic regime
for γ � 2. (b) Normalized mean adjacent level spacing ratio for
two instances of the QKT with different N = 2J . Note that, due to
the lack of time-reversal symmetry of this model, the measure is
normalized to give 1 when the circular unitary ensemble value is
achieved. See Appendix B for more details.

FIG. 5. Dynamics of the operator distribution for the QKT of
Eq. (22). Results were obtained using parameter values for {αi, γi}
identical to Fig. 4, N = 2J = 49, and the initial operator Ô(O) = Ĵz.
(a) Density plots of the operator distribution Pk (t ), shown in loga-
rithmic scale for clarity. The quantity plotted is log[Pk (t ) + ε], with
ε = 10−10. (b) Measures of the distributions shown in (a), calculated
as a function of time.
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FIG. 6. Shown in the top row are the long-time averages [cf.
Eq. (20)] and in the bottom row the averaged temporal fluctuations
[cf. Eq. (21)] for the mean, variance, and IPR of the operator dis-
tribution for the QKT. Results are shown for N = 2J = 49, using
parameter values for {αi, γi} identical to those in Fig. 4, and for
two distinct initial operators Ô(0) = Ĵz (dark lines in all plots) and
Ô(0) = Ĵy (light lines). All dashed lines correspond to the predictions
for Haar-random evolution shown in Table I.

observe an interesting similarity between the behavior of both
the mean and the variance when compared to the Ising case
[cf. Fig. 6(a)]. In the ergodic cases the mean μ(t ) increases
steadily and saturates at the prediction from Table I, but the
variance temporarily shoots up before it equilibrates. We em-
phasize that this same behavior has been observed for the SYK
model in a previous work [52]. The fact that the QKT, which is
essentially a quantized classical system, also displays similar
features is indicative of the presence of unifying features in the
evolution of the operator distribution, even when considering
quantum chaotic models of very different natures. Interest-
ingly, we observe in both the QKT and the Ising model that
the variance of the distribution can be systematically larger in
the nonchaotic regime with respect to the chaotic case.

Finally, we study the long-time averages (20) and time
fluctuations (21) of the different measures of the operator
probability distribution as a function of the γ parameter in the
QKT, analogous to the results presented for the Ising model in
Fig. 3(b). Results for the QKT are shown in Fig. 6 for two
choices of operators: Ô(0) = Ĵz (dark lines) and Ô(0) = Ĵy

(light lines). Similar to the results obtained for the Ising
model, in the chaotic regime of the QKT the time-averaged
mean, variance, and IPR closely match the predictions from
Haar-random evolution, with vanishing temporal fluctuations.
In the opposite (integrable) regime, the trivial dynamics at
γ ∼ 0 shows mostly localized distributions and little spread-
ing (and, correspondingly, small fluctuations), akin to the
regime of θ ∼ π

2 of the Ising model.
In the transition to chaos, for 0 � γ � 2, the properties

of the distribution show some unifying features, but is over-
all operator dependent. We observe that the initial operator
Ô(0) = Ĵz shows significantly more spreading than Ĵy. An-
alyzing the classical phase spaces in Fig. 4(a), we readily
observe that stable islands tend to be localized on the equator

of the spherical phase space, with unstable areas around the
poles. Around these unstable fixed points is where chaos first
appears already at γ = 1.0 [84,85]. We attribute the enhanced
growth of Ĵz to these instabilities, in a phenomenon closely
related to the previously studied saddle-point scrambling [29].
Aside from this we find for both operators that the transition
to chaos is characterized by an enhanced variance of the dis-
tribution. Interestingly, the shape of σ (t )2 for the QKT in the
regime 0 � γ � 2 is very similar to that of the Ising model
in the equivalent regime π/4 � θ � π

2 . This similarity once
again hints at a unified behavior of the operator growth in the
transition from nonergodic to ergodic behavior.

Finally, we find that temporal fluctuations (bottom row of
Fig. 6) in the QKT are a good proxy for quantum chaos in
the model, similar to what we observed earlier for the Ising
model. However, in this case the correspondence does not
extend to very small values of γ , since the trivial dynamics
of the QKT leads to a roughly constant operator distribution.
As in the Ising model, we find for the chaotic case of the QKT
that the temporal fluctuations decrease with system size while
the time-averaged measures are roughly independent of the
values of N (see Appendix C).

