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Optical switches and rerouting networks are considered essential in optical quantum computers where they
are used for injection and dejection of the necessary quantum states into an optical quantum computer. Practical
optical switches and rerouting networks are, however, experimentally challenging as they must have extremely
low loss, small switching time, high repetition rate, and minimum optical nonlinearity, requirements that are
difficult to achieve simultaneously. In this paper, we present an optical quantum computation platform that does
not require such optical switches. Our method is based on continuous-variable measurement-based quantum
computation where, instead of the typical cluster states, we modify the structure of the quantum entanglement, so
that the quantum teleportation protocol can be employed instead of optical switching and rerouting. The quantum
entanglement structure in our architecture has additional modes that allow quantum states to be teleported in or
out of the computation along the cluster state, a task that normally requires optical switches. We also outline how
to combine our platform with Gottesman-Kitaev-Preskill encoding, the currently most promising encoding for a
continuous-variable system.
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I. INTRODUCTION

Optical systems are promising candidates for quantum
computation as they can be implemented at room temperature
and atmospheric pressure, and have high compatibility with
optical communications. Optical quantum computation can be
largely categorized into two types: discrete variable (DV) and
continuous variable (CV). Various researches have been done
for both types and many different architectures have been the-
oretically developed and experimentally demonstrated [1,2].
One of the approaches that has shown a great potential to-
ward large-scale quantum computation is the time-domain
CV measurement-based quantum computation [3]. In this
platform, a large-scale universal computational resource—
the cluster state [4,5]—has been generated [6–9] and basic
operations on these scalable platforms have also been real-
ized [10,11]. In addition to the time-domain encoding, CV
frequency-domain encoding [12,13] and spatial-mode encod-
ing [14,15] also hold promising potential toward large-scale
quantum computation.

Regardless of the details of each optical platform, the
optical switch is considered a key component in both DV
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[16,17] and CV [18–21] architecture. The main functional-
ity of optical switches is changing the path of the optical
beams. They are used in many tasks in the optical quantum
computation such as injection and dejection of the quantum
states into and out of the computation platform, and multi-
plexing of the quantum light sources. Although there are some
proof-of-principle experiments regarding the optical switches
for quantum computation [18–21], realizing practical optical
switches for quantum computation remains challenging. This
is because optical switches for optical quantum computation
must have low optical losses, high switching speed, high
repetition rate, and compactness—requirements that tend to
be incompatible. High switching speed and repetition rate is
required to harness the speed of the optical quantum computa-
tion [1], while the compactness is important when considering
integration of the system. The current candidates for the opti-
cal switches such as a Pockels cell [22] and a highly nonlinear
medium [23] satisfy only partial requirements. Therefore, we
need to find a solution to the optical switch to realize full-
fledged quantum computation.

In this paper, we present a theoretical solution to this
problem: an optical quantum computation architecture that
does not require optical switches. Our architecture is based
on the CV measurement-based optical quantum computation
in the time domain using cluster states. But instead of the
usual cluster state, we add additional light modes that are
entangled to the cluster states. These modes can be consid-
ered roughly equivalent to the input or output of the optical
switches. The process of the switching, which usually utilizes
an optical nonlinear medium, is done by changing the basis of
the measurements of these additional modes, allowing us to
control where to teleport (or not to teleport at all) the input
to. Switching of the basis of the measurement in the CV
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measurement-based optical quantum computation has been
recently demonstrated [10,11], meaning that our architec-
ture only requires modification of the quantum entanglement
structure, without introducing any new element to replace
the optical switches. We analyze the performance of our
architecture when it is combined with the Gottesman-Kitaev-
Preskill (GKP) qubit [24–27]—the currently most promising
logical qubit—using the Knill-type correction [28]. Remov-
ing the necessity of the optical switching from the optical
quantum computation platform makes our architecture unique
compared to the other time-domain-based CV architecture
[8,9,20,21].

This paper is structured as follows. Section II explains
preliminaries and notations used in this paper. The proposed
setup and its analysis are shown in Sec. III. Section IV dis-
cusses the experimental feasibility and Sec. V concludes the
paper.

II. PRELIMINARIES

First we explain the basic notations and review the con-
cepts of CV measurement-based quantum computation.

