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Stochastic quantum Krylov protocol with double-factorized Hamiltonians
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We propose a class of randomized quantum Krylov diagonalization (rQKD) algorithms capable of solving
the eigenstate estimation problem with modest quantum resource requirements. Compared to previous real-time
evolution quantum Krylov subspace methods, our approach expresses the time evolution operator e−iĤτ as a
linear combination of unitaries and subsequently uses a stochastic sampling procedure to reduce circuit depth
requirements. While our methodology applies to any Hamiltonian with fast-forwardable subcomponents, we
focus on its application to the explicitly double-factorized electronic-structure Hamiltonian. To demonstrate the
potential of the proposed rQKD algorithm on near-term quantum devices, we provide numerical benchmarks for
a variety of molecular systems with circuit-based state-vector simulators including the effects of sampling noise,
achieving ground-state energy errors of less than 1 kcal mol−1 with circuit depths orders of magnitude shallower
than those required for low-rank deterministic Trotter-Suzuki decompositions.
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I. INTRODUCTION

Efficient determination of eigenpairs for quantum many-
body systems is one of the most important computational
challenges in modern physics, chemistry, and materials sci-
ence. Some of the most promising algorithms involve the
use of quantum computers to circumvent the naively expo-
nential classical storage complexity for many-body states.
Such approaches often utilize the unitary evolution of the
time-dependent Schrödinger equation (deemed quantum sim-
ulation) as a cornerstone subroutine, a problem contained
in the bounded-error quantum polynomial (BQP) complexity
class [1]. The most extensively studied quantum algorithms
for eigenpair determination rely on a combination of quan-
tum simulation and quantum phase estimation (QPE) [2],
but recent attention has been paid to a promising family of
variational quantum simulation algorithms we will refer to
as quantum Krylov diagonalization (QKD) [3–5]. Presently,
usage of QPE or QKD is limited by the substantial gate counts
required for quantum simulation via standard Trotter-Suzuki
decompositions [6,7], an issue which has seen a chronology of
improvements including the exploitation of Hamiltonian spar-
sity [8], low-rank Hamiltonian factorization [9–12], stochastic
compilation methods [13–17], and a variety of post-Trotter
methods [18–21]. Although significant progress has been
made in reducing the general cost of quantum simulation for
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fault-tolerant hardware, there has been much less attention
paid to improving quantum simulation specifically designed
for QKD-type algorithms, an issue we aim to address in this
work.

The QKD algorithm is a member of the quantum sub-
space diagonalization (QSD) family, early examples of which
include the quantum subspace expansion of McClean et al.
[22] and the imaginary-time quantum Lanczos algorithm of
Motta et. al. [23]. In QSD, the eigenpair problem is solved by
classically diagonalizing a subspace Hamiltonian constructed
in a predefined nonorthogonal basis, the matrix elements
of which are measured using a quantum device. This can
be done by measuring additional operators to build matrix
elements for excitations out of a reference, and/or by ex-
plicitly applying a family of unitary generators to form the
subspace. The former category includes techniques such as
the aforementioned quantum subspace expansion [22,24–26]
and quantum equation-of-motion methods [27–30]. The latter
category contains a significant amount of variety, but can
loosely be partitioned into techniques that employ some form
of chemically inspired unitary Ansatz, such as the nonorthog-
onal variational quantum eigensolver (with [31] or without
[32] optimization of circuit parameters), and those which
employ an Ansatz based on (real or imaginary) time evo-
lution. As insightfully summarized by Klymko et al. [5],
at long evolution times, imaginary-time QSD [23,33] can
be used to systematically suppress the presence of excited
eigenstates, while real-time QSD [3–5,34–38] removes the
presence of excited states by canceling out their phases, sim-
ilarly to the spirit of classical filter diagonalization [39–42].
In the short-time domain, the time evolution operator gener-
ates a basis that spans a classical Krylov space, highlighting
the premise for quantum Krylov diagonalization. Techniques
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for QSD based on eigenvector continuation [43] and David-
son diagonalization [44] have also recently appeared in the
literature.

The real-time evolution based QKD algorithm, which we
will focus on exclusively in this work, generates a basis
through discrete time steps of the time evolution operator
e−iĤτ , first proposed by Parrish et al. as a quantum filter
diagonalization algorithm [3] and Stair et al. as a multirefer-
ence selected quantum Krylov algorithm [4]. In recent years,
several advances have been made in terms of understanding
the theoretical underpinnings of the algorithm [5,36,38,45],
as well as reducing the circuit depth requirements [35]. In all
cases, the compilation of the real-time evolution operator has
relied on a deterministic Trotter-Suzuki decomposition which
results in gate depths that are well beyond the reach of cur-
rent hardware. In concrete terms, first-order Trotter methods
will have a depth scaling O(L) where L refers to the num-
ber of Hamiltonian terms. Initial gate count estimates based
on naive Jordan-Wigner encoding of the second-quantized
electronic structure Hamiltonian results in O(n4

orb) scaling
while low-rank factorized encodings reduce that number to
O(n2

orb) [10,35], where norb is the number of orbitals. When
considering large-scale molecular systems (norb > 50), these
requirements lead to depth estimates on the order of mil-
lions for the former and tens of thousands for the latter. An
outstanding challenge remains in reducing the gate depth re-
quirement in order to make real-time evolution based QKD
amenable to near-term hardware.

In this paper, we aim to improve this problem by com-
bining the strengths of several orthogonal techniques. The
resultant family of methods, which we refer to as randomized
quantum Krylov diagonalization (rQKD) algorithms, provides
a systematic way of solving the eigenpair problem on near-
term devices by leveraging the advantages of (i) randomized
compilers in the short-time limit, and (ii) reduced scaling
afforded by low-rank Hamiltonian factorization. Our work
builds on the rapid progress of stochastic compilation tech-
niques such as Campbell’s qDRIFT [14] and followup work
[15–17,46,47], which have shown how to remove the depen-
dence on the number of Hamiltonian terms from the gate
complexity of the time evolution unitary. We begin by de-
riving an error bound for low-rank Hamiltonian factorization
used in conjunction with stochastic compilation, and show
that one can remove contributions to the error for any target
Hamiltonian term. We also show that these results can fur-
ther be improved by performing importance sampling based
on analytically derived optimal weights. Furthermore, we
demonstrate the performance of rQKD numerically via state-
vector simulation using a family of hydrogen chains ranging
from 6 to 14 atoms and a naphthalene molecule, incorporat-
ing finite shot sampling of the measured quantities. In the
present implementation, we find that rQKD is a powerful tool
for ground-state eigenpair determination, predicting slightly
less accurate energies than standard Trotterized QKD with
circuits over an order of magnitude shallower. Compared to
QPE, which requires precise circuit compilation to estimate
the phase of the time-evolved unitary e−iĤτ , the rQKD method
leverages the variational principle such that precision require-
ments are relaxed and noise robustness is improved. These are

crucial features which make rQKD a potential option in the
near-term hardware era [48].

II. QUANTUM KRYLOV METHOD

Quantum Krylov subspace algorithms aim to solve the
eigenvalue equation Ĥ |ψk〉 = Ek|ψk〉 where |ψk〉 is the kth
eigenstate of interest and Ek is the kth eigenvalue. In the
real-time QKD framework (using an evenly spaced time grid
of steps �τ ), the variational wave function |ψ̃k〉 is written as
a linear combination of nonorthogonal time-evolved quantum
states

|ψ̃k〉 =
D−1∑
n=0

c(k)
n |φn〉 =

D−1∑
n=0

c(k)
n e−iĤn�τ |φo〉, (1)

where c(k)
n are variational parameters and |φo〉 is an initial

reference state, such as the Hartree-Fock state. The variational
coefficients are determined by minimizing the functional

L = 〈ψ̃k|Ĥ |ψ̃k〉 − λ(〈ψ̃k|ψ̃k〉 − 1), (2)

with respect to the variational coefficients c(k)
n , yielding the

generalized eigenvalue equation

Hc(k) = EkSc(k). (3)

Here, c(k) = [c(k)
o , c(k)

1 , . . . , c(k)
D−1]T represents a column vector

of the variational coefficients for the kth eigenvalue of interest,
while the overlap matrix S and Hamiltonian subspace matrix
H are defined by the matrix elements

[S]mn = 〈φm|φn〉 and [H]mn = 〈φm|Ĥ |φn〉. (4)

The hybrid quantum-classical algorithm consists of using the
quantum computer to estimate the overlap and Hamiltonian
matrix elements using, for instance, Hadamard test quantum
circuit measurements and then using the classical computer
to solve the generalized eigenvalue problem. The result is an
estimate of the eigenvalue Ek and coefficients c(k)

n that provide
an approximation to the kth eigenstate of interest.