V. SCRAMBLING IN A QUANTUM CIRCUIT MODEL

As a final case study, we analyze how the operator distri-
bution {Pk (t )} behaves for a quantum circuit akin to the ones
studied in quantum computing [86,87]. We consider circuits
formed by gates in the universal set {H, T, S,CX }, where

H = 1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
,

T =
(

1 0
0

√
i

)
, CX =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠. (23)

It is known that combinations of {H, S,CX } create a Clifford
circuit [88], the action of which takes a Pauli operator to
another Pauli operator. However, the T gate is not a Clifford
gate and thus transforms a Pauli operator to a sum of Pauli
operators. From the Gottesman-Knill theorem, the evolution
of a Clifford circuit can be simulated efficiently on a clas-
sical computer [88], whereas the presence of T gates make
the simulation of the non-Clifford circuit inefficient [88–90].
Universal quantum computing requires non-Clifford opera-
tions such as the T gates, and the role of these operations in
information scrambling has been studied in recent works [91].

Here we focus on how the probability distribution Pk (t )
changes as one considers Clifford versus non-Clifford circuits.
We study a random circuit model where each layer has a
random arrangement of Clifford gates as in Fig. 7(a) and
where, with probability pT , a T gate is applied in the layer.
The numerical results are obtained after randomly sampling
40 instances of the circuit for an initial operator σ (1)

z for N = 6
qubits. In Fig. 7(c) each probability Pk (t ) is plotted as a func-
tion of the circuit depth for different values of pT . From our
analysis it is clear that if the probability pT is not too small,
the operator distribution becomes the one predicted from the
Haar-random evolution after some depth of the circuit and
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FIG. 7. Scrambling and operator growth in a random quantum circuit. (a) One instance of a random circuit composed only of the Clifford
gates H , S, and CX (pT = 0). (b) Same instance with non-Clifford T gates interleaved in random locations. (c) Evolution of the operator
distribution probabilities Pk (t ) for different values of the T -gate probability pT . From the left to right the “non-Cliffordness” of the circuit
increases with pT . Results shown for pT > 0 are averages over 40 random instances. (d) Evolution of the mean μ(t ), variance σ 2(t ), and IPR
of the operator distribution ηIPR(t ) as a function of time and for the same values of pT as used in (c). The initial operator is Ô(0) = σ (1)

z /
√

2.

the required depth gets lower as we increase the pT . This
behavior is in line with the fact that including the non-Clifford
gates makes the gate set universal and thus random circuit
instances are able to explore uniformly the space of unitaries.
On the other hand, it is interesting to analyze the behavior at
small pT , where the system behaves (roughly) as a Clifford
circuit. As can be seen from the evolution of the probabilities
Pk (t ), this does not preclude the spreading of operators into
higher weights. However, since Pauli operators are approxi-
mately mapped into Pauli operators, the distribution is very
localized at all times. This is the signature of quasiscrambling
(as opposed to genuine scrambling [32]), also termed operator
spreading (as opposed to operator entanglement) [37].

Finally, in Fig. 7(d) we analyze the mean, variance, and
IPR of the operator distribution for this random circuit model,
similarly to the analysis of tilted field Ising model and QKT
in the previous sections. For sufficiently large T -gate proba-
bilities pT , yielding a large number of T gates, the behavior of
these is identical in nature to the one found for other models
in the chaotic regime [see Fig. 5(b) and the tilted-field Ising
model in Fig. 3(a)]: a sharp increase of the mean and variance
and quick equilibration to the random predictions, including
the shooting up of the variance at intermediate times before
also equilibrating. For small pT , the quasiscrambling behavior
is clearly seen in these measures: While the mean of the dis-
tribution increases in a manner very similar to the other cases
(albeit with enhanced temporal fluctuations), the variance and
IPR show very different behaviors as the distributions localize
when pT → 0. This analysis shows how the breaking down of
classical tractability at pT �= 0 can be witnessed, dynamically,
by the early-time growth of the operator distribution variance
(or, conversely, the decay of its IPR).