A. Notations

In the CV quantum computation, the physical quantities
of our interest are quadratures. Quadratures are denoted by
operators x̂ and p̂ which satisfy [x̂, p̂] = i (which corresponds
to h̄ = 1). The quadrature operators are related to annihilation
operator â and creation operator â† via

x̂ = 1√
2

(â + â†), (1)

p̂ = − i√
2

(â − â†). (2)

Next, we define some of the basic operations in this paper.
First, a squeezing operator Ŝ(r) with a squeezing parameter r
transforms the quadrature operators in the Heisenberg picture
as

Ŝ†(r)

(
x̂
p̂

)
Ŝ(r) =

(
er 0
0 e−r

)(
x̂
p̂

)
. (3)

Another important operation is a phase rotation R̂(θ ) which
transforms quadrature operators as

R̂†(θ )

(
x̂
p̂

)
R̂(θ ) =

(
cos θ sin θ

− sin θ cos θ

)(
x̂
p̂

)
. (4)

Regarding two-mode operation, we first consider beam
splitter interaction B̂12(

√
R) which we define as

B̂†
12(
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⎛
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(5)

Another two-mode operation which will be used in this paper
is a CV version of the controlled-Z gate, denoted by ĈZ . We
will consider a control-Z gate with gain of 1, which transforms
the quadrature operators as

Ĉ†
Z

⎛
⎜⎜⎝

x̂1

x̂2

p̂1

p̂2

⎞
⎟⎟⎠ĈZ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 −1 1 0

−1 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x̂1

x̂2

p̂1

p̂2

⎞
⎟⎟⎠. (6)

B. Quantum entanglement and quantum computation

It is known that quantum entanglements with appropriate
structures, i.e., the cluster states, allow universal quantum
computation when combined with local (single mode or single
qubit) measurements and feedforward operations that depend
on the measurement results [4,5]. Quantum computation using
cluster states can be equivalently considered as sequential
quantum teleportation where the measurement bases are cho-
sen depending on the desired operations [6].

Quantum entanglement (and pure Gaussian states in gen-
eral) in a CV system is defined by a set of operators called
nullifiers. For a N-mode pure Gaussian state |G〉, an operator
δ̂ is a nullifier of |G〉 if and only if

δ̂|G〉 = 0 (7)

and the state |G〉 can be uniquely defined by N independent
nullifiers.

In the generation of many ideal CV quantum entan-
glements, including the cluster states, infinite squeezing is
required. In actual physical situations, however, we can only
achieve finite squeezing. The imperfections due to the finite
squeezing appear as the nonzero variances of the nullifiers.
When CV quantum entanglements are used, especially in
measurement-based quantum computation, the nonzero vari-
ances of the nullifiers determine the imperfections of the
computation and appear as Gaussian noises in the output
mode. Note that in the absence of phase fluctuations this
noise is determined by only the squeezing component of the
squeezed states used in the generation of the entanglement and
not the antisqueezing components as the contributions from
the antisqueezing components are erased by the feedforward
operations [29]. These characteristics make the variances of
the nullifiers useful as a primary figure of merit in the CV
measurement-based quantum computation.

C. Time-domain multiplexing method and optical switches

In the quantum computation based on the cluster state, the
size of the cluster state determines the possible size of the
computation. Thus, it is important that a large-scale cluster
state can be generated. In the conventional optical setting, CV
cluster states are generated by interfering multiple squeezed
lights where each squeezed light source corresponds to a mode
of the cluster state. This method, however, lacks scalability as
the number of the required components scales with the size of
the cluster state.

To achieve scalability, generation of the CV cluster
states via multiplexing has been widely researched. Here
we will introduce the methodology called time-domain
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FIG. 1. Schematic diagram of the time-domain-multiplexed
quad-rail lattice cluster state setup. (a) The setup which consists
of four squeezed light sources, five beam splitters, four homodyne
detectors, and optical switches. Note that there are only two op-
tical switches in the figure, but in an actual situation where we
have to multiplex the non-Gaussian state sources we would require
many more optical switches, depending on the level of multiplexing.
(b) Macronode representation of the quad-rail lattice cluster state
where the two-mode entanglement shown is the two-mode squeezed
state (the Einstein-Podolsky-Rosen state in the infinite squeezing
limit). Each node corresponds to a temporal wave packet of a width
�t . A switch for implementation of error correction is also required
but it is omitted from the figure [30].

