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Multipartite-entanglement generation in coupled microcavity arrays
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We consider photonic arrays made from quantum emitters in optically coupled microcavities as a platform
for entanglement generation. These offer a large degree of tunability with the possibility of site-selective optical
excitation. Coherent pumping is considered to drive transitions between vacuum and entangled target states,
both in a time-dependent manner and in a quantum bath engineering approach to create entanglement in the
steady state. We demonstrate a numerical scheme that allows one to generalize the determination of excitation
parameters to larger array sizes and different classes of entangled states. This study is a step towards using
coupled-cavity arrays as a hardware platform in novel quantum-photonic applications in quantum computing
and quantum machine learning.
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I. INTRODUCTION

Solid-state systems operating in the regime of cavity quan-
tum electrodynamics (cQED) are being considered for many
applications in optoelectronics, ranging from nanolasers [1] to
quantum-light sources [2] and sensors [3] up to applications
in quantum reservoir computing [4]. The modification of the
optical density of states due to the presence of a cavity allows
for tailoring and enhances spontaneous emission, which can
be used to increase brightness and efficiency in a wide range of
material systems [1,5,6]. Among these, quantum dots (QDs)
are particularly interesting for applications in the quantum
technologies, as their properties can be precisely tuned to
match the embedding resonator structure [7–9]. They can
function as a platform for entanglement generation [10]. By
adding photonic connections between the cavities, e.g., by a
network of waveguides [11] or external mirrors [12], fully
or partially connected coupled-cavity arrays (CCAs) can be
realized [13–15]. In the spatially homogeneous case, CCAs
foster collective modes that are delocalized over the whole
array [16]. In these collective modes, photons can induce
correlations in the electronic degrees of freedom of the quan-
tum emitters that are located in distant cavities, perfectly
combining an electronic system that is capable of hosting
both classical and quantum correlations [17] with convenient
accessibility of each individual cavity by optical excitation.
For this reason, CCAs are of particular interest for several
emerging technologies, such as the deterministic generation of
multipartite entanglement (MPE) [18] and quantum reservoir
computing [19]. CCAs have previously been considered for
the generation of cluster states [18], Bell states [20], and
Greenberger-Horne-Zeilinger (GHZ) states [21]. Another im-
portant class of MPE states is W states, which stand out due
to their robustness against particle loss and their application in
quantum communication protocols [22]. In general, MPE (as
exhibited by GHZ and W states) is of great interest because of
its superiority over bipartite entanglement from the viewpoint
of state convertibility by local operations and classical com-
munication (LOCC) [23]. Experimentally, W states (and other

MPE states) have been generated by entangling photons [24],
superconducting qubits [25], or trapped ions [26]. Important
platforms for experimental generation of spatially distributed
quantum systems are atomic qubits [27,28], superconducting
qubits [29], spins in diamonds [30], spins in semiconductor
quantum dots [31], and trapped ions [32]. Furthermore, dif-
ferent theoretical schemes for generating W states have been
put forward [22,33–37].

The purpose of this work is to analyze in detail how entan-
glement can be generated in CCAs using optical techniques.
We provide a detailed analysis of the eigenspectrum and iden-
tify transitions into entangled target states, taking into account
pump-induced energy renormalizations and symmetry consid-
erations.

In Sec. II we introduce the system of CCAs and provide
intuitive insight to its eigenstates in the presence of dissipative
processes and coherent excitation, which is the foundation
for the targeted excitation of entangled states using coherent
excitation pulses in Sec. III. The generation scheme we intro-
duce in this section is generalized to different classes of MPE
target states in Sec. IV, where we demonstrate the scalability
of our approach to target states of three and four qubits.
The influence of symmetry and the possibility of generating
antisymmetric states, such as phased W states, is the topic of
Sec. V. Steady-state entanglement is a particularly relevant
concept for novel quantum machine learning approaches, such
as quantum reservoir computing, and is currently being inves-
tigated in the context of quantum bath engineering [38–40].
Therefore we provide additional insight both into steady-state
MPE generation and the bath engineering concept in the
framework of a Bloch-Redfield approach in Sec. VI [41].

II. THE CCA MODEL AND ITS EIGENSPECTRUM

We consider systems consisting of N single-mode cavities,
each containing a two-level emitter (qubit), as shown in Fig. 1.
Adjacent cavities are coupled due to the overlap of their
photonic modes [14,42]. The qubits are driven coherently by
external lasers whose respective frequencies can be detuned
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FIG. 1. Two cavities coupled with interaction strength J . Each
cavity contains a qubit that is driven by an external laser with am-
plitude εq. The interaction between the cavities and the qubits is
described by the Jaynes-Cummings model with the light-matter inter-
action strength g. Qubits and cavities lose energy through dissipative
processes at the rates γ and κ , respectively.

from those of the qubits. The Hamiltonian of the system is
that of a driven Jaynes-Cummings-Hubbard system [43,44]
and reads

H = Hq + Hc + Hc,q, (1)

where Hq, Hc, and Hc,q are the qubit, cavity, and cavity-qubit
coupling Hamiltonian, respectively. These are given by (we
set h̄ = 1)

Hq =
N∑

i=1

[
ωqσ

+
i σ−

i + 2εq cos (ωdt + φi )(σ
+
i + σ−

i )
]
, (2)

Hc =
N∑

i=1

ωca†
i ai −

∑
i, j

Ji ja
†
i a j, (3)

Hc,q =
N∑

i=1

g(a†
i σ

−
i + aiσ

+
i ). (4)

The intercavity hopping parameters Ji j between cavities i and
j determine the network topology, and we use the convention
Jii ≡ 0 and Ji j = Jji for Ji j ∈ R. We consider dissipative pro-
cesses in terms of the Lindblad master equation,

d

dt
ρ = Lρ ≡ −i[H, ρ] +

∑
n

D[Cn]ρ, (5)

with the (nonunitary) Liouvillian superoperator L and the
Lindblad dissipators

D[Cn]ρ ≡ 1
2 (CnρC†

n − C†
nCnρ + H.c.), (6)

where Cn = √
γnAn are the collapse operators with an operator

An that couples the system to an environment at rate γn. The
relevant processes considered in this work are cavity decay
(Cκ = √

κai), qubit decay (Cγ = √
γ σ−

i ), and pure dephasing
(Cγϕ

= √
γϕσ z

i ).
It is convenient to move into the rotating frame H �→

U (H − i∂t )U † by applying

U =
N∏

i=1

exp[iωdt (σ+
i σ−

i + a†
i ai )], (7)

allowing us to neglect the fast-rotating terms of the form
e2iωdt a†

i . As a consequence, the bare energies ωq and ωc are
renormalized by the drive frequency ωd. Let {|e〉 , |g〉} be the
orthogonal basis of one qubit, where |g〉 is the ground state
and |e〉 is the excited state. We use the computational basis
given by {|q1〉 ⊗ |q2〉 ⊗ · · · ≡ |q1q2 . . .〉} with qi ∈ {e, g}.

For a two-qubit system, the set of basis states with the
corresponding energies of Hq with εq = 0 is given by

|T+〉 = |ee〉 , ET+ = 2ωq,

|S〉 = 1√
2

(|eg〉 − |ge〉), ES = ωq,

|T0〉 = 1√
2

(|eg〉 + |ge〉), ET0 = ωq,

|T−〉 = |gg〉 , ET− = 0.