VI. CONNECTION TO OTOCS

In Sec. II we argued that the properties of scrambling,
understood as delocalization of quantum information along

the degrees of freedom of a system, are encoded in the coarse-
grained operator distribution {Pk (t )} defined over a particular
partitioning of the operator basis [cf. Eqs. (3) and (4)]. Studies
of scrambling in the literature, however, are often focused on
the analysis of OTOCs of the form

C(Ŵ (t ), V̂ ) = 1

d
tr[Ŵ †(t )V̂ †(0)Ŵ (t )V̂ (0)], (24)

where we consider the OTOC to be evaluated for a thermal
state at infinite temperature. In this section we discuss the
mathematical connection between the operator distribution
and the OTOC by summarizing some previous results in the
literature [51,52] and presenting different ones.

We focus our attention on the case of systems of spin- 1
2

particles for simplicity (see Ref. [32] for a detailed study of
systems of qudits using a generalized Pauli basis and Ref. [92]
for the case of collective systems and kicked tops). We take
the operators Ŵ and V̂ in Eq. (24) to be in the N-qubit Pauli
set P and for our purposes it suffices to think of Ŵ (0) as a
single-site operator, i.e., Ŵ (0) ∈ C1 using the notation used in
Sec. II A. To discuss the connection between this family of
OTOCs and the operator-size distribution {Pk}, we define the
nth moment of the latter as

μn(t ) =
N∑

k=1

knPk (t ), (25)

where μ1 ≡ μ to be consistent with our choice of notation
in previous sections. We then consider the average of OTOCs
over the subspace Cn of n-body Pauli operators

Mn(t ) = 1

dim(Cn)

∑
R̂∈Cn

C(Ŵ (t ), R̂). (26)

The simplest connection between these quantities is that

μ1(t ) = 3N

4
[1 − M1(t )], (27)
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which has been studied in many previous works [4,51,52]
(for completeness we provide a proof of this relation in
Appendix D). We point out that a closely related connection
can be drawn between the OTOCs and the average cluster
size via the spectrum of multiple quantum coherences in an
NMR setting [38,54,55]. Equation (26) shows that the mean
operator size can be obtained by measuring dim(C1) = 3N
OTOCs, one per each single-site operator R̂ ∈ C1. A perhaps
less known relation is that

μ2(t ) = 9

16
N (N − 1)[M2(t ) − 1] + 3N − 1

2
μ1(t ), (28)

indicating that in order to determine the variance of the op-
erator distribution σ 2(t ) = μ2(t ) − μ1(t )2 one now requires
additional access to approximately N2 OTOCs on two-body
operators R̂ ∈ C2. In Appendix D we show the general relation

Mn(t ) =
n∑

i=0

α(i)
n μi(t ) + α(0)

n , (29)

which highlights that, in general, reconstructing the nth mo-
ment of the operator distribution requires us to access averages
of OTOCs involving up to n bodies. Moreover, the connection
is not straightforward, as the coefficients α(i)

n for larger i take
exponentially small values as n and N increase. This implies
that reconstructing the complete operator probability distribu-
tion {Pk} via OTOCs is an unfeasible task, even if one were
able to easily access OTOCs experimentally.

However, one might argue that for many situations of
interest, merely obtaining lower-order moments like μ1 and
μ2 would be sufficient. In an experimental setup, one is
then confronted with the fact that OTOCs are intrinsically
hard to access and typically require auxiliary systems [35],
time-reversal operations [5,38,39], or statistical correlations
through randomized measurements [41,42] and clearly mea-
suring approximately N2 hard objects is undesirable. Notice
that one might also invoke arguments of self-averaging, i.e.,
measuring a single choice of R̂ in Eq. (27) might give a satis-
factory indicator of the behavior of the averaged OTOC (and
thus of the mean operator size) if the system is sufficiently er-
godic. However, as we have shown in this work, the properties
of the operator distribution are able to distinguish interesting
features of the behavior of the system even in nonergodic
regimes, where self-averaging might not work. For instance,
both the variance shoot up at short times and the enhanced
time-averaged spreading of the distribution observed in Figs. 2
and 5 are only noticeable beyond the chaotic regime.

The present discussion thus shows that while OTOCs al-
low access to some aspects of the operator distribution, the
quantitative connection between the two is not straightforward
in practice and might become hard to probe even at the level
of the first moments. It is thus desirable to think about other
potential methods to probe the distribution more directly, a
subject which has attracted considerable attention recently
[51,53] and which will be the focus of an upcoming work by
the present authors [93].

VII. CONCLUSION AND FUTURE WORK

In this work we studied scrambling in quantum systems
by analyzing the spreading of initially simple operators on

a coarse-grained basis, a process which we describe via the
operator distribution {Pk (t )}. We considered systems of spin- 1

2
particles (qubits) in the basis of Pauli operators ordered by
size and kicked collective spin systems in the basis of spheri-
cal tensor operators ordered by rank.