This procedure can continue iteratively until a stopping
criterion is met, however, it is also possible to estimate the
maximum number of time steps that will be required for con-
vergence by noting that this method builds an order-D Krylov
subspace KD = span{|φo〉, e−iĤ�τ |φo〉, . . . , e−iĤ (D−1)�τ |φo〉}
to define the approximate solution of the eigenvalue problem.
As shown in [4], the above quantum Krylov space spans the
classical Krylov space defined with respect to powers of the
Hamiltonian operator in the small-time limit. For a classical
Krylov subspace constructed with powers of the Hamiltonian
operator, recent work based on the canonical orthogonaliza-
tion procedure has shown that the Krylov subspace dimension
required to predict the ground-state energy E0 with error ε0 ≡
Ẽ0 − E0 � 0 is given by [45,49]

D � O

[
min

(
1

�1
,

1

ε0

)
log

(
1

ε0

)]
, (5)

where �1 = E1 − E0 denotes the spectral gap between the
ground and first excited-state eigenvalue of the Hamiltonian.
This bound shows that the maximum Krylov dimension D
required to achieve an error ε0 can display an inverse depen-
dence on the first excited-state spectral gap and a logarithmic
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dependence on the inverse of the desired precision when �1 >

ε0. In the limit that an ideal Krylov subspace is implemented
on the quantum computer, the maximum gate depth would be
much smaller (assuming �1 � ε0) than the depth required
for conventional quantum phase estimation algorithm which
scales as ε−1

0 . The tradeoff in gate depth reduction, however,
comes at the cost sampling complexity O(ε−2) where the
Heisenberg scaling is effectively lost. It is worth noting that
the inverse dependence on the first-excited state spectral gap
is similar to the gap dependence highlighted in recent work
[50], and both are, in fact, quadratically worse than the clas-
sical Lanczos convergence theory results by Kaniel, Paige,
and Saad which predict an inverse square-root dependence
[51]. For quantum Krylov methods, this discrepancy can be
explained by the noise robustness afforded by the canonical
orthogonalization procedure which ensures the stability of the
generalized eigenvalue problem, Eq. (3).

In this work, we consider real-time quantum Krylov meth-
ods for near-term devices where the implementation of the
time evolution operator acquires a compilation error, and the
classical Lanczos bound will not strictly hold. Nevertheless,
the convergence bound from above is insightful in explaining
a wide variety of numerical experiments which have demon-
strated the fast convergence of real-time quantum Krylov
methods. The purpose of this paper will be to study the gate
depth incurred by the circuit compilation step, however, be-
fore proceeding, it is worth discussing how the total runtime of
the hybrid quantum-classical algorithm scales with the Krylov
subspace dimension D. In this regard, the overlap matrix S
will require D(D − 1)/2 separate runs to estimate all of the
matrix elements, while the Hamiltonian matrix H will require
LD2 separate measurement runs, where L is the number of
Hamiltonian terms. While the measurements for [S]mn can be
obtained during the evaluation for the L terms of [H]mn, the
number of measurements will be dominated by the asymptotic
scaling of O(LD2/ε2).

Toeplitz structure

In the limit that an exact time evolution operator is used,
the overlap and Hamiltonian matrix elements take the form

[S]mn = 〈φo|e−iĤ (n−m)�τ |φo〉, (6)

[H]mn = 〈φo|Ĥe−iĤ (n−m)�τ |φo〉, (7)

which gives rise to a Toeplitz structure for both matrices. In
total, the number of measurements required to reconstruct all
of the matrix elements will scale as O(D) and O(LD) for S
and H, respectively. However, the cost of the reduced runtime
comes at the price of a high-precision compilation of the time
evolution operator e−iĤ (n−m)�τ . As such, in this paper we elect
not to implement the near-exact time evolution required for
the Toeplitz structure, and instead focus on low depth and
preservation of variationality. The resulting algorithms then
maintain the asymptotic measurement scaling of O(LD2). We
point the reader to the Appendix of [3] which explores the
breakdown of variationality when heavily Trotterized circuits
are used to evaluate matrix elements of the form given in
Eqs. (6) and (7).

III. DETERMINISTIC TIME EVOLUTION

The main burden of real-time QKD algorithms is based on
the circuit compilation step that is required to construct the
time evolution operator e−iĤτ . As we show below, the con-
ventional approach for circuit compilation uses deterministic
product formulas with resource requirements that are out of
reach for near-term hardware. To see why, let us consider a
standard Hamiltonian written as a sum of L independently
fast-forwardable operators

Ĥ =
L∑
s

Ĥs (8)

with terms Ĥs that do not generally commute with one another
and have individual spectral norms defined by λs = ‖Ĥs‖,
equal to the maximum singular value. For reasons that will be-
come apparent, we also define λ = ∑

s λs, which bounds the
spectral norm of the Hamiltonian ‖Ĥ‖ � λ based on the trian-
gle inequality. Based on the Hamiltonian in Eq. (8), the exact
time evolution unitary will be given by Û (τ ) = e−iτ

∑
s Ĥs . To

compile this operator as a quantum circuit, a simple yet ef-
fective strategy consists of using the first-order Trotter-Suzuki
formula

Ŝ1(τ ) =
[ L∏

s

V̂s(τ/R)

]R

, (9)

where it is assumed that each of the unitary subcomponents
V̂s(τ ) = e−iĤsτ can be compiled exactly without additional er-
ror. The total compilation error εTS1 ≡ ‖e−iĤτ − Ŝ1(τ )‖ may
be truncated to second order in τ using a Taylor series expan-
sion

εTS1 ≈ τ 2

2R

∥∥∥∥∥
L∑

s′>s

[Ĥs, Ĥs′ ]

∥∥∥∥∥ � λ2τ 2

R
, (10)

where we have included the spectral norm bound on the right-
hand side which holds more generally. We note that while
tighter commutator bounds exist [52], these bounds can still
remain significantly larger than state-dependent compilation
errors ‖〈φo|e−iĤτ − Ŝ(τ )|φo〉‖ which we consider in this pa-
per. It is also worth noting that for any real state |φo〉, the
state-dependent first-order Trotter-Suzuki error is zero, and
will actually scale to third order in τ .

Writing the number of Trotter steps R in terms of εTS1, this
bound yields a total query complexity QTS1 = LR for the first-
order Trotter-Suzuki method

QTS1 ≈ Lτ 2

2ε

∥∥∥∥∥
L∑

s′>s

[Ĥs, Ĥs′ ]

∥∥∥∥∥ � Lλ2τ 2

ε
. (11)

In other words, this quantifies a bound on the depth of Trotter-
ized quantum circuit. It is important to note that higher- (kth-)
order Trotter-Suzuki (TSk) decompositions have been shown
to have more favorable query complexity, with upper-bound
scaling that approaches linear in τ and λ. The exponential
increase in prefactor O(5k ) (also referred to as the number
of stages of the decomposition), however, has caused second-
and fourth-order decompositions to be generally considered
most efficient [52].
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IV. STOCHASTIC TIME EVOLUTION

A long-standing objective in improved quantum simulation
has been the reduction (or removal) of L from the query com-
plexity since L can have up to quartic in the number of orbitals
norb for general electronic-structure Hamiltonians. Inspired by
observations that randomization could be beneficial for the L
dependence [13], Campbell developed the quantum stochastic
drift protocol [14] (qDRIFT) which successfully removed the
L dependence altogether at the cost of quadratic τ scaling
and explicit dependence on the norm of the Hamiltonian. The
qDRIFT procedure approximates the short time-step evolution
operator Û (�τ ) as the average of a randomly sampled unitary,

e−iĤ�τ ≈ Ĉ(�τ ) ≡ E[V̂ (�τ )] =
∑

s

psV̂s(�τ ), (12)

which is defined with respect to the discrete probability distri-
bution {ps} satisfying

∑
s ps = 1. Long-time dynamics can be

approximated by multiple powers of this operator, written as

[Ĉ(τ/R)]R = E[V̂1] . . .E[V̂R] = E[V̂1 . . . V̂R], (13)

where the second equality arises from the condition that mul-
tiple iterations are independent from one another. For a single
instance, this quantity is equivalent to the product of R ran-
domly sampled unitaries

Ũ 	R
qdrift (τ ) =

R∏
r

V̂sr (τλ/R), (14)

where the trajectory is indicated by 	R = {s1, s2, . . . , sR}, a
vector of the sampled s indices. We note that the time step
τλ/R is used in order to ensure cancellation of the zeroth- and
first-order error in τ (see the Appendix of [14] for details).
Each V̂sr term enters into the product above with probability
psr = λsr /λ, biasing the procedure such that Ũ 	R

qDRIFT(τ ) tends

towards Û (τ ) as R increases [46]. The key feature, after ana-
lyzing the difference between the quantum channel for exact
evolution and that of qDRIFT, is that the number of terms
R (equal to the query complexity) is independent of L. The
qDRIFT error is explicitly given by

εqDRIFT ≈ τ 2

2R

∥∥∥∥∥
( ∑

s

Ĥs

)2

−
∑

s

Ĥ2
s /ps

∥∥∥∥∥ � 2λ2τ 2

R
, (15)

where the second inequality arises from a bound on the di-
amond norm of quantum channels. As before, we have also
included the truncated Taylor series error since we found it
still greatly overestimates the true compilation error in a wide
variety of numerical tests. Rearranging for R, the qDRIFT
query complexity is then given as

QqDRIFT ≈ τ 2

2ε

∥∥∥∥∥
( ∑

s

Ĥs

)2

−
∑

s

Ĥ2
s /ps

∥∥∥∥∥ � 2λ2τ 2

ε
. (16)

Similar to the Trotter-Suzuki result, this bound quantifies the
depth of the stochastically sampled time evolution circuit. The
sample complexity of this procedure required to reproduce the
exact time evolution with ε accuracy will scale as O(1/ε2) due
to the Chernoff bound [14,17].