(8)

The singlet state |S〉 and the triplet state |T0〉 are of spe-
cial interest as target states, because they correspond to two
of the maximally entangled Bell states. Analogously to the
qubit states, we define the photonic basis states by {|n1〉 ⊗
|n2〉 ⊗ · · · ≡ |n1n2 . . .〉}, where ni is the number of photonic
excitations in cavity mode i. For the joint system of cav-
ities and qubits we use the basis {|q1q2 . . .〉 ⊗ |n1n2 . . .〉 ≡
|q1q2 . . . , n1, n2 . . .〉}. We also use the notation |S〉 and |T0〉
for photonic states in analogy to the qubit states. In order to
formulate the Hamiltonian in matrix representation, we use a
reduced state space, in which we divide the basis states of the
joint cavity-qubit system into groups distinguished by their
total number of excitations. Furthermore, we divide the groups
into subgroups with symmetric or antisymmetric basis states
with respect to cavity or qubit permutations, respectively. This
is helpful for using the number of excitations as a cutoff. To
give an example, the matrix representation of the Hamiltonian
restricted to the subspace with zero, and one excitation reads
(J1,2 = J2,1 ≡ J)

H=

⎡
⎢⎢⎢⎢⎣

0
√

2εq 0 0 0√
2εq ωq − ωd g 0 0
0 g ω−

c − ωd 0 0
0 0 0 ωq − ωd g
0 0 0 g ω+

c − ωd

⎤
⎥⎥⎥⎥⎦,

(9)
with ω±

c ≡ ωc ± J being the symmetric (ω−
c ) and antisym-

metric mode (ω+
c ) of the coupled-cavity system, respectively.

The rows and columns of the matrix are ordered according to
|gg, 00〉, |T0, 00〉, |gg, T0〉, |S, 00〉, and |00, S〉 in the combined
qubit and photon state space. The state |gg, 00〉 is the cavity-
qubit vacuum state (VS). The other basis states are states with
one excitation each. The coupling of the excitation blocks is
controlled by the coherent pump amplitude εq, while there is
no coupling between symmetric and antisymmetric states. For
example, it is not possible to drive the qubits directly from
the symmetric vacuum state |gg〉 to the antisymmetric state
|S〉 without generating an additional photonic excitation, so
that the total system ends up in the symmetric state |S, S〉.
From these symmetry considerations, it becomes clear that the
generation of entanglement in the qubit (photonic) subspace
must take into consideration the symmetry of the state in that
of the photons (qubits). For more details see also Sec. V.
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FIG. 2. Eigenspectrum representing the eigenenergies and eigen-
states of the two cavity-qubit model in dependence of the cavity-
qubit detuning �. The insets are magnifications of the anticrossing
regions, at which the splitting is given by �̃± = 2g at � = ±J .

The eigenvalues of the matrix representation of the Hamil-
tonian H in Eq. (9) for a two cavity-qubit system without an
external drive are given by the vacuum state energy E0 = 0
and

E1,2 = 1
2 (ωq + ω−

c ) ± 1
2 �̃−,

E3,4 = 1
2 (ωq + ω+

c ) ± 1
2 �̃+. (10)

The gap between the eigenenergy pairs (E1, E2) and (E3,
E4) is given by the generalized Rabi frequency �̃± ≡√

(ωq − ω±
c )2 + 4g2.

In order to understand the CCA energy structure and pos-
sible excitation pathways of the full system, we introduce a
graphical representation of the CCA eigenspectrum as shown
in Fig. 2. In the absence of a coherent driving process (εq =
0), the eigenenergies of the system’s low-excitation states are
shown as a function of cavity-qubit detuning. Each colored
disk represents one eigenstate where the size of the colored
segments indicates its squared overlap with the basis states
introduced in Sec. II. The insets show a magnification of
the anticrossing regions. There the symmetric (green, yellow)
and the antisymmetric (red, blue) cavity-qubit states mix in
analogy to the well-known Jaynes-Cummings splitting, given
by 2g. However, the anticrossings of symmetric and antisym-
metric state pairs occur at different cavity-qubit detunings
� ≡ ωq − ωc, allowing for these subspaces to be individually
addressed.

For � = J , the one-excitation subspace features two eigen-
states that possess equal overlap of 0.5 with the states
|S, 00〉 (red) and |gg, S〉 (blue). These eigenstates are given
by |ψ+〉 = (|S, 00〉 + eiϕ |gg, S〉)/

√
2, and |ψ−〉 = (|S, 00〉 −

eiϕ |gg, S〉)/
√

2, where ϕ is a phase that is not contained in the
visual representation in Fig. 2. A similar situation is given for
� = −J , where the one-excitation sector features two eigen-
states possessing equal overlap of 0.5 with the states |T0, 00〉
(green) and |gg, T0〉 (yellow). The vacuum state |gg, 00〉 (or-
ange) is not coupled to any other state, as expected from
Eq. (9) for εq = 0.

ΩR/g ≈ 3 · 10−2
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FIG. 3. Eigenspectrum for a system with two cavity-qubit sys-
tems as a function of their detuning �. The parameters used here are
J = g, ωq = 70g, εq = 0.01g. At � = 4.53g (i.e., ωc = 65.47g) and
ωd = 70.17g we expect Rabi oscillation of frequency �R ≈ 0.03g
with a maximum amplitude.

III. ENTANGLEMENT GENERATION IN THE
BIPARTITE SYSTEM

In this section we present a numerical method for exciting
target states without further transformations or approxima-
tions of the Hamiltonian that was introduced in the previous
section. We begin by identifying possible transitions between
the vacuum state and an entangled target state from the
eigenenergy spectrum shown in Fig. 3. The idea is to deter-
mine transitions between eigenstates that ideally have equal
and maximal overlap with the vacuum and the target state. In
this case, coherent excitation can be used to drive this transi-
tion without generating additional state admixtures in the state
of the system. As an example, in Fig. 3 such a transition can
be identified between the vacuum state |gg, 00〉 and the target
state |T0, 00〉 at a detuning of � = 4.53g, where a realistic
value for the cavity-qubit coupling is g ≈ 2π × 10−1 GHz
[45]. This targeted transition can be reached with a π pulse,
for which the area under the curve describing the pulse func-
tion must be the product of the driving strength εq and half the
duration TR = 2π/�R of a Rabi cycle. In the following we
use the fidelity as a measure of how close the system is to the
target state. For two pure states |φ〉 and |ψ〉 it is given by their
squared overlap, i.e., F ≡ | 〈ψ |φ〉 |2. Figure 4 shows the fideli-
ties of the vacuum state (orange line), which is the initial state,
the target state (green line), and the sum of the fidelities of the
other states of the system (gray line) for an excitation with a
Gaussian π pulse (dotted black line) at the identified driving
frequency ωd = 70.17g. For tailoring the Gaussian pulse, the
Rabi frequency �R ≈ 0.028g that is shown in Fig. 3 was used.
For the entangled target state |T0, 00〉, we obtain a maximum
fidelity of FTS ≈ 0.95. The deviation from the optimal value
of 1 is caused by the admixture of residual states, here mainly
the state |gg, T0〉, which can also be inferred from the small
contribution (yellow) to the eigenstate in Fig. 3.