We presented a numerical analysis of two paradigmatic
models of quantum chaos in both the many-body and few-
body setting: the tilted-field Ising model and the quantum
kicked top. For both cases we computed the evolution of the
operator distribution and studied its properties via computing
standard distribution measures such as the mean, variance, and
localization. Focusing on long-time properties, we showed
that in the chaotic regimes both models evolve to spread-out
distributions whose properties match the predictions for Haar-
random evolution. In particular, the mean operator size (rank)
in these cases is proportional to the system size N while tem-
poral fluctuations are suppressed with increasing system size,
and thus the dynamics essentially equilibrates to the random
distribution. In the different nonergodic regimes of these mod-
els the behavior becomes nongeneric as expected. However,
several interesting unifying features are observed, like the
enhancement of temporal fluctuations and the increase of the
distribution variance to values above the random prediction.
In the trivially integrable regimes, the distributions remain
localized and show long-lived oscillations. In all the studied
models we have seen that the long-time properties of the
operator distribution allow one to reconstruct the integrability-
to-chaos transition in the studied models. Chaotic regimes are
characterized by (i) the distribution mean and variance match-
ing with Haar-random predictions and (ii) the suppression of
temporal oscillations. We have found that deviations from one
of these two conditions indicate some degree of nonergodicity.

We also applied the operator distribution framework to a
random circuit model and showed how the different properties
of the operator distribution change as a Clifford circuit is
turned into a universal circuit containing non-Clifford gates.
Finally, we studied the connection of the different properties
of the distribution to averages of out-of-time-ordered corre-
lators. The ideas and results presented in this work build on
previous works and set a path where scrambling could be stud-
ied directly from the operator distribution, which can be more
physically transparent than OTOCs. An important challenge
is to devise experimental protocols that allow one to probe
these distributions without resorting to the experimentally
challenging OTOCs. Another important aspect that we leave
for future work is the study of the short-time behavior of the
operator distribution. In several cases, it has been observed
that single-site OTOCs show exponential decay and the cor-
responding exponent is associated with a quantum Lyapunov
exponent. The connection discussed in Sec. VI entails that,
if all single-site OTOCs behave in this way (or rather, if the
average single-site OTOC does so), then we expect an expo-
nential increase of the mean operator size. Interestingly, this
does not say anything about the behavior of other properties
of the operator distribution and it is in principle possible to
devise models in which the timescale associated with, e.g.,
the distribution variance is different than that given by the
Lyapunov exponent.

Along these lines, an important path forward is to study
how to apply the picture presented in Fig. 1 to systems
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beyond spin- 1
2 particles. The analysis of collective spin mod-

els studied in this work represents an advance in this direction,
since these collective models are completely equivalent to
single particles of a fixed total spin J . There is thus a notion
of scrambling in a single particle for any J > 1

2 , similar to
the manner in which scrambling can be defined for a single
bosonic mode [32] (note that the maximum rank for J = 1

2 is
N = 1 and so the operator distribution is trivial). When con-
sidering, for instance, chains of spin-1 particles (i.e., circuits
on qutrits [36]) or systems of interacting bosons in lattices
[94], one should think about defining a coarse graining of
the operator basis that takes into account operator spreading
within one subsystem, as well as among different subsystems.

Finally, the analysis presented in this work highlights that
interesting features about the nonergodic regimes of many-
body systems may be studied from the operator distribution.
While this work has studied a system which is integrable by
mapping to noninteracting particles, there are other systems
which are integrable by other mechanisms, like the Heisen-
berg model [60]. More generally, some many-body systems
show dynamical phase transitions defined from their out-of-
equilibrium properties [95]. An exciting path forward is to
elucidate whether some of these dynamical transitions can be
viewed as a transition in the operator distribution, which in
turn is initial-state independent.
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APPENDIX A: OPERATOR DISTRIBUTIONS
FOR HAAR-RANDOM EVOLUTION

Consider the evolution of operator Ô given by

Ô(t ) → Û †ÔÛ =
∑

j

f [�̂ j ; Û †ÔÛ ]�̂ j, (A1)

where Û is taken from the uniform Haar distribution in SU(d ).
We are interested in