multiplexing, which will also be the basis of our architecture.
Figure 1 shows an experimental setup of the time-domain
measurement-based quantum computation using a type of
two-dimensional cluster state called the quad-rail lattice
(QRL) [3]. In the time-domain multiplexing method, instead
of considering a single beam as a single mode, we consider
multiple time-bin wave packets of temporal width �t that are
multiplexed on the same beam. By using the optical delay
lines with appropriate lengths, these wave packets can be en-
tangled into a large scale cluster state. In addition to the QRL,
there are cluster states with different structures that have been
shown to be universal resources for quantum computation
[8,9,19].

The quantum computation using the QRL (and other CV
cluster states) can be considered equivalent to the quantum
teleportation protocol where the two-mode squeezed states
are measured using a network of linear optics and homodyne
measurements [31]. As the cluster state and homodyne mea-
surement can realize only Gaussian operations, we also need
the non-Gaussian elements [32]. The non-Gaussian elements
can be added to the cluster states either as input states or
by replacing some of the squeezed states with non-Gaussian

states [21], or by replacing the homodyne detector with a
non-Gaussian measurement gadget [19]. Regardless of the ap-
proach we choose, optical switches are needed to implement
these tasks. In Fig. 1, we show optical switches for injection
of the input states in the setup of the QRL. If we consider
quantum error correction (QEC) using a GKP qubit, we also
need additional switches for switching between computation
using a cluster state and a QEC gadget [19]. In the case
that the Knill-type error correction (which we will explain
more in Sec. III D) is used, we need optical switches for
switching between the initial squeezed lights and the ancillary
qunaught states [21] (see also Appendix 2). In a more prac-
tical consideration, as the non-Gaussian states are generated
probabilistically in the optical system, a switching tree of a
circuit depth of log2 M depth is required for multiplexing M
sources with an additional switch for injecting the state into
the architecture.

The optical switch plays an important role not only in the
time-domain multiplexing method, but in almost every optical
quantum computation architecture. For the optical switches to
be useful in optical quantum computation they must satisfy
various requirements. First, optical switches must have low
optical losses so that they can handle quantum states as we see
in Fig. 1. Second, in Fig. 1, the clock frequency of the optical
quantum computer is determined by the size of the wave
packet (denoted as �t); the smaller the wave-packet size is,
the more information we can pack. Thus, the optical switches
must have high switching speed and high repetition rate so that
we can pack the wave packets close to each other, making �t
small. Third, the optical switch should not affect the quantum
states passing through the switch. Although this requirement
seems to be easily achieved, this is not necessarily the case
as most of the optical switches utilize nonlinear an optical
medium for fast switching.

III. MAIN RESULTS

A. Proposed setup

To circumvent the needs of the optical switching, we pro-
pose a setup shown in Fig. 2. In this setup, we replace the
two-mode squeezed states in Fig. 1 with a CV quantum en-
tanglement that has a tree graph structure branching out at
both ends (Fig. 3)—which we will call a two-sided tree graph.
The nullifiers of the two-sided tree graph are given by

δ̂1 = p̂1 − x̂2 −
∑
k∈K

x̂k, (8)

δ̂2 = p̂2 − x̂1 −
∑
l∈L

x̂l , (9)

δ̂k = p̂k − x̂1, (10)

δ̂l = p̂l − x̂2, (11)

where K (L) is a set of nodes that is connected to mode 1 (2)
and does not include mode 2 (1). Note that it is possible to
transform this state into a state whose nullifiers are composed
of only quadrature operator x̂ or p̂. Such a type of state is
the called H-graph which can be generated via appropriate
generalized parametric down conversion.
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FIG. 2. Proposed switching-free optical quantum computer
setup. (a) Experimental setup. (b) Macronode representation of the
quantum entanglement generated from the setup in (a). For simplic-
ity, we show the case with four modes.