To shed more light on the mechanism limiting the maxi-
mum fidelity of the target state, we approximate the pair of
Hamiltonian eigenstates involved in the transition (see Fig. 3)
in terms of a driven three-level system describing the ground
and target state, and a third state representing the combined
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FIG. 4. Fidelities of the vacuum state |gg, 00〉, the entangled
target state |T0, 00〉, the sum of the fidelities of all other states,
and the normalized Gaussian pulse. Initially, the system is in the
vacuum state. After driving the system with the Gaussian pulse, the
fidelity of the target state reaches a value of about 0.95. The included
dissipation effects have the rates κ = 10−3g, γ = 10−4g, γϕ = 10−5g.

influence of all other levels in the system. By interpreting
the symmetric part of the single-excitation subspace of the
Hamiltonian in Eq. (9) in this way, an approximate analytic
expression of the maximum attainable fidelity for excitation
of the W state can be derived (see Appendix A), i.e.,

Fmax = ε̃2
q( �̃qd

2

)2 + ε̃2
q

, (11)

with

ε̃q =
√

2εq +
√

2εqg2

2
[
2ε2

q − �−
cd

(
�−

cd − �qd
)] ,

�̃qd = �qd + �−
cdg2

2ε2
q − �−

cd

(
�−

cd − �qd
) , (12)

where �qd ≡ ωq − ωd and �−
cd ≡ ω−

c − ωd. Equation (11)
shows that the optimal parameters are found when the qubit
drive frequency is close to the qubit energy. However, the
qubit energy is renormalized due to the light-matter interac-
tion with the cavity, which is akin to an ac Stark effect with
large detuning.

The approach detailed in the previous example can be
broken down to the following steps: First, we obtain the eigen-
states |ψi〉 of the system for a given set of parameters. Next,
we calculate the fidelities of these eigenstates with the vac-
uum and target state, respectively, i.e., FVS,i = | 〈ψi|gg, 00〉 |2
and FTS,i = | 〈ψi|T0, 00〉 |2. Since we are ideally looking for
an eigenstate with equal contribution of the vacuum and the
target state only, the optimum value of their squared overlap
with this eigenstate is 0.5. The absolute differences between
the fidelities FVS,i or FTS,i and the value of 0.5 are used to
introduce the overlap quality Qi of the eigenstate |ψi〉 as

Qi ≡ 1 − |0.5 − FVS,i| − |0.5 − FTS,i|, (13)

which is a value between 0 and 1, with 1 being the optimal
case. For the present example, Qi = 1 means that the eigen-
state is of the form

|ψi〉 = (|gg, 00〉 + eiϕ |T0, 00〉)/
√

2, (14)
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FIG. 5. Maximum overlap quality Qmax for generating the bipar-
tite target state |T0, 00〉 as a function of cavity-qubit detuning � and
the driving frequency ωd. The blue line represents the analytic result
in Eq. (16).

where ϕ is an undetermined phase. We compute Qi for each
eigenstate and select the one which gives the highest value,
i.e.,

Qmax ≡ max
i

(Qi ). (15)

In Fig. 5 we determine Qmax by varying the cavity-qubit detun-
ing � and the driving frequency ωd while the other parameters
are kept fixed. The resulting parameter map reveals at which
pump frequency and detuning between qubit and cavity mode
the quality factor Qmax becomes optimal. In addition to the
numerical results, it is possible to derive an analytic formula
to find the ideal pump frequency to a given cavity-qubit de-
tuning. The derivation is given in Appendix B and leads to the
following expression:

ω±
d (�) = 1

2 (2ωq − � − J ±
√

(� + J )2 + 4g2), (16)

which is shown as the blue line in Fig. 5. The white ar-
eas in Fig. 5 belong to the overlap quality Qmax = 0.5 and
indicate parameters for which one eigenstate of the system
is composed of either 50% of the vacuum state, the target
state, or a mixture of both. The other 50% of the eigenstate
consists of contributions of other basis states with one or more
excitations. Many of the white areas lie off the blue line and
belong to transitions to other states. Optimal parameters for
driving the target state can be found in the green regions,
where Qmax is close to or equal to 1. Figure 5 reveals two of the
areas, which are correctly predicted by the analytic approach
Eq. (16).

In addition to the coherent dynamics we have addressed so
far, irreversible dissipation arises from the nonunitary Liouvil-
lian superoperator in Eq. (5). The dephasing that is associated
with dissipative processes is a well-known limitation for en-
tanglement in quantum systems. We evaluate the impact of
pure dephasing, radiative, and cavity losses on the attainable
target-state fidelity. In Fig. 6 the maximum attainable fidelity
of the target state |T0, 00〉 is shown as a function of the
dissipation rate for three different dissipation mechanisms. It
can be seen that the physical dissipation mechanism described
by the collapse operator Cn significantly impacts the attain-
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FIG. 6. Maximum fidelity with the state |T0, 00〉 reached after
excitation with Gaussian pulse as a function of different dissipation
rates κ , γ , and γϕ . Qubit dissipation (γ ) and pure dephasing (γϕ)
act directly on the qubit state and thus have a stronger deteriorating
effect than cavity decay (κ).

able fidelity. In particular, cavity losses, which can be the
predominant loss mechanism in coupled micropillar cavities,
have a much weaker impact on the target fidelity than qubit
dephasing or radiative losses that directly act on the emitter
degrees of freedom. In Fig. 7 we augment the parameter
map of Fig. 5 by directly showing the attainable maximum
fidelity for the target state |T0, 00〉 for the cases without (left)
and with small cavity dissipation rate (right). It can be seen
that for values of experimentally attainable dissipation rates,
the size of the areas of suitable parameters for entanglement
generation are only slightly reduced.

IV. MULTIPARTITE ENTANGLEMENT

Quantum networks based on qubits in coupled microcavi-
ties are a tangible platform for novel quantum computing and
processing concepts [18,46]. Using the properties enabled by
quantum mechanics to the full extent requires control over
nonclassical correlations and entanglement. We therefore aim
to explore the potential of the approach introduced in the pre-
vious section for the generation of multipartite entanglement
in systems with more than two coupled cavities. A relevant
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FIG. 7. Attainable fidelities for the target state |T0, 00〉 without
(left) and with (right) cavity dissipation (κ = 10−1g) as a function of
the cavity-qubit detuning � and the driving frequency ωd. The red
areas indicate parameters for which the fidelity is close to the max-
imum value of 1. The presence of dissipation slightly decreases the
size of the red areas and thus the parameter space for entanglement
generation.
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FIG. 8. Left: Parameter map as a function of the cavity-qubit
detuning � and the driving frequency ωd for generating the tripartite
target state |W3, 000〉. We determine � = 3.04g (i.e., ωc = 66.96g)
and ωd = 70.19g to be optimal parameters. Right: Parameter map
for generating the quadripartite target state |W4, 0000〉. We determine
� = 2.61g (i.e., ωc = 67.39g) and ωd = 70.17g to be optimal param-
eters. The blue lines represent the analytic result from Eq. (18).

multipartite entangled qubit state is the lowest excited Dicke
state, or W state:

|WN 〉 = 1√
N

(|eg . . . g〉 + |geg . . . g〉 + · · · + |g . . . ge〉). (17)