E[| f [�̂ j ; Û †ÔÛ ]|2] = E[|tr(Û †ÔÛ �̂ j )|2], (A2)

where E[·] indicates the average over the Haar measure. The
result of this averaging should be independent of j, and thus
from Eq. (4) we have

E[Pk] = dim(Ck )

trÔ2
E[|tr(Û †ÔÛ �̂ j )|2]. (A3)

The evaluation of Eq. (A2) can be performed directly by
first noting that

tr(Û †ÔÛ �̂ j ) =
∑
lmnr

UnrU
∗
ml Omn�

( j)
rl . (A4)

Applying standard techniques (see Ref. [96]) to integrate a
degree-2 monomial in the elements {Ui j}, we get

E[|tr(Û †ÔÛ �̂ j )|2]

= 1

d2 − 1

[
tr(Ô2)

(
tr(�̂ j�̂

†
j ) − 1

d
|tr(�̂ j )|2

)

+ tr(Ô)2

(
|tr(�̂ j )|2 − 1

d
tr(�̂ j�̂

†
j )

)]
. (A5)

Using the orthonormality of the operator basis and the fact
that Ô is traceless, we then arrive at the simpler result

E[Pk] = dim(Ck )

d2 − 1
. (A6)

For systems of spin- 1
2 particles, we have d = 2N and

dim(Ck ) =
(

N

k

)
3k . (A7)

Then

μ = k = 3

4
N

d2

d2 − 1
∼ 3

4
N (A8)

and

k2 = 3

16
N (3N + 1)

d2

d2 − 1
, (A9)

leading to

σ 2 � 3
16 N. (A10)

For collective spin models d = N + 1 and dim Ck = 2k + 1.
We then get

k = 1

6
(4N + 5)

N + 1

N + 2
, (A11)

k2 = 1

6
(N (3N + 5) + 1)

N + 1

N + 2
, (A12)

which lead to σ 2 ∼ N2/18.
The calculation of the averaged IPR requires knowing

E[P2
k ]. This can be obtained by treating Pk as coming from

a Porter-Thomas distribution in a space of dimension D =
d2 − 1 [11], in which case E[P2

k ] = 2/D(D + 1). We then
have that

ηIPR = 1

(d2 − 1)2

∑
j

dim(Cj )
2 + d2 − 2

(d2 − 1)d2
. (A13)

Neglecting the second term, we obtain for the Pauli case
(d = 2N )

ηIPR = 1

(d2 − 1)2
[2F1(−N,−N ; 1; 9) − 1] ∼ (2.35N )−1/2,

(A14)
where 2F1 is a hypergeometric function and the scaling was
obtained numerically. For collective spins (d = N + 1), we
have

ηIPR = 1

3

4d3 − d − 3

(d2 − 1)2
∼ 4

3N
. (A15)
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APPENDIX B: AVERAGED LEVEL SPACING RATIO
AS A QUANTUM CHAOS INDICATOR

The average adjacent level spacing ratio measures correla-
tions in the eigenspectrum of Hermitian or unitary operators
and is routinely taken as a standard measure of quantum chaos
[97]. Given a set of eigenvalues {e j} j=1,...,d (if considering a
unitary, take the real phases φ j associated with each eigen-
value eiφ j ), the average adjacent spacing ratio is defined as

r = 1

d

d−2∑
j=1

r j, (B1)

where r j = max(s j ,s j+1 )
min(s j ,s j+1 ) , with s j = e j+1 − e j . In chaotic sys-

tems, level spacing distributions {s j} show level repulsion
following predictions from random matrix theory (RMT) and
thus r takes specific values depending on the appropriate RMT
ensemble. For the case of the Ising model this is the Gaussian
orthogonal ensemble (GOE) and rGOE � 0.535 [97]. For the
QKT considered in this work, the appropriate ensemble is
the circular unitary ensemble (CUE) for which rCUE � 0.599.
Regular (integrable) systems have spectra in which the eigen-
values tend to be uncorrelated and so the spacing distribution
is instead Poissonian [46], with the associated rPOI = 0.386
[97]. As a normalized measure of chaos, we define the nor-
malized quantity

rnorm = r − rPOI

rRMT − rPOI
, (B2)

where the RMT corresponds to the GOE or CUE depending
on the system under study. The normalized measure then
approaches 1 in the chaotic regime and 0 in the nonchaotic
regime.