V. STOCHASTIC QUANTUM KRYLOV PROTOCOL

With all of the above tools defined, we now formu-
late a general framework for stochastic real-time quantum
Krylov methods. The starting point consists of using the
qDRIFT-inspired AnsatzĈ(τ ) = ∑

s psV̂s(τ ), defined for arbi-
trary evolution times τ with respect to the unitary

V̂s(τ ) = e−iτ Ĥs/ps . (17)

It is important to note, as will be discussed in future sections,
that it is not required that V̂s contain only a single Hamiltonian
term, nor a single product. One of the main contributions of
this paper consists of our proposal of certain combinations
of products which lead to reduced error expressions. Further-
more, we consider cases where the sampled unitary consists
of a Hamiltonian subterm with a spectral norm that is not
normalized, ‖Hs‖ 
= 1, requiring optimal stochastic weights
ps that are fundamentally different from the conventional
qDRIFT weights λs/λ.

To provide a unified framework for stochastic real-time
quantum Krylov methods, we define the order-D quantum
subspace

span{|φo〉, Ĉ(τ/R1)R1 |φo〉, . . . , Ĉ(τ/RD−1)RD−1 |φo〉}, (18)

where {R1, R2, . . . , RD−1} are integers which correspond to
the Krylov basis states and the number of Trotter slices per
basis state (r) such that Rn = nr. We will use this notation
in the Results section. We should also note that this quan-
tum subspace can span the classical Krylov subspace in the
short-time limit [4] up to an additive error, therefore, a similar
convergence behavior will be expected [45].

As shown in the quantum Krylov section, a general varia-
tional Ansatz may be written as a linear combination of these
states with variational coefficients cn, which are determined
by solving the generalized eigenvalue problem defined by
H and S. These subspace matrix elements can now be writ-
ten explicitly as the expectation value of the set of random
operators

Smn = 〈φo|Ĉ†RmĈRn |φo〉 = E[〈φ0|V̂ †
	Rm

V̂	Rn
|φ0〉] (19)

and

Hmn = 〈φo|Ĉ†Rm ĤĈRn |φo〉 = E[〈φ0|V̂ †
	Rm

ĤV̂	Rn
|φ0〉]. (20)

A schematic representation of rQK is shown in Fig. 1. We note
that in QKD, one must not only consider the query complexity
for applying the chosen approximate time evolution circuits,
but also the sample complexity required to determine the
value of a matrix elements to within sampling error, εm which
scales as O(1/ε2

m ). As we show in the numerical experiments
section, it is possible to retain the same O(1/ε2

m ) scaling by
combining the bit-string measurements of different trajecto-
ries (14) for a particular matrix element measurement Hmn or
Smn.

We should emphasize that we have written everything in
a manner that emphasizes the flexibility afforded by this
approach. As we shall highlight below, there remains much
freedom in the various forms one may chose to define V̂s

which ultimately lead to different runtimes and gate depth
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FIG. 1. Illustration of the rQKD procedure.

requirements. We also emphasize again that the aim of the
stochastic quantum Krylov approach is to retain variationality
and low circuit depth in favor of the exact Toeplitz structure
present for exact time evolution.

VI. HAMILTONIAN REPRESENTATION

Up to this point, the analysis has been given in terms of
a general Hamiltonian defined only with respect to L fast-
forwardable components. It is important to note that while
our proposed methodology is applicable to a wide class of
Hamiltonians, we consider the number-conserving electronic-
structure Hamiltonian relevant to chemistry and condensed
matter physics:

Ĥ = Eo +
∑
pq,σ

hpqâ†
p,σ âq,σ + 1

2

∑
pqrs,σ τ

gpqrsâ
†
pσ â†

rτ âsτ âqσ .

(21)

Here, â†
p (âp) are fermionic creation (annihilation) operators

of a particle defined with respect to the pth spatial orbital;
σ, τ are used as labels for the spin of the particle. The matrix
elements hpq and gpqrs are likewise defined with respect to the
spatial orbitals in Appendix A.

For purposes of formulating the rQKD algorithm presented
in this work, we will focus on the low-rank, explicit double-
factorization (XDF) encoding scheme. Because it is often used
as a subscript or superscript, in this paper we used XDF (rather
than X-DF, used in previous work [35]) for notational clarity.
In the XDF formalism, the electronic-structure Hamiltonian

(21) is given in the form

ĤXDF = E0 + Ĥo +
nDF∑

t

Ĥt

= E0 − 1

2

∑
k

f ∅k Ĝ†
∅

(Ẑk + Ẑk̄ )Ĝ∅

+ 1

8

nDF∑
t

∑
k 
=l

Zt
kl Ĝ

†
t (Ẑk + Ẑk̄ )(Ẑl + Ẑl̄ )Ĝt , (22)

where Ĝ∅ and Ĝt correspond to Givens orbital rotation cir-
cuits. The operators Ẑk and Ẑk̄ are Pauli Z gates acting on the
kth and (k + norb)th qubits, respectively. The bar denotes the
staggered indexing for qubits arranged to correspond to alpha
then beta blocks (see Appendix A for details). The quantity
nDF is the number of Hamiltonian factors with eigenvalues
ht greater than some user-specified threshold σDF, retained in
the first eigendecomposition of the electron repulsion integral
(ERI) tensor (pq|rs) ≈ ∑nDF

t At
pqht At

rs. The elements Zt
kl are

then determined from a subsequent eigendecomposition of
At

pq = ∑
k Ut

pkU
t
kqγ

t
k as Zt

kl = htγ
t
k γ

t
l , where γ t

j are eigenval-
ues of At

pq. We note that the XDF Hamiltonian expressed in
Eq. (22) groups effective scalar and one-body contributions
from the two-body operator into E0 and f ∅k , respectively. A
detailed derivation of the XDF Hamiltonian from the con-
ventional second quantized form, including the regrouping, is
given in Appendix A. It is also important to note that at larger
system sizes one may want to use a Cholesky or density fitting
factorization to either directly construct the intermediate XDF
tensors, or use them to reconstruct the eigendecomposition
following techniques from classical quantum chemistry [53].

In the XDF framework, the 
1 norm, λXDF, is given by
λXDF = λ1 + λ2, where

λ1 =
∑

k

| f ∅k |, (23)

λ2 = 1

2

∑
tkl

|Zt
kl | − 1

4

∑
tk

|Zt
kk|. (24)

We also note that the analogous expressions λ using the
Jordan-Wigner encoding of the Hamiltonian can be found in
[54].

A. Single-depth Ansatz

In the simplest case of combining rQKD with double fac-
torization, the unitaries V̂s can be chosen to correspond to the
fast-forwardable operators

V̂ XDF(1)
s (τ ) = Ĝ†

s e−iD̂sτ/ps Ĝs, (25)

where the superscript (1) indicates an effective depth of 1
oracle query. As in previous sections, D̂s refers to a diagonal
operator consisting of a summation of either one-qubit or two-
qubit Pauli Z operators. For clarification, using the first-order
XDF unitaries we then build the rQKD AnsatzĈ(1)

XDF(τ ) =∑
s psV̂ XDF(1)

s (τ ), noting that the sum over s includes the
XDF one-body term Ĥo and two-body terms Ĥt . As a ref-
erence point, it is worth calculating the error of this Ansatz
with respect to the ideal real-time evolution operator. For the
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low-depth XDF(1) Ansatz above, this is approximated to sec-
ond order in τ as

εXDF(1) = ‖e−iĤτ − E[V XDF(1)(τ/R)]R‖ (26)

≈ τ 2

2R

∥∥∥∥∥
( ∑

s

Ĥs

)2

−
∑

s

Ĥ2
s /ps

∥∥∥∥∥. (27)

The second-order approximation is bound by

ε
XDF(1)
2 � (λ1 + λ2)2τ 2

2R
. (28)

B. Triple-depth Ansatz

We also consider the following interleaved form for the
unitaries:

V̂ (3)
s (τ ) = e−iĤs′ τ/2e−iĤsτ/ps e−iĤs′ τ/2, (29)

where s 
= s′. The flexibility of this unitary is significant
in how it manifests in the second-order error. Using V̂ (3)

s
in Eqs. (12) and (13), any choice of weights will produce
an Ansatz with approximate error ε (3) = ‖e−iĤτ − E[V̂ (3)]R‖,
given to second order in τ/R as

ε
(3)
2 = τ 2

2R

∥∥∥∥∥
( ∑

s 
=s′
Ĥs

)2

−
∑
s 
=s′

Ĥ2
s /ps

∥∥∥∥∥, (30)

where the summation runs over all indices excluding Ĥs′ . In
other words, Eq. (12) is re-defined in the interleaved unitaries
picture so that it excludes the contributions from the s = s′
term. This suggests that the subterm Ĥs′ should be chosen
as the one with the largest spectral norm or expectation of
〈φo|Ĥ2

s′ |φo〉, in order to reduce the approximation error. In
the Results section, we will discuss several strategies that
can be employed to take advantage of this flexibility but
will save a thorough investigation of this feature for future
studies. We note that use of Eq. (29) results in a similar
approach to that used in [16,55] as well as an error ex-
pression similar to that recently proposed by [56], in which
Trotterization and qDRIFT are combined using an interaction
picture of quantum simulation. We note that more detailed

derivation of error expressions in this section is given in
Appendix B.