W states are representative of a class of multipartite entan-
gled states that are particularly robust to loss of particles and
global dephasing [47] and represent a vital resource for dif-
ferent quantum communication protocols [48]. Furthermore,
for three-qubit entangled states, the W states are prototypical
for one of two classes of maximally entangled states [49].
We consider the generation of the W states for N = 3 and
N = 4. For this purpose we use the numerical scheme of the
previous section to generate the parameter maps in Fig. 8 to
reveal the excitation space in which the |W3, 000〉 (left panel)
and |W4, 0000〉 states (right panel) can be driven directly from
the corresponding vacuum states |ggg, 000〉 and |gggg, 0000〉.
Again, the blue lines represent the analytical approach given
by

ω±
d (�) = 1

2 (2ωq − � − (N − 1)J

±
√

(� + (N − 1)J )2 + 4g2) (18)

for N = 3 and N = 4, respectively. A detailed discussion of
this function and its graphical representation is given in Ap-
pendix B. The parameter maps in Fig. 8 showing numerical
results for the attainable Qmax for N = 3 (N = 4) are shifted
by J (2J) to the left along the � axis compared to the regions
found for N = 2. This is confirmed by the analytical approach
which shows that the map for a system with N cavities is
shifted by (N − 2)J compared to the map for N = 2 cavities.
From the eigenspectrum with the eigenvector representation
in Fig. 9, we find the Rabi frequency �R ≈ 0.04g (�R ≈
0.04g) for N = 3 (N = 4) cavities to be in good agreement
with the analytical prediction,

�R = 2
√

Nεq, (19)

as detailed in Appendix B. By using a Gaussian pulse that
is tailored to the correct Rabi frequency, we obtain W state
fidelities of 0.95 for N = 3 and N = 4 cavities. In this sec-
tion we have demonstrated the applicability of our generalized
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FIG. 9. Eigenspectrum of the Hamiltonian with colored charts
representing the eigenstates and their squared overlap with the vac-
uum state |ggg, 000〉 and the target state |W3, 000〉. At � = 3.04g
contributions of the vacuum state (orange) and the target state (blue)
are maximal at almost 50%, respectively. Gray contributions repre-
sent the sum of fidelities of other states. The energy gap between
the two eigenenergies at the chosen detuning determines the Rabi
frequency �R ≈ 0.04g.

numerical scheme for three and four cavity-qubit systems,
showing that it is possible to specify precise excitation pa-
rameters to drive a multipartite system from the vacuum state
directly into a W state. While this approach extends to larger
systems in a straightforward way, it quickly becomes nu-
merically expensive. We point out, however, that MPE states
of three and four coupled cavity-qubit systems are already
quite relevant for some of the emerging quantum technology
applications, such as quantum reservoir computing [19,50].

V. SYMMETRY STEERING VIA LOCAL EXCITATION

CCAs offer the unique possibility to individually address
each lattice site by optical or electrical excitation [18]. While,
in principle, this offers a plethora of tuning knobs by locally
tailoring the temporal and spectral behavior of the pump at
each cavity, here we restrict our analysis to the possibility
of applying local phase factors to access MPE target states
that could not be generated from a homogeneous excitation
scheme for the whole array. A simple example is the gener-
ation of the singlet qubit-Bell state |S, 00〉. As mentioned in
Sec. II, this is not directly possible with the previously used
excitation scheme. However, the generation of an antisym-
metric target state from the symmetric vacuum state may be
realized by applying a local phase factor to the excitation of
a single qubit, or, respectively, a phase difference between the
excitation of both qubits. In case of the state |S, 00〉, the phase
difference is π and the matrix given in Eq. (9) becomes

H=

⎡
⎢⎢⎢⎢⎣

0 0 0
√

2εq 0
0 ωq − ωd g 0 0
0 g ω−

c − ωd 0 0√
2εq 0 0 ωq − ωd g
0 0 0 g ω+

c − ωd

⎤
⎥⎥⎥⎥⎦.

(20)
In comparison to Eq. (9), here the vacuum state |gg, 00〉 is
coupled to the antisymmetric states including the target state

|S, 00〉. Based on this insight, we can apply the entanglement
generation scheme to a more general class of MPE states,
which is the subspace spanned by states of the form

∣∣W ph
N

〉 = 1√
N

(
eiφ1 |eg . . . g〉 + · · · + eiφN |g . . . ge〉). (21)

Arbitrary phases φi that are not 0 or π lead to additional
couplings between the basis states. This makes the theoretical
prediction of where to find areas with suitable parameters
for the targeted generation of phased entangled states more
sophisticated. The fact that this is possible at all is a unique
feature of the CCA platform with individually addressable
sites. By allowing for different phases of the lasers exciting
single cavities, these states can indeed be generated, opening
the door for accessing larger parts of the Hilbert space and
to go beyond the more conventional entangled states. We
demonstrate this by generating a phased W state for three
coupled cavities (φ1 = φ2 = 0, φ3 = π ), for which a fidelity
of about 83% can be obtained (see Appendix C).

We have restricted the discussion of our scheme to excita-
tions of multipartite entangled qubit states that have at most
one excitation. In principle also multiexcitation states can be
targeted, but the corresponding Rabi frequencies are reduced
on the order in �/g [51], which significantly reduces the
attainable fidelities due to the competition with the discussed
dephasing mechanisms.

VI. STEADY-STATE ENTANGLEMENT GENERATION VIA
BATH ENGINEERING

In this last part we depart from the time-dependent excita-
tion scheme and consider how steady-state entanglement can
be obtained from a continuous excitation. For a steady state
to exist, dissipation must be present to provide a nonunitary
contribution to the system dynamics. The steady state is then
formed by the balance between the continuous coherent drive
on the one hand, and dissipation and dephasing on the other
hand. We begin by formulating a Bloch-Redfield approach to
show that the steady-state density operator can be expressed in
terms of a set of rate equations for its diagonal elements when
expressed in the Hamiltonian’s eigenbasis. Consequently, an
entangled steady state can only form if the Hamiltonian pos-
sesses at least one entangled eigenstate, and if the transition
rates between the eigenstates favor the occupation of one of
these as the stationary state.

Up to now, we have considered an excitation process that
acts on the emitters, which is an appropriate description, e.g.,
for optical excitation of micropillar laser arrays [4]. To enable
a direct comparison to previous work later in this section, we
now consider pumping of cavity photons instead. We stress
that both excitation methods are unitarily equivalent up to a
scaling factor, as we show in Appendix D. In this scenario,
the qubit part of the Hamiltonian reads

Hq =
2∑

i=1

ωqσ
+
i σ−

i , (22)
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FIG. 10. Fidelity of the steady state for two qubits with the basis states in Eq. (8) as a function of the driving frequency ωd. The parameters
we used are similar to those used [41] and read ωc = 60g, ωq = 70g, J = g, εc = g, κ = 10−3g, γ = 10−4g, γϕ = 10−5g. Fidelities represent
the direct overlap of the basis states with the reduced density matrix ρq of the qubits.

whereas the cavity part is augmented by the direct cavity
pump

Hc =
2∑

i=1

[ωca†
i ai + 2εc cos(ωdt )(a†

i + ai )]

− J (a†
1a2 + a†

2a1), (23)

where εc =
√

(J − ωc + ωd )2 + (κ/2)2εq/g is the cavity driv-
ing amplitude. The cavity-qubit interaction Hamiltonian Hc,q

remains unchanged. We consider a parameter regime in which
the detuning is large and the dissipation is small compared
to the light-matter coupling. Furthermore, the dissipative pa-
rameters obey κ � γ � γϕ . For small enough systems, it is
feasible to directly compute the steady state ρss for different
sets of parameters and choose those that are entangled.