APPENDIX C: ADDITIONAL RESULTS ON ISING
AND QKT MODELS

In Sec. III we introduced the analysis of different measures
of the operator probability distribution, like the mean μ(t ),
variance σ 2(t ), and IPR ηIPR(t ). In Fig. 3 we presented the
evolution of these quantities for the Ising model in the case
where the initial operator sits in the middle of the chain. In
Fig. 8 we display the evolution of these properties for the
situation where the initial operator sits at the edge of the chain.

In the main text we developed our analysis of the Ising
and QKT models with fixed systems sizes of N = 6 and
50, respectively. Here we show additional numerical results

FIG. 8. Measures of the probability distribution {Pk} for the
tilted-field Ising model with N = 6, B/J = 1, and Ô(0) = σ̂ (1)

y /
√

2.

FIG. 9. System size analysis for the time-averaged mean μ(t )
and associated temporal fluctuations �μ for both the (a) Ising and
(b) QKT models considered in the main text. Quantities are plotted as
a function of the relevant parameters for each model: (a) the angle θ

between the longitudinal and transverse field for the Ising model and
(b) the nonlinearity strength parameter γ for the QKT. Dotted lines
indicate the predictions from Haar-random evolution (cf. Table I and
Appendix A).

showing that those results are representative of other cases.
In Fig. 9 we illustrate the time-averaged mean of the distribu-
tion μ(t ) normalized by the system size for both models and
different choices of N , together with the associated tempo-
ral fluctuations �μ [computed over the normalized measure
μ(t )/N]. We observe that for sufficiently large system size
the normalized time averages become independent of N in the
chaotic regime, as expected from the predictions of Table I.
The temporal fluctuations approach 0 in this regime for both
models and actually decrease with increasing system size N .
Away from the chaotic regime, the behavior is quite different:
The time-averaged mean shows deviations (albeit small for
large N) and the fluctuations are actually become system-size
independent.

APPENDIX D: PROOFS RELATED TO THE CONNECTION
BETWEEN OTOCS AND MOMENTS OF THE OPERATOR

DISTRIBUTION

In Sec. VI we postulated that the average of OTOCs over
the subspace Cn of n-body Pauli operators Mn(t ), as defined
in Eq. (26), may be written as a linear combination of mo-
ments μi(t ) of the probability distribution up to i = n on
the form of Eq. (29). In this Appendix we prove this postu-
late, thus highlighting the connection between averages over
OTOCs and moments of the operator distribution.
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We start by inserting the operator expansion (1) into the
expression for the average of OTOCs (26) to obtain

Mn(t ) = 1

dim(Cn)

∑
Q̂

| f [Q̂;Ŵ (t )]|2
∑
R̂∈Cn

1

d
Tr(Q̂R̂Q̂R̂)

= 1

dim(Cn)

∑
Q̂

| f [Q̂;Ŵ (t )]|2
⎛
⎝∑

R̂∈Cn

eiφQ̂R̂

⎞
⎠, (D1)

where in the first equality we have used that Tr(Q̂R̂Q̂′R̂) = 0
unless Q̂ = Q̂′ and in the second equality that Q̂R̂ = eiφQ̂R̂ R̂Q̂.
The phase factor eiφQ̂R̂ may be unpacked by writing the opera-
tor product Q̂R̂ as

Q̂R̂ =
N⊗

i=1

qiri, (D2)

where q̂i, r̂i ∈ {1, X,Y, Z}. We note that q̂i and r̂i commute
if q̂i = r̂i or if q̂i = 1 or r̂i = 1, and otherwise anticommute.
Thus Q̂R̂ = ±R̂Q̂ = eiφQ̂R̂ R̂Q̂ and so φQ̂R̂ ∈ {0, π}.

From Eq. (D1) we note that moments of the probability
distribution μi appear in Eq. (29) due to the corresponding
powers ki of k = s(Q̂) appearing in the sum

∑
R̂∈Cn

eiφQ̂R̂ of
Eq. (D1). To prove the validity of Eq. (29) we thus show in the
following that for any n ∈ N and n � N the sum

∑
R̂∈Cn

eiφQ̂R̂

contains powers of k = s(Q̂) up to (and including) the nth
power.