In the case that the XDF one-body term contains the
largest spectral-norm contribution (or the largest value of
〈φo|Ĥ2

s′ |φo〉), then a natural choice for Ĥs′ would be Ĥs′ =
− 1

2

∑
k f ∅k Ĝ†

∅
(Ẑk + Ẑk̄ )Ĝ∅. Under this premise and using

the XDF Hamiltonian, we propose the following interleaved
triple-depth XDF(3) Ansatz:

V̂ XDF(3)
s (τ ) = Ĝ†

oe−iD̂oτ/2Ĝose
−iD̂sτ/ps Ĝsoe−iD̂oτ/2Ĝo, (31)

where Ĝos = Ĝ†
so = ĜoĜ†

s may be combined into a sin-
gle Givens rotation operator. Again, now using the XDF-3
unitaries, we construct the rQKD Ansatz as Ĉ(3)

XDF(τ ) =∑
s 
=o psV̂ XDF(3)

s (τ ), noting that the sum over s does not in-
clude the XDF one-body term Ĥo. Additionally, if one chooses
probabilities ps = ‖Ĥs‖/λ2, then the compilation error will be
proportional to square of the spectral norm of the two-body
operator only, and the second-order error is bound by

ε
XDF(3)
2 � λ2

2τ
2

2R
. (32)

Despite the second-order bounds in Eqs. (28) and (32) not
accounting for higher-order terms, we provide numerical evi-
dence that they overestimate the error produced in a quantum
Krylov matrix element, often by several orders of magnitude
as highlighted in Fig. 2 and discussed in the Results section.

We note that in the conventional Pauli representation where
Ĥs represents individual Pauli words multiplied by some co-
efficient (λsP̂s), using the above interleaved unitary would not
seem likely to provide a notable advantage. This suggests that,
in principle, grouped Pauli words that are fast forwardable
should be chosen to represent an analog to Ĥo to take full
advantage of the interleaved Ansatz, however, we leave such
studies to future work. The explicit double-factorization pro-
cedure, on the other hand, naturally partitions the Hamiltonian
into different groups consisting of the one-body term and
the nDF separate two-body terms. As a result, the double-
factorization procedure naturally takes full advantage of the
reduced compilation error afforded by the interleaved Ansatz.
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FIG. 2. Convergence of different overlap matrix element errors εS = |〈φ0|Û (τ )|φ0〉 − 〈φ0|[Ũ (δτ )]R|φ0〉|, where Û (τ ) is the exact time
evolution operator Ũ (δτ ) = Ĉ(δτ ), Ŝ1(δτ ), Ŝ2(δτ ), and δτ = τ/R. Results are shown for three different time durations [τ = 0.1, 1.0, 10.0 in
(a), (b), and (c), respectively] as a function of depth. The depth is given as a function of increasing Trotter steps R (see Appendix E) for the H8

Hamiltonian. Data sets labeled rQK(k, opt) indicated rQK using Ĉ (k)
XDF with k = 1 or 3 and optimized probability coefficients. Data sets labeled

rQK(k, bound) indicated the upper bound to the second-order error [Eqs. (32) and (28)] using corresponding numerical values for λ1, λ2, τ ,
and R. Caps on the TS curves in (a) and (b) indicate the minimum depth using a single Trotter step R = 1.
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C. Optimal stochastic weights

To achieve the lowest second-order error [Eq. (27) or (30)],
we find that it is prudent to optimize the weights so that
they minimize the error function with respect to some trial
state |φ0〉. As shown in Appendix C, the analytically optimal
probability weights p̃s are given by

p̃s =
√

〈φ0|Ĥ2
s |φ0〉∑

s′

√
〈φ0|Ĥ2

s′ |φ0〉
, (33)

noting that one may wish to exclude terms V̂s from Ĉ (and

the above expression) for which
√

〈φ0|Ĥ2
s |φ0〉 is very small

in order to avoid evolution by large τs values. In practice, we
find that this is naturally avoided when the XDF Hamiltonian
is truncated to nDF < n2

orb terms.
In the situation where Ĥs are simply weighted Pauli words

(λsP̂s) such that Ĥ2
s = λ2

s Î , then the optimal weights become
p̃s → λs/λ, equivalent to those used in the original qDRIFT
implementation. However, this is not the case for Hamilto-
nians with general fast-forwardable subcomponents (such as
XDF), and Eq. (33) should be used. In the following numerical
demonstrations section we show in more detail that there is a
significant advantage to using optimal weights from Eq. (33)
over other options.

We also wish to emphasize that in theory the probabilities
could be reoptimized for each time step; however, in practice
we find that the initially optimized weights seem to be stable
across all times from the systems that we studied, and pro-
vided little to no advantage to over reoptimized probabilities.
Further analysis is needed to fully understand this behavior.

D. Towards a practical implementation

Based on the strategies and various Ansätze introduced
above, we now discuss two different implementations that
provide various tradeoffs in circuit depth and runtime com-
plexity.

Toeplitz structure implementation. If Rn is defined as the
power of Ĉ(τ/Rn) required to achieve ε accuracy with respect
to the ideal time evolution operator e−iĤn�τ , we naturally
arrive to the real-time order-D Krylov subspace defined in
the quantum Krylov subsection. This subspace would approx-
imate the ideal real-time Krylov subspace up to ε accuracy
with the query complexity bound QqDRIFT � 2λ2τ 2/ε. In this
limit, the Krylov subspace matrices H and S would take on a
Toeplitz structure which ultimately reduces the total runtime,
requiring O(D/ε2) measurements. While the reduced runtime
is certainly beneficial, this approach will ultimately inherit
the strong dependence on λ2 and τ 2 inherent to the qDRIFT
framework in terms of circuit complexity.

Near-term implementation. In comparison, it is also pos-
sible to define a randomized Krylov subspace by choosing
{R1, R2, . . . , RD−1} = {1, 2, . . . , D − 1}, resulting in a Krylov
subspace that has maximum gate depth of D − 1 multiplied
by the cost of implementing the unitary V̂s(τ ). While this
subspace no longer approximates the ideal real-time Krylov
subspace to ε precision, we found numerical evidence that this
approach is able to reach a ground-state energy precision of

∼10−3 with gate depths that are orders of magnitude smaller
than the equivalent Toeplitz structure approach. Compared
to deterministic product formulas, which at best would have
a minimum depth that scales with the number of terms in
the Hamiltonian O(L), this approach does not exhibit such
scaling, thereby resulting in shorter gate depths compared
to deterministic Trotterization. Nevertheless, we observed a
tradeoff in the convergence rate where we found that that this
methodology converged more slowly compared to determin-
istic Trotter methods. In the following section, we provide
a more thorough investigation of the stochastic real-time
quantum Krylov method for various chemical systems of in-
terest taking into account real sampling noise and compilation
errors.

VII. NUMERICAL EXPERIMENTS

We have performed numerical experiments for XDF
electronic-structure Hamiltonians with simulations corre-
sponding to 12–28 qubits. Calculations were performed using
an in-house GPU-accelerated, spin and number-conserving
state-vector emulator. Hydrogen chain calculations all consid-
ered an internuclear separation of 1.0 Å, and used a minimal
STO-6G basis with restricted Hartree-Fock orbitals. Naphtha-
lene calculations used a cc-pVTZ basis with RHF orbitals
performed in a (10e, 10o) active space using all π/π∗ or-
bitals. The active space was identified using the automatic
valence active space procedure [57] implemented in the PYSCF

package [58]. The naphthalene active space orbitals are also
depicted graphically in Appendix D. Quantum Krylov energy
errors for hydrogen chains and naphthalene are reported rel-
ative to the full configuration interaction (FCI), or complete
active space CI (CASCI) values, respectively.

Whenever comparing Trotterized QKD and rQKD, XDF
Hamiltonians with the same nDF are used in both cases with an
XDF eigenvalue threshold of σDF = 1.0 × 10−8 Eh. Results
in all figures and tables in this section are reported in terms
of micro (δτ ) and macro (�τ = rδτ ) time steps, where r is
the number of Trotter steps per Krylov basis state (henceforth
referred to as Trotter slices for clarity). The total number of
Trotter steps for the nth Krylov basis state is then Rn = nr.

To begin, in Fig. 2 we numerically compare
stochastic compilation of the single-depth and triple-
depth Ansätze against first- (TS1) and second- (TS2)
order Trotter-Suzuki decompositions by examining
the absolute error in quantum Krylov overlap matrix
element εS = |〈φ0|Û (τ )|φ0〉 − 〈φ0|[Ĉ(τ/R)]R|φ0〉| and
εS = |〈φ0|Û (τ )|φ0〉 − 〈φ0|[Ŝk (τ/R)]R|φ0〉|, respectively, as a
function of circuit depth (see Appendix E for details on the
constant-factor gate complexity estimates) for TS1, TS2, and
the randomized quantum Krylov protocol. Figures 2(a)–2(c)
show εS for the H8 Hamiltonian at three time durations:
τ = 0.1, 1.0, 10.0 E−1

h , representative of errors relative to
exact dynamics.