The requirement for a steady state is that the time derivative

d

dt
ρss = Lρss = 0 (24)

vanishes. The Liouvillian superoperator L describes the time
evolution as given by the Lindblad master equation. In Fig. 10
we varied the drive frequency ωd and determined the steady
state for different sets of parameters by finding the eigenvector
of L with eigenvalue 0. At ωd − ωc ≈ 10g, the drive is in
resonance with the qubit energies. As a result, the steady state
is the maximally mixed state, where the coherence of the qubit
state is lowest and the purity tr ρ2

q = 0.25 takes on its minimal
value. At lower driving frequencies we find a large number
of resonances at which the stationary state diverges from the
qubit ground state and exhibits high fidelity of either the |T0〉
or |S〉 state (see inset for magnification). Being interested in
generating steady-state entanglement, we take a closer look at
the underlying processes that determine the position of the ob-
served resonances, which show that steady-state entanglement
can be found for a wide range of system parameters.

In the literature, obtaining entanglement in the steady state
has been discussed in the context of quantum bath engineer-
ing [52,53] and for coupled-cavity arrays specifically [41].
We provide insight into how it is related to the method we
have described above and highlight the underlying principles
as well as differences to other approaches. Although it is
possible to find the steady state by exact diagonalization of
the Liouvillian, this approach does not provide insight into

the mechanisms that distinguish the different observed reso-
nances.

With the aim to find a more general description for the
generation of steady-state entanglement in open quantum sys-
tems, we now consider the general form of a system-bath
interaction Hamiltonian,

Hint =
∑

α

Aα ⊗ Bα, (25)

where Aα and Bα are operators solely acting on the sys-
tem or bath, respectively. In the Born-Markov approximation,
the time evolution of the system is described by the Bloch-
Redfield master equation

d

dt
ρ = −i[H, ρ] +

∑
α,ω

γα (ω)D[Aα (ω)]ρ (26)

with Lindblad-type dissipators D. The jump operators
Aα (ωi j ) = | j〉 〈 j| Aα |i〉 〈i| are the eigenoperators for each
transition frequency ωi j = Ei − Ej and describe transitions
between the energy eigenstates |i〉 and | j〉, while γα (ω) =∫∞
−∞ dt eiωt 〈B†

α (t )Bα (0)〉 is the spectral function of the bath
operators [54].

Assuming a nondegenerate Hamiltonian and denoting the
matrix elements by 〈 j| Aα |i〉 ≡ Aα

ji, we can find a set of linear
equations for the matrix elements of the density operator in
the eigenbasis of the Hamiltonian:

ρ̇kk =
∑
α,i

[
γα (ωik )

∣∣Aα
ik

∣∣2ρii − γα (ωki )
∣∣Aα

ki

∣∣2ρkk

]
, (27)

ρ̇kl = −
[∑

α

λα
kl + iωkl

]
ρkl for k = l. (28)

The complete derivation and the exact form of the constant
λα

kl can be found in Appendix E. Equation (28) shows that the
equations for off-diagonal elements decouple from each other
and that they decay exponentially. This leads to a steady-state
density matrix that is diagonal in the eigenbasis of the Hamil-
tonian. From this follows the important result that in order to
achieve steady-state entanglement, we need the Hamiltonian
to have entangled eigenstates, since a classical mixture of
nonentangled states cannot produce entanglement. The other
relevant factor for entanglement of the steady state is the oc-
cupation ρkk of an entangled state |k〉, which can be calculated
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from Eq. (27). These coupled, linear differential equations can
be interpreted as a set of rate equations, with the rate from
state |k〉 to |l〉 being �k→l =∑α γ (ωkl )|Aα

kl |2. In this context
one may interpret the influence of the driven cavities on the
same footing as the dissipative rates, which has previously led
to the formulation of the term “quantum bath engineering” to
tailor the rates in Eq. (27) [41].

In the following we discuss how to connect the approach in
Ref. [41] to the general formalism we have detailed above. We
begin by introducing a set of approximations that allow us to
simplify our system in order to describe it by using a Bloch-
Redfield master equation. This will enable us to understand
the mechanism that leads to steady-state entanglement. We
first switch to the rotating frame and perform the rotating wave
approximation to eliminate the explicit time dependence. Fur-
thermore, we apply the Schrieffer-Wolff transformation to
separate qubits and cavities up to second order in g/� and use
the mean-field approximation to eliminate all nonlinearities in
the light-matter coupling [41]. A detailed discussion can be
found in Appendix F. The resulting qubit Hamiltonian has the
form

H̃q = 1

2

2∑
i=1

[
�Rσ x

i + �̃σ z
i

]− 1

2
J
( g

�

)2
(σ+

1 σ−
2 + σ+

2 σ−
1 ),

(29)
with the Rabi frequency �R = 2εcg/(� + J ) and the renor-
malized qubit energies �̃ given by Eq. (F19). Importantly, Hq

now includes an effective qubit-qubit interaction, leading to
eigenstates and energies that are different from those of the
pure (untransformed) qubit Hamiltonian:

|T̃+〉 ≈ |T+〉 + �R√
2�̃

|T0〉 , ET̃+ ≈ �̃ + �2
R

2�̃
,

|S̃〉 = |S〉 , ES̃ = J
( g

�

)2
,

|T̃0〉 ≈ |T0〉 + �R√
2�̃

(|T−〉 − |T+〉), ET̃0
≈ −J

( g

�

)2
,

|T̃−〉 ≈ |T−〉 − �R√
2�̃

|T0〉 , ET̃− ≈ −�̃ − �2
R

2�̃
.

(30)
In the parameter regime we use (see caption to Fig. 10)
�R/(

√
2�̃) � 1 and therefore the eigenstate |T̃0〉 is close

to the maximally entangled state |T0〉. More importantly, the
previously degenerate states |T0〉 and |S〉 are now exhibiting an
energy splitting given by 2J (g/�)2, making them distinguish-
able in the system dynamics and individually addressable.

The goal is now to reach a steady state that has a high
fidelity of either the |T̃0〉 state (and thus of |T0〉) or of the
|S〉 state, both of which are entangled. The advantage of this
approach is that the Bloch-Redfield equation provides rates
between these states without any coherent mixing between
them. These rates follow from the residual qubit-photon in-
teraction, which is not included in the effective qubit-qubit
interaction and is described by the Hamiltonian

H̃c,q = (cD† + c∗D)
(
σ z

1 + σ z
2

)+ (cd† + c∗d )
(
σ z

1 − σ z
2

)
.

(31)
Here the operators D(†) and d (†) are annihilation (creation)
operators for symmetric and antisymmetric photon fluctuation
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γ
/g
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k
→

l/
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〈S|ρss|S〉
ΓT̃ →S

ΓS→T̃
γ

FIG. 11. Transition rates �T̃−→S (red) and �S→T̃+ (blue) around
the resonance ωT̃−S = ω+

c − ωd and the resulting steady-state singlet
fidelity 〈S| ρss |S〉 (green) as a function of the driving frequency ωd.

modes, respectively, with the mode frequencies ω∓
c = ωc ∓ J .