The modes in set K and L (which we will be referring to
as the branches of the two-sided tree graph states) are then
coupled to the ancillary quantum states we wish to inject to
the cluster states, while mode 1 and mode 2 act as modes for
quantum computation. Figure 3(b) shows an example of a
possible generation setup of the two-sided tree graph in the
four-mode case. This is the case with the smallest number of
modes and the resource state becomes a four-mode linear clus-
ter state which has already been experimentally demonstrated
[33]. For a case with more modes, it has been theoretically
shown that arbitrary Gaussian states can be generated with
offline squeezing and linear optics [34], meaning that we
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FIG. 3. Two-sided tree graph state. (a) General graphical struc-
ture. The mode connected to mode 1 (mode 2) is denoted by the
index k (l) and is an element of a set K (L). (b) A generation setup of
a four-mode two-sided tree graph state using offline squeezing and
linear optics.

can definitely find a physical circuit that realizes this initial
resource state.

The ideal two-sided tree graph states require infinite
squeezing to generate. In the actual situation, we generate
states that approach the ideal two-sided tree graph states in the
infinite squeezing limit. There are, however, various possible
setups that asymptotically approach the same states, meaning
that the details of the noises in the actual system will depend
on the generation method. Here we will consider the situation
that aligns with actual experiments: the case where the two-
sided tree graph states are generated using linear optics and
offline squeezed states with the same squeezing parameter r
using the method in Ref. [34].

In this generation method, the nullifiers will only possess
the squeezing components, ensuring that they tend to zero in
the infinite squeezing limit. Regardless of the details of the
linear optics used in the generation circuit, the variances of
the nullifiers will become

Var(δ̂1) = (K + 2)σ 2, (12)

Var(δ̂2) = (L + 2)σ 2, (13)

Var(δ̂k ) = Var(δ̂l ) = 2σ 2, (14)

where K (L) is the number of the modes in the branches,
i.e., the number of the elements in set K (L), and σ 2 is the
variance of the offline squeezed states used in the generation,
given by σ 2 = e−2r/2. Another way to think about the above
equations is that with the generation method in Ref. [34], if we
input vacuum states into the beam splitter network, we will
simply get the vacuum state out; as such the variance of the
nullifiers in the above equation should simply become the sum
of vacuum variance. The variances of the nullifiers determine
the imperfectness of the computation when the resource states
are used.

B. Input state injection and rerouting

Here we first discuss how the two-sided tree graph state can
be used for state injection and rerouting. Figure 4 shows the
schematic diagram of how to inject the quantum state using
quantum teleportation and the branches of the two-sided tree
graph state. For the optical quantum computation, as most
of the proposed generation schemes for the non-Gaussian
states that are required for universal quantum computation are
probabilistic, multiplexing of the state generators is required
to make the whole system semideterministic. Moreover, there
are various instances in which we might want to inject differ-
ent types of quantum states that are generated from different
sources into the cluster state. In the conventional methods,
these tasks are done by optical switches and a rerouting net-
work. Below, we will show how our architecture replaces
them with quantum teleportation.

As it is shown in Fig. 4, if we implement joint measure-
ment between the mode on the branch and the mode of the
state we want to inject using different measurement bases,
the quantum state will be teleported into the mode that is
used in the computation (with a possibility of an additional
Gaussian unitary as the teleportation circuit can be used to
implement a Gaussian unitary [35]). On the other hand, what
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FIG. 4. Quantum teleportation and state injection. (a) Selective
quantum teleportation. Here we dynamically change the measure-
ment bases and the feedforward operation so that only the desired
mode (red mode) is teleported, while the modes we want to block
(purple modes) are not teleported to the output. We assume that
the measurement bases for blocking the blue modes are x bases,
although they can be any same bases in general. A measurement of
0◦ corresponds to the x basis, while 90◦ corresponds to the p basis.
(b) Application of quantum teleportation to state injection. Here, the
generation of the desired quantum state triggers the switching of the
measurement basis. This trigger could be, for example, successful in
photon detection in the heralding method.

is important is what happens when the measurement bases
of the joint measurement are the same. From Fig. 4(a), we
suppose that both modes are measured with the x basis for the
modes we wanted to block (the purple modes). Then, we can
write down the relationship between quadrature operators and
the measurement results as

mA′ = 1√
2

(x̂A + x̂B), (15)

mB′ = 1√
2

(x̂B − x̂A). (16)