In Fig. 3 we demonstrate the robustness of sampling the
random variable expectations using many individual measure-
ments of states generated using the rQK Ansatz. Figure 3(a)
plots the rQK and TS1-QK ground-state energy convergence
as a function of evolution time at different shot budgets,
specifying the number of shots (M) used for each matrix
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FIG. 3. Randomized and Trotterized QKD ground-state energy convergence with different measurement budgets per matrix element (a),
and sampling error (εm ) in the expectation values for random variables E[〈ĈR(δτ )〉] (b) or E[〈ĤĈR(δτ )〉] (c), as a function of measurement
budget. Energy convergence data sets are reported as rQK(M ), where M is the number of shots used for each matrix element. Matrix element
errors are relative to the exact expectation value corresponding to an H8 Hamiltonian with nDF = 25. For (a) �τ = 0.2 and r = 5. For both
(b) and (c), 5, 10, and 15 (R = nr = 5, 10, 15) total time steps of length δτ = 0.04 were used, corresponding to a full [Ĉ (3)

XDF]R operators with
255, 2510, and 2515 terms, respectively. The theoretical sample errors [1/

√
M for (a), and λ/

√
M for (b)] are plotted for reference. All data

with noise are averaged over 10 runs with standard deviations indicated by shaded regions above the corresponding data sets.

element. Importantly, in Fig. 3(a), canonical orthogonalization
eigenvalue thresholds (σCO) one order or magnitude larger
than the expected measurement error were used in order to
dampen the effects of the shot noise (i.e., σCO = 10 × M−1/2).
A value of σCO = 10−12 was used for rQK without shot noise.
Figures 3(b) and 3(c) show the convergence of the measured
values for Eqs. (19) and (20) (corresponding to [Ĉ(3)

XDF]R using
an H8 Hamiltonian) with an increasing number of shots, and
different vales of R. Within the the present framework, each
shot is specified by a bit string corresponding to a single
determinant |I〉 as well as an ancilla value. The state from
which the bit string is drawn is a normalized linear combina-
tion of the bra and ket states with the corresponding givens
rotation Ĝs applied such that the contribution of that shot
to the overall expectation value is given by 〈I |D̂s|I〉. A
more detailed overview of this procedure can be found in
Appendix G.

In Fig. 4 we show the naphthalene ground-state energy
convergence, first-row overlap matrix error (relative to ex-

act dynamics), and maximum circuit depth with respect to
the total amount of time evolution for TS and randomized
quantum Krylov. For QK-TS1 and QK-TS2 we plot results
using the minimum r = 1 Trotter slices per Krylov basis state
with a time step of �τ = 0.1 E−1

h . For randomized QK we
use r = 2 Trotter slices per Krylov basis state with a time
step of �τ = 0.1 E−1

h with both the single-depth (Ĉ(1)
XDF) and

triple-depth interleaved Ansätze (Ĉ(3)
XDF), each with optimized

[Eq. (33)] and eigenvalue [pt = ht/
∑

ht ] weights). We note
that the plateaus in convergence are the result of systemat-
ically removing linear dependencies in the Krylov basis via
canonical orthogonalization. Details of this procedure can be
found in Appendix F.

Finally, in Table I we compare QKD energy errors and
computational resource estimates for chains of 6 to 14 hy-
drogens arranged on a line with an internuclear separation
of 1.0 Å. These systems encompass nDF values (determined
using a threshold σDF = 10−8 Eh) ranging from 18 (for H6) to
48 (for H14), and Hilbert-space sizes ranging from 4.9 × 103
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FIG. 4. Convergence of the QK singlet ground-state energy (a), error in the first-row QK overlap matrix elements (εS) with respect to
exact dynamics (b), and the maximum circuit depth required at time τ (c). All results are for naphthalene in a (10e, 10o) active space, with
increasing number of quantum Krylov basis states (D). Here, rQK(k, X ) refers to randomized quantum Krylov with r = 2 Trotter slices, an
effective depth of k = 1, 3, and weights determined via either X = first factorization eigenvalue magnitude (eig) [pt = ht/

∑
ht ], or X =

optimized weights via Eq. (33) (opt). QK-TS1 (QK-TS2) refers to first- (second-) order Trotterized QK, respectively, with a single Trotter slice
r = 1. All calculations used a time step of �t = 0.1 a.u. up to N = 20 total Krylov basis functions. Note that canonical orthogonalization was
employed (using an eigenvalue threshold of 1.0−12) in order to remove linear dependencies.
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TABLE I. Computational resources and singlet ground-state energy errors (�EX/mEh) using rQK and first-order Trotterized QK (QK-
TS1) for linear chains of 6–14 hydrogen atoms. The value nH refers to the number of hydrogen atoms and NFCI is the full dimension of the
corresponding Hilbert space. The quantity dX indicates the maximum circuit depth required at any point in the calculation and X=(rQK or
QK-TS1). All calculations used a time step of �τ = 0.1 E−1

h , two Trotter slices (r = 2), and seven Krylov basis states (D = 7), with the
exception of H6 which used only six to improve numerical stability. Results here do not use canonical organization in order to achieve the
fastest convergence possible for comparison purposes.

nH nDF NFCI drQK(d3) �ErQK(d3) drQK(d1) �ErQK(d1) dQK−TS1 �EQK−TS1

6 18 4.9 × 103 1296 0.505 720 1.325 13248 0.347
8 25 6.3 × 104 2016 1.055 1120 4.505 28448 0.630
10 33 4.0 × 102 2520 2.705 1400 11.883 46760 1.128
12 41 8.5 × 105 3024 5.196 1680 25.109 69552 2.107
14 48 1.2 × 107 3528 8.849 1960 48.192 94864 3.177

to 1.2 × 107. Here we focus on the circuit depth and ground-
state energy errors using TS1, TS2, and rQK using both the
Ĉ(1)

XDF and Ĉ(3)
XDF Ansätze.

VIII. DISCUSSION

In this section we discuss the numerical results presented
above. To begin, in Fig. 2(c), at the longest duration [τ =
10.0 E−1

h ], there is a clear crossover point at εS ≈ 10−2 be-
low which the TS1 decomposition performs more favorably
than stochastic compilation. At τ = 0.1, 1.0, we see that the
crossover points are near the minimum (R = 1) depth for
TS1 and TS2, near errors of approximately εS ≈ 10−4 at
τ = 0.1 E−1

h and εS ≈ 10−2 at τ = 1.0 E−1
h . We generally

observe the expected trend that for a given error the relative
advantage of stochastic compilation diminishes with increas-
ing τ . It is also worth pointing out that at short and medium
evolution times, τ = 0.1 and 1.0, rQK offers a way to generate
relatively accurate matrix elements with a depth significantly
less than the minimal depth (R = 1) first- and second-order
Trotter-Suzuki deterministic compilation strategies. This is
the key advantage of the stochastic compilation technique, and
as discussed below, results in the ability of rQK to produce
accurate ground-state energy predictions (errors less than 1
kcal mol−1) with sub-TS1 gate depth. Additionally, we find
that the numerical value for εS is, at all three durations, orders
of magnitude lower than the second-order upper bound given
in Eqs. (28) and (32). The discrepancy can likely be attributed
to numerous cancellations of terms which will naturally occur
when evaluating the many Pauli Z expectations present in
Eqs. (27) and (30).

In analyzing the results shown in Fig. 3(a) we see that,
using �τ = 0.2 and r = 5, rQK and QK-TS1 (in the absence
of shot noise) rapidly converge to errors below 1 kcal mol−1.
As mentioned in the previous section, however, we also find
that as the number of measurements is decreased, it is neces-
sary to increase the amount of information discarded during
canonical orthogonalization in order to maintain variational-
ity. As a result, the energy convergence for rQK and QK-TS1
with shot noise is significantly slower than in the noise-free
scenario. Interestingly, there is little to no distinction in the
performance of rQK and QK-TS1 up to the limit of 5 × 1010

shots per matrix element and noise-abatement canonical or-
thogonalization protocol. Additionally, we observe that the

convergence for rQK matrix elements shown in in Figs. 3(a)
and 3(b) is in good agreement with the statistical estimates
of MS = O(1/ε2

m) and MH = O(λ/ε2
m). We also observe that

there is no significant change in convergence or standard devi-
ation when increasing the number of Trotter steps, noting that
R = 5, 10, 15 correspond to Ĉ(3)

XDF operators with 255, 2510,
and 2515 total trajectories.

Based on the results presented in Fig. 4, we find that rQKD
is able to converge almost as quickly as first- and second-order
Trotterized QKD until a total evolution time of τ = 0.4 E−1

h
(five quantum Krylov basis states at �τ = 0.1 E−1

h ). No-
tably, rQKD using Ĉ(3)

XDF and optimal weights [rQK(3, opt)],
QK-TS1, QK-TS2, and exact dynamics all converge below
1 kcal mol−1 (1.29 mEh) with a total evolution time of only
τ = 0.5 E−1

h . This is significant because the maximum circuit
depth required by rQK(3, opt) is orders of magnitude smaller
than those required by QK-TS1 and QK-TS2. Moreover, sub-
(1 kcal mol−1) energy accuracy can be achieved with rQK at
a depth less than a single TS1 Trotter step. Other variants of
rQKD converge relatively slowly after τ = 0.5 E−1

h , but there
is still a significant improvement seen for both Ĉ(1)

XDF and Ĉ(3)
XDF

when using the optimal probability weights from Eq (33).
Perhaps the most significant feature of Fig. 4 can be seen in

comparing QK-TS and rQK in (a) vs (b). As noted above, both
techniques achieve sub-(1 kcal mol−1) energy accuracy with
respect to FCI, but the matrix element error for rQK is numer-
ically 1 to 2 orders of magnitude larger than the energy error
with respect to exact dynamics. This behavior indicates that,
while reproducing exact dynamics accelerates convergence in
QK methods, it is not essential to the prediction of highly
accurate eigenvalues. While this merits further analysis left for
future work, we believe that success in the inexact-dynamics
domain is afforded by the classical Krylov-like basis gener-
ated by the rQK Ansatz in the short-time limit.