Let n ∈ N and n � N be given. For any R̂ ∈ Cn we have
n = s(R̂) sites labeled i1, i2, . . . , in on which r̂i j �= 1 ( j =
1, 2, . . . , n), while the remaining N − s(R̂) sites are identities
r̂i j = 1 (for j = n + 1, . . . , N). For a given operator Q̂, there
are now n + 1 possible cases that occur as we sum over
R̂ ∈ Cn: (0) q̂i j = 1 for all j = 1, 2, . . . , n; (1) one q̂i j �= 1 for
some j1 and the remaining q̂i j = 1 for j �= j1 and j � n; (2)
two q̂i j �= 1 for some ( j1, j2) and the remaining q̂i j = 1 for
j �= j1, j2, j � n, . . .; and (n) q̂i j �= 1 for all j = 1, 2, . . . , n.
We let m be the number of nonidentity q̂i j in a given case,
which also serves to label the above n + 1 cases. For each
of these cases we need to determine their occurrence On

m(Q̂)
and value V n

m (Q̂) such that we may calculate
∑

R̂∈Cn
eiφQ̂R̂ =∑

m On
m(Q̂)V n

m (Q̂).
The occurrence of each case is straightforward to deter-

mine as

On
m(Q̂) =

(
N − s(Q̂)

n − m

)(
s(Q̂)

m

)
, (D3)

where the first binomial coefficient is the number of unique
ways to choose the sites on which q̂i j = 1, whereas the second
binomial coefficient is the number of unique ways to choose
the nonidentity sites. For the value V n

m (Q̂) of a given case
m, each site with q̂i j = 1 simply yields a factor 3 to the
number of outcomes eiφQ̂R̂ = +1 and eiφQ̂R̂ = −1 (for a total
factor 3n−m). The m nonidentity sites yield eiφQ̂R̂ = +1 only if
the number of sites for which q̂i j �= r̂i j is even. We are thus
looking for the number of pairs, quadruplets, sextuplets, and
higher-order even tuplets of sites that one can create. Pairs
provide 22 = 4 different combinations of operators on the two
sites, quadruplets 24 = 16 different combinations, and so on.
The remaining combinations must yield eiφQ̂R̂ = −1, and as
there are 3n different combinations of operators, the value of

0 10 20 30 40 50
10-40

10-30

10-20

10-10

100

FIG. 10. Amplitude An of the s(Q̂)n term, as defined in Eq. (D6),
visualized as a function of n. We observe that the amplitude is
nonzero for all n considered here, albeit exponentially decreasing.
This demonstrates numerically that the polynomial (D5) is indeed
order n as desired for n = 1, 2, . . . , 50.

V n
m (Q̂) for case m takes the form

V n
m (Q̂) = −3n + 2 × 3n−m

floor(m/2)∑
i=0

(
m
2i

)
22i, (D4)

which only depends on the number of nonidentity sites m
and not on the operator Q̂. We may thus omit the explicit
dependence on Q̂ and write V n

m .
We are now ready to evaluate the sum

∑
R̂∈Cn

eiφQ̂R̂ =∑
m On

m(Q̂)V n
m . We immediately note that On

m(Q̂) contains all
powers s(Q̂) j up to j = n due to the product of the two bino-
mial coefficients in Eq. (D3) and hence

∑
R̂∈Cn

eiφQ̂R̂ is a sum
over different nth-order polynomials in s(Q̂) with coefficients
V n

m . Since the sum of two nth-order polynomials is at most nth
order itself, we conclude that∑

R̂∈Cn

eiφQ̂R̂ = polynomial in s(Q̂) of order � n. (D5)

To establish the result of Eq. (29), we need to show that the
amplitude of the nth-order term in the polynomial is nonzero.
The amplitude reads

An =
n∑

m=0

(−1)n−mV n
m

(n − m)! m!
, (D6)

where the alternating sign and the denominator are due to the
form of Eq. (D3). Although we have not been successful in
showing that this amplitude is nonzero for all n, Eq. (D6) is
readily evaluated numerically for n of modest size, limited
only by the two factorials in the denominator. In Fig. 10
the absolute value of the amplitude is displayed for 1 �
n � 50 and we see that the amplitude, although decreasing
superexponentially, is nonzero for all n considered. The non-
vanishing amplitude of the s(Q̂)n term ensures that the average
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of OTOCs over the subspace Cn of Pauli operators is a linear
combination of all moments up to and including the nth mo-

ment 〈s(t )n〉, confirming Eq. (D3) for all n that we have been
able to access numerically.
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