They obey the bosonic commutator relations, in particular,
[D, D†] = 1 and [d, D†] = 0. The parameter c describes the
strength of the residual qubit-photon interaction and is given
in Appendix F. We identify the operators in Eq. (31) with
the operators in Eq. (25) as A1 = σ z

1 + σ z
2 and A2 = σ z

1 − σ z
2 ,

B1 = cD† + c∗D and B2 = cd† + c∗d .
In the following we focus on the influence of the spectral

function on the transition rates. An in-depth analysis including
the matrix elements can be found in Ref. [41]. The spectral
functions are proportional to the density of states of the pho-
tonic modes,

γd/D(ω) = 2π |c|2ρ±(ω), (32)

with

ρ±(ω) = κ/(2π )

[ω − (ω±
c − ωd )]2 + (κ/2)2

. (33)

This means that the transition rate between two states |k〉 and
|l〉 is at its maximum if the transition frequency is resonant
with the mode frequency, i.e., ωkl = ω±

c − ωd.
We take the steady-state generation of the |S〉 state as an

example. To get a strong transition from the ground state
|T̃−〉 to |S〉, the resonance condition ωT̃−S = ω+

c − ωd has to
be fulfilled. In Fig. 11 we can see how the singlet fidelity
increases up to a maximum of 〈S| ρss |S〉 = 0.82 as the rate
�T̃−→S rises above the qubit decay rate γ indicated by the gray
dashed line. Next to it, we see the rate �S→T̃+ whose maximum
is shifted by J (g/�)2 from the maximum of �T̃−→S . If ωd is
chosen such that the transition |S〉 → |T̃+〉 is resonant with the
cavity mode, the realization probability of the |S〉 state reduces
rapidly, leading to a dip in steady-state fidelity (green curve
in Fig. 11). We point out the importance of the second-order
energy corrections following from the Schrieffer-Wolff trans-
formation. Without it, the transitions ωT̃−S and ωST̃+ would be
degenerate, and we would not be able to distinguish them in
this analytic approach based on the Bloch-Redfield equation.

Finally, we investigate the impact of the approximations
that were involved in introducing the effective quantum
bath engineering picture. By performing the Schrieffer-Wolff
transformation, the remaining light-matter interaction has a
reduced strength that is only of second order in g/�. This
allows one to make use of the Bloch-Redfield rate formalism
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FIG. 12. Fidelities of singlet and triplet states in the steady state
for two qubits as a function of the driving frequency ωd for the system
after applying the Schrieffer-Wolff transformation. The parameters
used are the same as in Fig. 10.

to reduce the problem of steady-state entanglement generation
to the optimization of transition rates between eigenstates.
These approximations naturally reduce the number of possible
entangled eigenstates contained in the full Hamiltonian by
separating the qubits from the photonic degrees of freedom.
To assess the impact of the involved approximations, we com-
pare the results involving the Schrieffer-Wolff approximation
with those obtained from the full numerical solution. To do so,
we investigate the Schrieffer-Wolff Hamiltonian for entangled
steady states in the same fashion that led to Fig. 10 with
the results shown in Fig. 12. Surprisingly, we see that most
peaks that are visible in Fig. 10 are missing. Only two peaks
remain: the right one is the one explained beforehand as a
means to generate the |S〉 state (compare Fig. 11), and the
left corresponds to an excitation frequency that results in a
high fidelity of |T̃0〉 that can be explained along the same lines
using the resonance condition ωT̃−T̃0

= ω−
c − ωd.

By comparing Figs. 10 and 12, we conclude that the ad-
ditional peaks that are present in Fig. 10 must correspond to
higher-order resonances in g/� that possess a lower fidelity of
the entangled target states. Even though the Schrieffer-Wolff
transformation neglects these higher-order processes, the res-
onances that lead to the highest fidelities of the entangled
states |S〉 and |T0〉 are contained already in second order,
with the additional benefit of providing an understanding on
how the steady state is formed. However, one should keep in
mind that the actual physical system contains a richer physics
that is lost in the approximation procedure, and steady-state
entanglement can in principal be achieved in a much wider
parameter range.

VII. CONCLUSION

Coupled-cavity arrays have been recognized as a promis-
ing platform for hosting entangled states. Tunability of the
light-matter interaction and the intercavity couplings enable a
large degree of control over system properties. At the same
time, each cavity can be individually addressed to realize
excitation schemes with locally tuned phases. In this context,
we analyze the direct driving of multipartite entangled target
states from the vacuum state by means of detuned optical
excitation pulses, as well as continuous optical excitation into

an entangled steady state. For homogeneous few-cavity-qubit
systems, we lay out paths for the generation of Bell and W
states, as well as phased W states by combining analytical
and full numerical methods. From the insight we obtain, a
generalized numerical scheme is derived to identify suitable
driving parameters for different classes of entangled target
states. Moreover, we connect our approach to the concept
of quantum bath engineering, which is an intriguing concept
especially to drive complex multipartite systems adiabatically
into entangled eigenstates. While analytical approaches to
quantum bath engineering provide a deep understanding of the
underlying mechanism, namely, by introducing an effective
qubit-qubit coupling that leads to entangled eigenstates of
the Hamiltonian, our analysis also reveals that the involved
approximations sacrifice higher-order processes that lead to
additional means for entanglement generation.

This work constitutes a first step towards more complex
network topologies based on CCAs with individually tai-
lored intercavity couplings. The developed scheme allows for
inducing quantum correlations related to entanglement in a
controlled way, which is a key resource for applications in
photonic quantum technologies, such as quantum reservoir
computing.
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APPENDIX A: MAXIMUM FIDELITY ESTIMATION

We derive an estimate for the maximum fidelity of the
entangled target-state generation using the optical driving
scheme introduced in Sec. III. Restricting the Hamiltonian
in Eq. (9) to the single-excitation subspace of all symmetric
states (under permutation of the cavity-qubit subsystems), the
Hamiltonian can be written in terms of an effective two-level
system weakly coupled to a perturbing third level, i.e., H =
H0 + V , where

H0 =
⎛
⎝ 0

√
2εq 0√

2εq �qd 0
0 0 �−

cd

⎞
⎠, V =

⎛
⎝0 0 0

0 0 g
0 g 0

⎞
⎠ (A1)

are the uncoupled (H0) and the coupling Hamiltonian (V )
connecting the subspace of ground and target state to the
perturbing third level. We apply a Schrieffer-Wolff transfor-
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FIG. 13. Maximum attainable fidelity Fmax for the target state
|T0, 00〉 as a function of detuning. The approximation (green line)
and the numerical results (crosses) show the same behavior. The
overlap quality Qmax from Eq. (15) is shown in black.

mation H ′ = eSHe−S to this effective Hamiltonian, using

S =
⎛
⎝ 0 0 S13

0 0 S23

−S13 −S23 0

⎞
⎠ (A2)

with

S13 =
√

2εqg

2ε2
q − �−

cd(�−
cd − �q )

,

S23 = �−
cdg

2ε2
q − �−

cd(�−
cd − �q )

, (A3)

obtained by solving [H0, S] = V . This allows an expansion
of the transformed Hamiltonian such that the first two levels
become decoupled from the third one up to first order in V ,
i.e., H ′ = H0 + 1

2 [S,V ] + O(V 3). This results in an effective
two-level system with the Hamiltonian

H̃ =
(

0 ε̃q

ε̃q �̃qd

)
, (A4)

in which the detuning and coupling strength are renormalized
by the presence of the third level according to

ε̃q =
√

2εq +
√

2εqg2

2[2ε2
q − �−

cd(�−
cd − �qd )]

,

�̃qd = �qd + �−
cdg2

2ε2
q − �−

cd(�−
cd − �qd )

. (A5)

A calculation of the time evolution of a two-level system
subject to the Hamiltonian H̃ that is initially in the vacuum
state finally yields the expression for the maximum fidelity of
the target state,

Fmax = ε̃2
q( �̃qd

2

)2 + ε̃2
q

, (A6)

that is given in the main text. In Fig. 13 we evaluate the
maximum fidelity Fmax for the two-qubit system as a func-
tion of cavity-qubit detuning around the optimal parameters
for excitation of the target state |T0, 00〉. The approximation
in Eq. (A6) (green line) follows the trend of the numerical

results (crosses). For comparison, the overlap quality Qmax

defined in Eq. (15) is shown in black. The approximation is
less accurate for larger detunings as the influence of nontarget
states increases, as seen in Fig. 3.