For the hydrogen chains in Table I, similarly to the the
case of naphthalene shown in Fig. 4, we find that in general
rQKD does not converge as quickly as first-order Trotterized
QKD, particularly when the Ĉ(1)

XDF Ansatz is used. Interest-
ingly, we observe that for all flavors of QKD, the errors in the
ground-state energy have (approximately) quadratic scaling
with respect to the number of Krylov basis states (D) when
using a fixed number of Krylov basis states and Trotter slices.
Importantly, we also observe a dramatic reduction in both total
circuit depth and circuit depth scaling relative to Trotterized
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QKD. For example, with the same values of D and r, H14

can be treated using rQKD circuit with maximum depth equal
to 3.53 × 103, while Trotterized QKD requires a maximum
depth of 9.49 × 105.

IX. SUMMARY AND OUTLOOK

In this paper, we have proposed a class of stochastic quan-
tum Krylov diagonalization algorithms aimed at solving the
eigenstate estimation problem in quantum many-body physics
and quantum chemistry on near-term devices. By combining
stochastic compilation techniques, low-rank Hamiltonian fac-
torization, and the variationality inherent to quantum Krylov
methods, we obtained a highly robust algorithm with O(norb)
scaling per Trotter step, providing a quadratic improvement in
depth compared to deterministic approaches.

Within the framework of double factorization, we derive a
bound for the factor λ which in turn bounds the second-order
error expressions for stochastic compilation, and present an
Ansatz which for which target Hamiltonian terms can be omit-
ted from the error bounds. We also have shown numerically
that our Ansatz produces errors several orders of magnitude
smaller than the derived second-order upper bound.

We demonstrated the performance of our rQKD approach
with realistic state-vector simulations of various molecular
systems including linear hydrogen chains ranging from 6 to
14 atoms, as well as napthalene in an active spaces of (10e,
10o), showing that convergence below 1 kcal mol−1 errors
can be achieved with a very small number of time steps
and circuit depths achievable in the near-term hardware era
(orders of magnitude shallower than deterministic low-rank
Trotterization). We also found in numerical comparisons that
stochastic compilation enables simulation in the regime where
a single deterministic Trotter step is too expensive, and is even
favorable in general above certain error thresholds or in the
short-time regime. In this context, our preliminary estimates
suggest that rQKD algorithm could be immediately deployed
with current hardware for simulating systems on the order of
(14e,14o), making it a viable candidate for using quantum
simulation to treat systems of nontrivial sizes.

The improvements highlighted in this paper can be at-
tributed to the fact that deterministic high-order Trotter
methods, while achieving depth linear in time τ , also scale
linearly with the number of Hamiltonian terms (L). Ran-
domized compilation techniques, on the other hand, can (in
many circumstances) achieve similar accuracy with depths
that are independent of L, but quadratic in τ . Ultimately, the L
independence as well as the quadratic τ dependence makes
randomized compiling ideally suited for quantum Krylov
methods which inherently aim to solve the eigenpair problem
in the short-time limit.

In this article we generate numerical results with and with-
out incorporating the noise due to stochastic sampling (shot
noise). It is certain, however, that there would also be a sig-
nificant impact on the performance of the rQKD method due
to physical quantum device errors. While we leave thorough
investigation of such effects to future work already under
way, we speculate that in the near-term techniques such as
postselection, echo-sequencing [59], or other error mitigation
strategies [60–62] will be necessary to obtain accurate results

(molecular energy errors on the order of 1–5 mEh). These
observations are supported by the previous work by Cohn et.
al. [35], in which many of the circuits discussed in this work
(including the use of the ancilla qubit) were implemented on
physical devices.

Like many other variational quantum algorithms [63–65],
QKD approaches exploit an inherent tradeoff between circuit
depth and sampling complexity. This will likely lead to much
longer runtimes compared to deterministic approaches based
on quantum phase estimation, highlighting that there is no
free lunch when it comes to quantum algorithmic design.
Our results also indicate that if long time evolution or very
high accuracy are desired, it is likely more efficient to use
deterministic Trotterization or post-Trotter methods, similarly
to Campbell’s original findings. As such, we do not envi-
sion rQKD as a viable fault-tolerant algorithm or make an
extensive effort to estimate the resources for a fault-tolerant
variant of rQKD. We point the interested reader instead to
[18–21]. We view the present combination of rQK executed
with low-rank Hamiltonians as one point on a road map of
feasibly realizable QKD algorithms, likely at a position of
higher cost and accuracy that Pauli qDRIFT, but lower cost
and accuracy than full deterministic Trotterization with XDF
Hamiltonians.

Like virtually all QSD algorithms, rQKD by default pro-
duces eigenpair estimates for D states. However, using the
present implementation we only explore its application to
ground-state energy determination. Based on the Krylov con-
vergence analysis, application of rQKD to excited state will
likely be more challenging due to the tendency for the spectral
gap �k = Ek+1 − Ek to vanish with increasing k. Previous
work on treating excited states with quantum Krylov methods
[3,36] has also indicated a strong dependence on the choice
of initial state |φo〉, and time-step size �τ used when con-
structing the space. As such, we leave thorough investigation
of rQKD excited-state determination to future work.

We note also that the techniques used in rQKD for
sampling random variables may seem reminiscent of the clas-
sical shadows framework introduced by Huang et al. [66].
However, in this work, each matrix element constitutes the
measurement of a single observable with respect to many dif-
ferent states, rather than a collection of observables measured
from a single state. Although the classical shadows framework
may not be immediately applicable for rQK, both approaches
may benefit from a more rigorous combined study in the
future.

While this paper has highlighted rQKD as a viable route
towards solving the eigenpair problem on near-term quan-
tum hardware, future work will investigate possible ways
of improving the convergence of the rQKD algorithm using
warm starts, multideterminantal initialization, and potentially
derivations of higher-order representations. Further effort
should also be directed towards an implementation on real
hardware where connectivity and error mitigation techniques
will be of key importance.
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APPENDIX A: DOUBLE-FACTORIZED HAMILTONIAN

In spin-orbital notation, the conventional second quantized
Hamiltonian in electronic-structure theory is given by

Ĥ = Enuc +
∑
pq,σ

hpqa†
p,σ aq,σ + 1

2

∑
pqrs,σ τ

gpqrsa
†
pσ a†

rτ asτ aqσ ,

(A1)

where p, q, r, s denote spatial orbitals and σ, τ denote the
spins of the electrons. Here, Enuc denotes the nuclear-nuclear
repulsion energy, while the one-electron and two-electron ten-
sors are defined as

hpq ≡ (p|h|q) (A2)

=
∫

dr φ∗
p(r)

(
−1

2
∇2 −

∑
I

ZI

rI

)
φq(r), (A3)

gpqrs ≡ (pq|rs) (A4)

=
∫∫

dr1dr2 φ∗
p(r1)φq(r1)r−1

12 φ∗
r (r2)φs(r2). (A5)

The one-electron term contains contributions from one-
electron kinetic and nuclear-electron attractive potential while
the second term describes the electron-electron repulsion.
While this Hamiltonian exactly represents the electronic-
structure problem, it is often beneficial to work with the
spin-free version of the Hamiltonian because it provides a
simplification of the expressions. Using the spin-free notation,
the electronic structure Hamiltonian is rewritten as

Ĥ = Enuc +
∑

pq

hpqÊpq + 1

2

∑
pqrs

gpqrs(ÊpqÊrs − δqrÊps),

(A6)

where the spin-summed singlet one-particle substitution oper-
ator is Êpq ≡ â†

pâq + â†
p̄âq̄, where a bar over the spatial orbital

indices p, q indicates a β spin orbital, and the absence of a bar
indicates an α spin orbital. The summation runs over all of the
spatial orbitals of the particular problem. In the active space
picture, the spatial orbitals are separated into core, active,
and virtual orbital contributions. By tracing out the core and
virtual space orbitals, the active space Hamiltonian is obtained
where only the active space orbitals remain,

Ĥactive ≡ Eext +
∑

pq

κpqÊpq + 1

2

∑
pqrs

gpqrsÊpqÊrs (A7)

with normalized coefficients

Eext = Enuc + 2
core∑

i

hii +
core∑
i j

[2gii j j − gi ji j], (A8)

κpq = hpq +
core∑

i

[2gpqii − gpiqi] − 1

2

∑
r

gprrq. (A9)