Inverting these equations, we have

x̂A = 1√
2

(mA′ − mB′ ), (17)

x̂B = 1√
2

(mA′ + mB′ ). (18)

This shows that measuring two modes with the same bases
after a beam splitter is equivalent to measuring each mode
separately. Therefore, by selecting the same measurement
bases after the beam splitter, we are effectively measuring
each mode separately, preventing the quantum state from
being teleported into the cluster state. From the nullifiers in
Eqs. (8)–(11), we can also see that measuring the quadra-
ture x corresponds to erasing the measured node from the

two-sided tree graph state without affecting other nodes. As
such, by changing the measurement bases and the feedforward
operation dynamically, we can select which temporal modes
on the input should be teleported, while blocking the other
modes. Figure 4(b) shows how to use this in our architecture.
When the state is generated, the measurement base of the
corresponding homodyne detector is changed from x to p
and the state is teleported into the cluster state. When the
desired state is not generated, the measurement bases remain x
bases and disjoint the undesirable mode from the computation
without affecting the other modes. As our resource states
will have finite squeezing in the actual setting, there will be
imperfection related to the state injections. This imperfection
increases as the number of the modes of the two-sided tree
graph state increases and we give the detailed analysis results
in Sec. IV.

Switching of the measurement basis, which is a technique
required for this method, can be done by changing the phase
of the local oscillator of the homodyne detector. Experimen-
tally, this dynamical phase changing of the local oscillator
for measurement of the cluster state has been experimentally
demonstrated [10,11]. We can also perform state dejection
into the modes on the branches in a similar manner to the state
injection.

C. Universality

Figure 5 shows how to implement universal quantum
computation on our architecture. To realize universal CV
operations, we need to be able to implement an arbitrary
multimode Gaussian operation and any single non-Gaussian
operation [32]. Since the two-sided tree graph state can be
reduced to a two-mode cluster state [Fig. 5(a)], the imple-
mentation of the Gaussian operations follows the protocol of
the QRL cluster state [31] and can be done with homodyne
measurements and feedforward operations.

On the other hand, there are several ways non-Gaussian
operations can be implemented. Here we first consider a cubic
phase gate whose unitary operator is given by ÛCPG(γ ) =
exp(iγ x̂3), where γ is the strength of the operation. The
most basic way would be implementation by replacing one of
the homodyne detectors with cubic phase measurement [19].
This, however, requires optical switching to switch between
the homodyne measurement and cubic phase measurement.
Figures 5(b)–5(d) show how to implement the cubic phase
gate without utilizing the optical switch. This method is an
application of the gate teleportation protocol [37]. In this
approach, we use the mode of the two-sided tree graph to
teleport the cubic phase state into the cluster state [Fig. 5(b)].
The resulting entangled state is equivalent to the usual two-
mode entanglement for quantum teleportation with the cubic
phase gate acting on one of the modes [Fig. 5(c)]. Then, the
cubic phase gate is implemented by teleporting the input state
through the resulting two-mode entangle state [Fig. 5(d)]. We
note here that the required feedforward operation will change
from a displacement operation to a Gaussian operation, which
can be done using the cluster state.

When we consider fault-tolerant quantum computation, it
is important to consider how to implement a universal logi-
cal gate set on the GKP qubits, which is currently the most
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Bell measurement
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Feed forward

Bell measurement(d)

(c) Cz gate

FIG. 5. Quantum computation using the proposed setup. (a) x
measurement on the branches of the two-sided tree graph reduces the
state to the QRL cluster state, allowing implementation of arbitrary
multimode Gaussian operations. (b) Generation of entanglement
for implementing the cubic phase gate (CPG) by teleporting the
CPG ancillary state |ψCPG〉 = exp(iγ x̂3)|p = 0〉 into the cluster state.
(c) Equivalence between the resulting non-Gaussian entanglement
and the two-mode entanglement for quantum teleportation with CPG
implemented on one of the modes. (d) CPG via quantum tele-
portation with the non-Gaussian entanglement. We note that the
feedforward operation here is in general a Gaussian operation.