APPENDIX B: ANALYTIC APPROXIMATIONS FOR
OPTIMAL DRIVING FREQUENCIES

To facilitate an analytic approach, we limit the state
space of the two-cavity system to the vacuum state and the
two symmetric states with one excitation, the target state
and the entangled state |gg, T0〉. Assuming the vector |ψ〉 =
(Cgg,00,CT0,00,Cgg,T0 ) is the quantum state of the system, where
the Ci are time-dependent coefficients corresponding to the
three basis states we are considering, then the Schrödinger
equation can be written in the form

iĊgg,00 =
√

2εqCT0,00,

iĊT0,00 =
√

2εqCgg,00 + �qdCT0,00 + gCgg,T0 ,

iĊgg,T0 = gCT0,00 + �−
cdCgg,T0 , (B1)

with �qd ≡ ωq − ωd and �−
cd ≡ ωc − ωd − J . We assume that

|�−
cd| � |�qd|, |εq|, |g| to ensure that the system essentially

remains in the subsystem of the vacuum and the target state.
In this case Ċ00,T0 ≈ 0, and we eliminate this coefficient from
the first two equations, which then form the desired effective
Hamiltonian for the vacuum state and the target state:

Heff =
[

0 1
2�eff

R
1
2�eff

R �qd − g2

�−
cd

]
. (B2)

The maximum amplitude of the Rabi oscillation with the
effective Rabi frequency �eff

R = 2
√

2εq is achieved at reso-
nance, i.e., for �qd − g2/�−

cd = 0. That condition implies the
analytic expression for the pumping frequency that is used in
the main text:

ω±
d = 1

2 (2ωq − � − J ±
√

(� + J )2 + 4g2). (B3)

Note that ω±
d does not depend on the pumping strength εq.

However, the Rabi frequency depends on it, and with it the
pump pulse that drives the system into the target state.

The derivation above can be extended to N coupled cavity-
qubit systems. To do so, one has to consider the subsystem
of the vacuum state |g . . . , 0 . . .〉, the targeted qubit W state
|WN , 0 . . .〉, and the analogous cavity state |g . . . ,WN 〉. In do-
ing so we obtain

�eff
R = 2

√
Nεq (B4)

and

ω±
d = 1

2 (2ωq − � − (N − 1)J

±
√

[� + (N − 1)J]2 + 4g2), (B5)

which are used in Sec. IV in the main text. Figure 14 shows
the plot of Eq. (B5) exemplarily for N = 2, 3, 4. The two
asymptotes of ω±

d are given by ω+
d = ωq and ω−

d = ωq − � −
(N − 1)J .
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FIG. 14. Plot of the driving frequency ω±
d given by Eq. (B5) in

dependence of the detuning � for N = 2, 3, 4, ωq = 70g, and J = g.

APPENDIX C: PARAMETER MAPS FOR PHASED W
STATES

In Sec. V, we explore the possibility of generating phased
W states using local coherent excitation with individually
tunable phases at each lattice site. In Fig. 15, parameter maps
are shown for the state

∣∣W ph
3 , 000

〉 = 1√
3

(|egg〉 + |geg〉 − |gge〉) ⊗ |000〉 , (C1)

where the phases are φ1 = φ2 = 0, and φ3 = π . The order
of the three phases is reflected in phases of the pump terms,
where only the relative phases between the pumps eventually
determine the excited state. Choosing optimal parameters for
the targeted generation yields a fidelity of about 83%.

APPENDIX D: EQUIVALENCE OF COHERENT QUBIT
AND CAVITY DRIVING SCHEMES

We begin by applying a unitary transformation which shifts
the photon operators: ai �→ bi = ai + μ, where μ = εq/g.
The shifting does not change the bosonic commutation rela-

-20 -10 0 10 20

69.6

69.8

70

70.2

70.4

Δ/g

ω
d
/g

0

0.25

0.5

0.75

1

Q
m

a
x

FIG. 15. Parameter map as a function of the cavity-qubit detun-
ing � and the driving frequency ωd for generating the phased W state
|W ph

3 , 000〉, given by Eq. (C1). We determine as optimal parameters
� = −4.71g and ωd = 69.83g.

tions. The transformed cavity and the interaction Hamiltonian
have the form

H ′
q =

N∑
i=1

(ωq − ωd )σ †
i σi, (D1)

H ′
c =

N∑
i=1

(ωc − ωd )b†
i bi −

N∑
i, j=1

Ji jb
†
i b j

+
N∑

i=1

μ

⎛
⎝ N∑

j=1

Ji j − ωc + ωd

⎞
⎠(b†

i + bi
)
, (D2)

H ′
c,q =

N∑
i=1

g
(
b†

i σ
−
i + biσ

+
i

)
, (D3)

where we used Ji j = Jji and neglected constant terms. The
transformation eliminates the qubit-pump term and introduces
a term containing (b†

i + bi ). The latter describes coherent
excitation of photons in the cavity modes. The Lindblad dis-
sipator describing cavity decay with the collapse operators
D[

√
κai]ρ is transformed accordingly:

D[
√

κai]ρ �→ D[
√

κbi]ρ + μ
κ

2
[b†

i − bi, ρ]. (D4)

The second term contributes to the unitary part −i[H ′, ρ] of
the dynamics and has the form of coherent cavity pumping
with amplitude iκμ/2. The transformed cavity Hamiltonian
with the additional terms reads

H ′
c =

N∑
i=1

(ωc − ωd )b†
i bi −

N∑
i, j=1

Ji jb
†
i b j +

N∑
i=1

(
εi

cb†
i + εi

c
∗
bi
)
,

(D5)
where εi

c = μ(
∑

j Ji j − ωc + ωd ) + iμκ/2. We obtain real
excitation amplitude by applying the unitary transformation
H �→ UHU † with U =∏i exp(iϕa†

i ai ). As a result εi
c �→

εi
c exp(iϕ), where the phase ϕ is chosen such that εi

c becomes
real. We find for the cavity driving strength,

εi
c = εq

g

√√√√√
⎛
⎝ N∑

j=1

Ji j − ωc + ωd

⎞
⎠2

+
(κ

2

)2
. (D6)

Coherently exciting the qubits is equivalent to individual ex-
citation of the cavities, although at modified amplitudes εi

c. In
the case where all cavity couplings are equal, i.e., Ji j ≡ J , the
cavity driving amplitudes in Eq. (D6) simplify to

εi
c ≡ εc = εq

g

√
[(N − 1)J − ωc + ωd]2 +

(κ

2

)2
. (D7)