From here, it is possible to use various fermion-to-qubit
mappings such as the Jordan-Wigner or Bravyi-Kitaev trans-
formations in order to obtain a Hamiltonian that is amenable
to qubit-based quantum computing. If we only apply such
mappings, then we will obtain a Hamiltonian where the total
number of terms will scale as N4 where N corresponds to
the total number of qubits. The low-rank, double-factorized
formulation provides a way of avoiding this scaling by per-
forming a two-step factorization procedure. The first step
groups the pq and rs indices of the two-electron integral tensor
resulting in the eigendecomposition

g(pq)(rs) =
∑

t

At
pqht A

t
rs. (A10)

We then perform a second factorization of each eigenvector,

At
pq =

∑
k

Ut
pkU

t
kqγ

t
k . (A11)

Substituting these expressions into the active space Hamilto-
nian, we obtain

Ĥ = Eext +
∑

pq

κpqÊpq

+ 1

2

∑
pqrs

∑
t

∑
kl

U t
pkU

t
kqUt

rlU
t
ls(γ

t
k htγ

t
l )ÊpqÊrs. (A12)

The summation over p, q, r, s orbitals can be interpreted as
a transformation of the spatial orbitals which effectively de-
fines new creation and annihilation operators ã†

kt = Ĝ†
t â†

kĜt =∑
p Ut

pkâ†
p, where

Ĝt = exp

⎛
⎝∑

pq

[log10 Ut ]pqâ†
pâq

⎞
⎠. (A13)

The resulting expression for the active space Hamiltonian is

Ĥactive = Eext +
∑

pq

κpqÊpq + 1

2

∑
t

∑
kl

Zt
kl Ĝ

†
t ÊkkÊll Ĝt ,

(A14)

where we defined Zt
kl = γ t

k htγ
t
l . Before factoring the one-

body term, we will perform a fermion-to-qubit mapping using
the Jordan-Wigner transformation. Using Êkk = I − 1

2 (Ẑk +
Ẑk̄ ), we find the following identity:

ÊkkÊll = −Î + Êkk + Êll + 1

4
(Ẑk + Ẑk̄ )(Ẑl + Ẑl̄ ), (A15)

where Ẑk denotes a Pauli Z operator which acts on qubit k.
This identity shows that it is possible to partition the Hamil-
tonian once more. The two-body operator is now written in
terms of an effective scalar and one-body portion,

1

2

∑
t

∑
kl

Zt
kl Ĝ

†
t ÊkkÊll Ĝt

= −1

2

∑
t

∑
kl

Zt
kl +

∑
t

∑
k

[∑
l

Zt
kl

]
Ĝ†

t ÊkkĜt

+ 1

8

∑
t

∑
kl

Zt
kl Ĝ

†
t

(
Ẑk + Ẑk̄

)(
Ẑl + Ẑl̄

)
Ĝt . (A16)
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Folding the effective terms into the scalar and one-body com-
ponents through back transformations, we obtain

Ĥactive = Eext − 1

2

∑
pq

gppqq +
∑

k

f ∅k Ĝ†
∅

ÊkkĜ∅

+ 1

8

∑
t

∑
kl

Zt
kl Ĝ

†
t (Ẑk + Ẑk̄ )(Ẑl + Ẑl̄ )Ĝt , (A17)

where we performed an eigendecomposition of the one-body
tensor fpq = κpq + ∑

r gpqrr , such that fpq = ∑
k f ∅k U∅

pkU∅

kq .
After one final rearrangement of the scalar term, and rewriting
the Hamiltonian with respect to Pauli Ẑ operators only, we
obtain the final form of the double-factorized Hamiltonian,

Ĥactive = E0 − 1

2

∑
k

f ∅k Ĝ†
∅

(Ẑk + Ẑk̄ )Ĝ∅

+ 1

8

∑
t

∑
k 
=l

Zt
kl Ĝ

†
t (Ẑk + Ẑk̄ )(Ẑl + Ẑl̄ )Ĝt , (A18)

where the final scalar is defined as E0 ≡ Eext + ∑
k f ∅k −

1
2

∑
pq gppqq + 1

4

∑
tk Zt

kk . In all of the following discussions
on implementation, the Hamiltonian defined in Eq. (A18) is
what will be referenced.

APPENDIX B: ERROR EXPRESSIONS FOR RANDOMIZED
TIME EVOLUTION

In the following, we derive the time evolution error bounds
for the randomized time evolution circuits. We first consider
the first-order randomized expression Ĉ(τ ) = ∑

s pse−iτ Ĥs/ps .
The corresponding time evolution error is given by

ε = ‖e−iτ Ĥ − [Ĉ(τ/R)]R‖. (B1)

Expanding Û (τ ) = e−iτ Ĥ and Ĉ(τ ) to second order we obtain

Û (τ ) ≈ 1 − iτ Ĥ − τ 2

2
Ĥ2 (B2)

and

Ĉ(τ ) ≈ 1 − iτ Ĥ − τ 2

2

∑
s

Ĥ2
s /ps, (B3)

respectively. Using that

[Ĉ(τ )]R ≈ 1 − iRτ Ĥ − R
τ 2

2

∑
s

Ĥ2
s /ps − R(R − 1)

2
τ 2Ĥ2,

(B4)

the second-order time evolution error (which will dominate in
the small τ/R limit) can be written as

ε2 = τ 2

2R

∥∥∥∥∥
∑

s

(
p−1

s − 1
)
Ĥ2

s −
∑
s 
=s′

ĤsĤs′

∥∥∥∥∥, (B5)

the expression reported in the main text. We can bound this
expression in terms of the norms λ and λs as

ε2 � τ 2

2R

(∑
s

‖Ĥs‖2

ps
+

∑
s,s′

‖Ĥs‖‖Ĥs′ ‖
)

. (B6)

Using qDRIFT probabilities, ps = ‖Hs‖/λ, we obtain

ε2 � τ 2

2R

(
λ

∑
s

λs +
∑
s,s′

λsλs′

)
= τ 2λ2

R
. (B7)

Error bounds for the triple-depth ansatz

In the more specific case that the interleaved Ĉ(3)
XDF Ansatz

is used, Taylor expanding each term of the LCU gives

Ĉ(3)
XDF(τ ) =

∑
t

pt e
−iĤoτ/2e−iĤt τ/pt e−iĤoτ/2

≈
∑

t

pt

(
1 − iτ

2
Ĥo − τ 2

8
Ĥ2

o

)

×
(

1 − iτ

pt
Ĥt − τ 2

2p2
t

Ĥ2
t

)

×
(

1 − iτ

2
Ĥo − τ 2

8
Ĥ2

o

)
. (B8)

Collecting the zero and one-body terms above gives

∑
t

pt [1 − iτ (Ĥo + Ĥt )] = 1 − iτ

(
Ĥo +

∑
t

Ĥt

)
, (B9)

which is equivalent to the exact time evolution up to first
order. Similarly, collecting the second-order terms gives the
corresponding expression for the error operator

Ê (3)
XDF =

[(
Ĥo +

∑
t

Ĥt

)2

−
∑

t

pt

(
Ĥ2

o + Ĥ2
t

p2
t

+ Ĥt Ĥo

pt
+ ĤoĤt

pt

)]

=
∑

t

(p−1
t − 1)Ĥ2

t −
∑
t,t ′ 
=t

Ĥt Ĥt ′ , (B10)

the expression reported in the main text.

APPENDIX C: OPTIMAL WEIGHTING COEFFICIENTS

Based on the linear combination of unitaries Ansatz from
the main text [Eq. (12)], the optimal weights can be derived
by defining the Lagrangian

L =
∑

s

cs
(
1 − p−1

s

) − λ

(∑
n

ps − 1

)
, (C1)

where cs = 〈φ0|Ĥ2
s |φ0〉. To ensure that the coefficients ps re-

main positive, we use the constraint ps = g2
s , resulting in

L =
∑

s

cs
(
1 − g−2

s

) − λ

(∑
s

g2
s − 1

)
. (C2)

Taking the partial derivative with respect to gs and the La-
grange multiplier λ, we obtain

∂L
∂gs

= 2
cs

g3
s

− 2λgs, (C3)
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(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

FIG. 5. Active space orbitals used for naphthalene in this study at a restricted Hartree-Fock cc-PVTZ level of theory. The 10 active orbitals
shown here correspond to the π/π∗ space and were selected using the automated valence active space procedure implemented in PYSCF to
identify 2pz orbitals.

∂L
∂λ

= −
(∑

s

g2
s − 1

)
. (C4)

At the stationary point, we obtain the relation cs = λg4
s . Simi-

larly, we have the condition
∑

s g2
s = 1, which leads to optimal

Lagrange multiplier λ = (
∑

s
√

cs)2. The optimal weighting
coefficients are then given by g2

s = √
cs/

∑
s
√

cs.

APPENDIX D: ACTIVE SPACE ORBITALS
FOR NAPHTHALENE

In this study we employ active space orbitals for the molec-
ular naphthalene system. The space consists of ten electrons in
ten bonding/anti-bonding pi orbitals, yielding a total of 63,504
Slater determinants. See Fig. 5 for a graphical depiction of the
active space orbitals used for naphthalene.