promising encoding of the CV system. In GKP qubit encod-
ing, Clifford operations can be implemented using Gaussian
operations, while the implementation of the non-Clifford op-
eration requires non-Gaussian operations [24]. For Clifford
operations, we can use the strategy for implementing Gaus-
sian operations as outlined in this section. It has also been
shown in the original GKP qubit proposal that the cubic
phase gate can be used to implement non-Clifford operation.
It has been pointed out, however, that this method might
not be the most optimum method to implement non-Clifford
operation on the GKP qubit [38]. Another method to im-
plement the non-Clifford operations on the GKP qubit is to
use gate teleportation methodology [39]. Our architecture can
implement this non-Clifford operation by using the modes
of the two-sided tree graph to teleport the ancillary state
required and modify the two-sided tree graph states into the
required resource states shown in Fig. 6. Note that the required
feedforward operations in both methodologies are Gaussian
operations which can be implemented easily on our architec-
ture.

(a)
Bell measurement

Feed forward

Bell measurement(b)

FIG. 6. Non-Clifford gate on GKP using gate teleportation on
our setup. (a) Generation of the required resource state by tele-
porting GKP logical |+L〉 = (|0L〉 + |1L〉)/

√
2 and T̂ |+L〉 in the the

two-sided tree graph state. T̂ is a non-Clifford gate which trans-
forms a quantum state as a|0L〉 + b|1L〉 → a|0L〉 + b exp(iπ/4)|1L〉.
(b) Quantum teleportation through this new resource allows im-
plementation of T̂ . Note that the feedforward operation here is a
Gaussian operation.

D. Error syndrome measurement and correction

In this section, we will discuss how to implement QEC
in our architecture. As we have outlined in Sec. III B, the
branches on the sides of the two-sided tree graph states can be
used to teleport and inject various quantum states, changing
the two-mode entangled states of the QRL into the quantum
entanglement that is required for each application. This prop-
erty makes our architecture goes well with Knill-type QEC
[28] which will be the QEC scheme we consider in this pa-
per. Knill-type QEC is implemented by quantum teleportation
of the logical qubits through a fresh logical Bell state. The
Knill-type QEC for the GKP qubit has been investigated in
Refs. [40,41].

Figure 7 shows the implementation of the Knill-type QEC
for our architecture. We first generate GKP logical |+L〉, then
teleport it into the two-sided tree graph states. As the CV
controlled-Z gate is also a logical controlled-Z gate for the
GKP qubit, this results in the two-mode GKP Bell state (up to
local Pauli gates) which is a resource entanglement required
in the Knill-type QEC. Then, as shown in Fig. 7(b), the data
qubit is teleported through this GKP Bell state. The error
correction is implemented by the displacement operations de-
pending on the results of the homodyne measurements.

As the generation of the required GKP ancillary states
is usually probabilistic in the optical systems, there is a
possibility that both ancillary states are not simultaneously
generated and only one of the ancillary states is teleported
into the cluster state. Even then, the resulting entanglement
can be used to correct one of the quadratures and we can
repeat the process until both quadratures are corrected [40].
The success rate of this repeat-until-success approach can be
increased by increasing the number of the modes in the two-
sided tree graph states, which allow the multiplexing of the
generation of the GKP ancillary states. Note that in the quad-
rail lattice, two data qubits can be corrected simultaneously
as shown in Fig. 7(c). To quantify the performance of our
setup, we consider the implementation of the F̂ F̂ĈZ using our
architecture and numerically calculate the error probability
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(c) Data 1

Data 2

Data 1

Data 2

Bell measurement
(a)

Feed forward

Bell measurement(b)

GKP Bell pair

FIG. 7. Knill-type quantum error correction for our setup.
(a) Generation of the GKP Bell pair by teleporting |+L〉 into the
two-sided tree graph state. (b) Knill-type quantum error correction
by teleporting the GKP-encoded state through the GKP Bell pair.
The feedforward operation here is a displacement operation. (c) Si-
multaneous quantum error correction of the data qubit by using the
structure of the entanglement in our setup.