APPENDIX E: DERIVATION OF RATE EQUATIONS FROM
THE BLOCH-REDFIELD EQUATION

We divide the Bloch-Redfield equation

d

dt
ρ(t ) = −i[H, ρ(t )]︸ ︷︷ ︸

I

+
∑
α,ω

γα (ω)Aα (ω)ρ(t )A†
α (ω)

︸ ︷︷ ︸
II
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− 1

2

∑
α,ω

γα (ω){A†
α (ω)Aα (ω), ρ(t )}

︸ ︷︷ ︸
III

(E1)

into three different parts and switch into the Hamiltonian
eigenbasis

H |k〉 = Ek |k〉 , (E2)

where the operators have the form

ρ =
∑

kl

ρkl |k〉 〈l| , (E3)

H =
∑

k

Ek |k〉 〈k| , (E4)

Aα (ωkl ) = Aα
lk |l〉 〈k| . (E5)

With this, the first part simplifies to

I = −i
∑

kl

(Ek − El )ρkl |k〉 〈l| , (E6)

representing a coupling of each off-diagonal element to itself
and resulting in an oscillation with frequency ωkl = Ek − El .
Thus, part I does not influence the diagonal elements, since
the energy difference is zero. For the second and third part we
note that the sum over all transition frequencies ω is equal to
the sum over all k and l by replacing ω with ωkl . The second
part then simplifies to

II =
∑
α,kl

γα (ωkl )ρkk

∣∣Aα
kl

∣∣2 |l〉 〈l| , (E7)

coupling the diagonal elements with each other, but all terms
containing off-diagonal elements vanish. The third term sim-
plifies to

III = −1

2

∑
α,kli

[
γα (ωki )

∣∣Aα
ki

∣∣2 + γα (ωli )
∣∣Aα

lm

∣∣2]ρkl |k〉 〈l|

≡ −
∑
α,kl

λα
klρkl |k〉 〈l| . (E8)

Here the matrix elements also only couple to themselves. The
parameter

λα
kl = 1

2

∑
i

[
γα (ωki )

∣∣Aα
ki

∣∣2 + γα (ωli )
∣∣Aα

li

∣∣2] (E9)

is positive, so that Eq. (E8) describes a decay of the matrix
elements. For k = l , it simplifies to

λα
kk =

∑
i

γα (ωki )
∣∣Aα

ki

∣∣2. (E10)

We can combine these results to obtain a set of linear differ-
ential equations:

ρ̇kl = −
[∑

α

λα
kl + iωkl

]
ρkl for k = l, (E11)

ρ̇kk =
∑
α,i

[
γα (ωik )

∣∣Aα
ik

∣∣2ρii − γα (ωki )
∣∣Aα

ki

∣∣2ρkk
]
. (E12)

The off-diagonal elements only couple to themselves, and
the solution is an exponential decay at rate λ combined with

an oscillation with the respective frequency. The steady state
ρss = ρ(t → ∞) will thus be diagonal in the Hamiltonian’s
eigenbasis. The equation for the diagonal elements can be
written as a set of rate equations:

ρ̇kk =
∑

i

[�i→k ρii − �k→i ρkk] (E13)

with the transition rates

�i→k =
∑

α

γα (ωik )
∣∣Aα

ik

∣∣2. (E14)

APPENDIX F: DERIVATION OF EFFECTIVE
HAMILTONIAN USING THE SCHRIEFFER-WOLFF

TRANSFORMATION

The following derivation follows the concepts introduced
in Ref. [41]. We apply the Schrieffer-Wolff transformation
to the Hamiltonian in Eq. (1) to achieve a decoupling of the
qubit and cavity sector of the Hilbert space up to second order
in g/�. For this we use a slightly different partition for the
Hamiltonian,

H = Hq + Hc + Hc,q + Hε, (F1)

where Hε does describe the cavity drive, which is not included
in Hc. In the rotating wave approximation, the Hamiltonians
read

Hq =
2∑

i=1

(ωq − ωd )σ+
i σ−

i , (F2)

Hc =
2∑

i=1

(ωc − ωd )a†
i ai −

2∑
i, j=1

Ji ja
†
i a j, (F3)

Hc,q =
2∑

i=1

g
(
a†

i σ
−
i + aiσ

+
i

)
, (F4)

Hε =
2∑

i=1

εc(a†
i + ai ). (F5)

To further simplify the system, we introduce the symmetric,

A = (a1 + a2)/
√

2 (F6)

�± = (σ±
1 + σ±

2 )/
√

2 (F7)

and antisymmetric operators

a = (a1 − a2)/
√

2 (F8)

σ± = (σ±
1 − σ±

2 )/
√

2. (F9)

The photonic modes A and a diagonalize Hc with eigenener-
gies ω∓

c . In this basis, the Hamiltonians read

Hq = (ωq − ωd )[�+�− + σ+σ−], (F10)

Hc = (ωc − J − ωd )A†A + (ωc + J − ωd )a†a, (F11)

Hc,q = g(A†�− + A�+ + a†σ− + aσ+), (F12)

Hε = εc(A† + A)/
√

2. (F13)
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We can eliminate the qubit-cavity coupling in first order in
g/� by applying the Schrieffer-Wolff transformation, H �→
eX He−X , with the generator

X = g

[
A�+ − A†�−

ωq − ω−
c

+ aσ+ + a†σ−

ωq − ω+
c

]
. (F14)

It fulfills the condition [X, Hq + Hc] = Hc,q, implying that we
do a Schrieffer-Wolff in terms of the undriven Hamiltonian.
This is possible since the term [X, Hε], which is first order in
g/�, does not couple the qubit and cavity subspaces, and we
do not acquire a first-order coupling through this additional
term. Truncating third and higher orders in g/� and applying
the mean-field approximation by decomposing the photon
fields into mean-field plus fluctuations,

A ≡ Ā + D, a ≡ ā + d (F15)

Ā =
√

2εc

ωd − ω−
c + iκ/2

, ā = 0 (F16)

and neglecting quadratic terms of the form g2D†D, we arrive
at the transformed Hamiltonian

H̃ = H̃q + H̃c + H̃c,q. (F17)

The qubit Hamiltonian

H̃q =
2∑

i=1

(
�R

2
σ x

i + �̃

2
σ z

i

)
− 1

2
J

g2

�2

[
σ x

1 σ x
2 + σ

y
1 σ

y
2

]
(F18)

now has renormalized energies

�̃ = ωq − ωd +
(

g

� + J

)2(
(� + J )|Ā|2

+ (� + J )2

�
+

√
2εcReĀ

)
, (F19)

a single-qubit σ x term �R = 2gεc/(� + J ) caused by the
drive, and an effective qubit-qubit interaction that is second
order in g/�. The photonic part is still described by the two
independent modes

H̃c = (ωc − ωd − J )D†D + (ωc − ωd + J )d†d. (F20)

The interaction between the two parts is now given by

H̃c,q = 1

2

( g

�

)2
[(

Ā� + εc√
2

)
D†
(
σ z

1 + σ z
2

)
+
(

Ā� + εc√
2

)
d†
(
σ z

1 − σ z
2

)]+ H.c. (F21)

and is also second order in g/�, meaning this effective
interaction is weaker than before the Schrieffer-Wolff trans-
formation. It is of the form used in Eq. (31), where

c = 1

2

( g

�

)2
(

Ā� + εc√
2

)
. (F22)
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