APPENDIX E: QUANTUM CIRCUIT CONSTRUCTION

In the following, we provide an explicit quantum circuit
reconstruction of the time evolution operator required for the
double-factorized active space Hamiltonian (A18). First we
consider the decomposition for a single deterministic Trotter
step where the time evolution operator is approximated by the
first-order product formula

Û (τ ) = e−iĤactiveτ = e−iE0τ Ĝ†
oV̂1Ĝo

∏
t

Ĝ†
t V̂ t

2 Ĝt + O(τ 2),

(E1)

where the one- and two-body diagonal time evolution opera-
tors are given by

V̂1 = eiτ/2
∑

k f ∅k (Ẑk+Ẑk̄ ), (E2)

V̂ t
2 = e−iτ/8

∑
kl Zt

kl (Ẑk+Ẑk̄ )(Ẑl +Ẑl̄ ). (E3)

It is clear from this expression that the only tools needed
to provide an explicit quantum circuit implementation of the
time evolution operator are Givens gates required to simulate
the orbital rotation operators Ĝt , as well as a circuit implemen-
tation of the one- and two-body diagonal operators V̂1 and V̂ t

2 .
We will first outline the decomposition of the orbital rotation
operators Ĝ followed by the decomposition of the one- and
two-body time evolution operators.

1. Givens rotations

Orbital rotations can be efficiently implemented on a quan-
tum computer with linear circuit depth and nearest-neighbor
hardware connectivity [11]. This is achieved by decomposing
the total orbital rotation operator as a product of two-body
Givens rotations Gφ , Ĝt = ∏

n Ĝφt
n
, where the action of the

two-body Givens rotations is to perform an effective QR
decomposition of the orbital rotation matrix [67]. A single
two-orbital Givens fabric is represented in matrix form as

Gφ =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 cos φ − sin φ 0

0 sin φ cos φ 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ (E4)
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with a circuit implementation given by

.

2. One-body evolution

The one-body evolution is trivially executed with constant
O(1) depth circuits using single-qubit Pauli Z rotation gates
Rz(θ ) = exp(iθσ̂z/2). The alpha and beta qubits labeled by k
and k̄, respectively, will have the same rotation angle given by
θ = −τ f ∅k for a single time step τ .

3. Two-body evolution

The two-body Z−Z rotation has the following circuit im-
plementation:

Assuming that the hardware has all-to-all connectivity, it is
possible to show that exact evolution of the two-body diag-

onal operator requires
(N

2

)
of these gate fabrics with a total

gate depth of N − 1. In practice, however, the hardware con-
nectivity is more limited. Assuming linear connectivity, it is
preferable to use swap networks which use the following gate
fabric:

which can be written in matrix form as

Fθ =

⎛
⎜⎜⎜⎜⎝

eiθ/2 0 0 0

0 0 e−iθ/2 0

0 e−iθ/2 0 0

0 0 0 eiθ/2

⎞
⎟⎟⎟⎟⎠. (E5)

A SWAP network can then be used to efficiently generate all-
to-all interaction. This is achieved by applying this fabric to
neighboring qubit pairs in an alternating even and odd pattern.
For four qubits this is demonstrated by

It is important to note that the qubit order will be reversed after a single application of the SWAP network. Using this approach,
it is possible to simulate diagonal two-body evolution with all-to-all interaction using

(N
2

)
gates and a depth of exactly N with

respect to these gate fabrics. Combining these ideas, we provide the quantum circuit implementation of a single rank-1 Trotter
step (including one- and two-body terms) for a four-spin-orbital system as

where we used alpha-then-beta ordering where the first two
qubits correspond to the α orbitals while the last two qubits
correspond to the β orbitals.

4. Gate complexity estimate

The total controlled NOT (CNOT) count for a single
Givens fabric acting on N qubits will be 2

(N
2

) = N (N − 1).
On the other hand, the gate count for the all-to-all ZZ

interaction will be 3
(N

2

) = 3N (N − 1)/2. Using alpha-then-
beta ordering for the qubits results in gate fabrics with a
total number of 2N (N/2 − 1) + 3N (N − 1)/2 = N/2(5N −
7) CNOTs for the evolution of a single-rank two-body opera-
tor. The corresponding CNOT gate depth will be 5N . The total
CNOT gate depth required for the quantum Krylov method
will be 5NR(D − 1) where R denotes the number of Trot-
ter iterations and D denotes the dimension of the Krylov
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subspace. It is important to note that this gate complexity es-
timate corresponds to the uncontrolled time evolution unitary.
The controlled unitary operator required for the Hadamard
test will require controlled versions of the one- and two-body
evolution operators as discussed in [35] resulting in a constant
multiplicative factor increase in the depth.

APPENDIX F: CANONICAL ORTHOGONALIZATION

Although it routinely employed in quantum chemistry, we
feel it is helpful here to give a brief overview of how we use
canonical orthogonalization to ameliorate linear dependencies
and shot noise in the QK generalized eigenvalue problem.
We first perform an eigendecomposition of the QK overlap
matrix as S = U†SU, such that smm is the ith eigenvalue
of S. In our procedure, we use only the truncated set of
eigenvalues {s̃mm} greater than some user specified thresh-
old σCO to form an orthogonalizer X̃ with matrix elements
given by X̃mn = Umn/

√
s̃mm. We then transform the QK Hamil-

tonian (H) using the orthogonalizer to form H̃ = X̃†HX̃.
Finally, we diagonalize H̃ to get estimates for the QK ener-
gies Ek and (after back-transforming with X) the eigenvector
coefficients c(k)

m .
The procedure inevitably results in removing some infor-

mation contained in the original quantum Krylov basis with
the tradeoff of stabilizing the generalized eigenvalue solve.
Numerically, we find that it is imperative to use both when the
overlap matrix becomes singular, or when there is shot noise
present in the system. We note that for calculations which
include a finite shot budget M we always set σCO an order of
magnitude above the measurement precision εm ≈ 1/M−1/2 to
ensure stable results.

APPENDIX G: DETERMINATION OF MATRIX ELEMENTS
FROM INDIVIDUAL SHOTS

Here we will give an overview of how we classically im-
plement the matrix element sampling with individual shots
(used to generate the data in Fig. 3). Consider two that we
wish to determine both the real and imaginary components of
two quantities: (i) 〈φL|φR〉 and (ii) 〈φL|Ĥt |φR〉, where Ĥt =
Ĝ†

t D̂t Ĝt (as in the main text) is a single term of the XDF
Hamiltonian. We consider a single shot to mean an nqb =
2norb + 1 qubit register readout corresponding to a bit string
which defines both a determinant |I〉 and a single ancilla
|qI〉. For a set of M shots, we (simultaneously) calculate the
real quantities

Re[s] = 1

M

M∑
I

〈qI |Ẑ|qI〉 (G1)

and

Re[vt ] = 1

n0
Re

n0
Re∑
I

〈I |D̂t |I〉 + 1

n1
Re

n1
Re∑
J

〈J |D̂t |J〉, (G2)

as well as their imaginary counterparts for which |I〉 and |qI〉
are drawn from slightly different distributions as described
below. The quantities n0

Re, n1
Re [as well as nA

Im, nB
Im] are the

number of times the ancilla was measured to be in the |0〉
vs |1〉 state, we likewise outline how these quantities are
determined below.

To emulate the results from a Hadamard test, we first
construct four states given by different linear combinations of
|φL〉 and |φR〉: ∣∣φA

x

〉 = |φL〉 + |φR〉, (G3)∣∣φB
x

〉 = |φL〉 − |φR〉, (G4)∣∣φA
y

〉 = |φL〉 − i|φR〉, (G5)

and ∣∣φB
y

〉 = |φL〉 + i|φR〉, (G6)

with respective square moduli NA
x , NB

x , NA
y , and NB

y . We then
define the states

|φX 〉 = ∣∣φA
x

〉 + ∣∣φB
x

〉
(G7)

and

|φY 〉 = ∣∣φA
y

〉 + ∣∣φB
y

〉
, (G8)

similarly with square moduli NX and NY . The readouts for |qI〉
are then sampled from a distribution where the probability
of measuring qI = 0 for the ancilla qubit is simply pRe(0) =
NA

x /NX for the real contributions and pIm(0) = NA
y /NY for

the imaginary contributions. Similarly, the probabilities of
measuring qI = 1 are given by pRe(1) = NB

x /NX for the real
contributions and pIm(1) = NB

y /NY . With each sample, we
accumulate the actual number of times 1 or 0 was measured
for the real and imaginary cases as n0

Re, n1
Re, n0

Im, and n1
Im.

We then follow a similar procedure when sampling the
main-register readout to determine the I bit strings. To
do so, we form the (normalized) states |φ̃t

X 〉 = N−1/2
X Ĝt |φX 〉

and |φ̃t
Y 〉 = N−1/2

Y Ĝt |φY 〉, such that the corresponding wave-
function amplitudes [|CX

I |2 and |CY
I |2] form distributions in

which the probability of sampling a determinant (bit string)
|I〉 is equal to the corresponding amplitude. It is worth
noting that (after sorting the vector of probability amplitudes)
determinants can be sampled extremely efficiently on a GPU
using random number generation and parallel binary searches.
As such, drawing up to approximately M = 1010 samples in
routine calculations is manageable for the molecular systems
we study in this paper.

We also note that in the main text we make the assumption
that matrix elements for normalized quantum Krylov basis
states of the form |�R〉 = [Ĉ]R|φ0〉 (where Ĉ = ∑

s psV̂s) can
be sampled following the procedure outlined above. This can
only be done where because a weighted mixture of Bernoulli
distributions is itself a Bernoulli distribution with the same
mean [68].
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