when Knill-type QEC is employed. See the Appendix for
the details of the numerical analysis. Figure 8 shows the
error probability of the F̂ F̂ĈZ gate with the switching-free
setup for several N which are numbers of the branch on each
side of the two-sided tree graph (i.e., the graph as 2N + 2
modes). In this graph, we assume that the squeezing level of
the squeezed vacuum and the squeezing of the GKP peaks
are related via σ 2 = exp(−2r)/2, where r is the squeezing
parameter of the squeezed vacuum state. This implies that our
method, when combined with a qubit error correction code
for correcting qubit errors induced by GKP correction, can
provide fault-tolerant quantum computation even for a large
N if adequate squeezing can be achieved. As a reference, we

FIG. 8. The error probability of the F̂ F̂ĈZ gate of the proposed
method with the switching-free setup. N denotes the number of
branches on one side of the two-sided tree graph state. As a ref-
erence, we also plot an ideal Knill-type QEC (the solid black line)
dependence on squeezing level.

also perform similar calculation of the Knill-type QEC using
optical switches and the details are shown in the Appendix.

IV. EXPERIMENTAL FEASIBILITY

In this section, we will discuss the experimental feasibility
of our architecture. First, we discuss how large the number
of modes N on each side of the two-sided tree graphs must
be. The required number of N depends on various factors.
If the state generator we consider can only generate a single
type of states, then the number of N must, at the very least,
be equal to the number of the types of the quantum states
needed in the actual computation. Even if our state generator
can implement generation of various quantum states, there
are situations where we would want N to be more than 1.
For example, we would want a large N to compensate for
the probabilistic generation using the heralding method. In
the method using the optical switch, a switching network of
a circuit depth log2 N is required in the multiplexing of N
sources of non-Gaussian states, meaning that the number of
the mode on each side of the two-sided tree graph can be
roughly translated to the number of required optical switches
in the conventional method. As an example, if we want to gen-
erate a GKP Bell pair with the success probability of 99.99%,
the success preparation probability of the GKP qubit must be
above 94.5, 73.5, 56.0, and 45.5% for N = 5, 10, 15, and 20,
respectively. From Fig. 8, as N increases, the error probability
also increases. This is due to the fact that the unused modes are
disentangled from the computation via measurements. There
might exist a more efficient methodology along the same idea
of using the quantum teleportation circuit as an optical switch
and we leave the exploration of such an idea to a future work.

Regarding the experimental feasibility, despite the fact that
it is possible to make a free-space optical switch with bulk
optics where the losses are limited mainly by the quality of
the antireflection coating, free-space optics are not a good
choice when considering long term stability, reproducibility,
and integrability. This is especially true when we consider the
routing network for the non-Gaussian ancillary state, where
the routing network would be composed of multiple optical
switches. For the integrated optics such as silicon photonics,
the optical losses are still too high for the quantum applica-
tions [42].

On the other hand, in the approach of using entanglement
in this paper, the CV quantum entanglement can be generated
using only offline squeezed lights and passive linear optics,
while the switching of the measurement bases is done by
changing the phases of the classical local oscillators which
do not have the severe requirements regarding optical losses.
In principle, the generation of the required quantum entan-
glement in the time domain with sufficient quality is possible
by extending the technology used in the cluster state genera-
tion and computation [8–11] and inclusion of a high-quality
squeezed light source [43]. Regarding the preparation of the
GKP qubit which is required in most of the optical quantum
computation architecture, although there are recent realiza-
tions in the ion-trapped system [44] and superconducting
system [45] and the optical generation has not been achieved
yet, there are a few promising theoretical proposals (see,
for example, Refs. [46–48]). Also, development of optical
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quantum memory capable of storing a multiphoton quantum
state such as the GKP state is being developed [36,49].

V. CONCLUSION

We have presented an optical quantum computation plat-
form which removes the necessity of the optical switches.
Our approach incorporates the possibility of multiplexing of
multiple non-Gaussian ancillary state generators by using the
quantum teleportation protocol via two-sided tree graph states
and is compatible with the teleportation-based QEC. The
physical realization of our system is also highly scalable as
it is compatible with the time-domain multiplexing method-
ology, and the only active component necessary is the phase
modulation of the local oscillators, which is relatively easy as
modulation of classical light is a well-established technology.
Hence, this architecture shows a possibility of optical quan-
tum architecture that does not require inline optical switching.
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APPENDIX: ANALYSIS METHOD

In this section, we describe the methodology used in the
analysis of the quantum gate on the QRL using the con-
ventional method with optical switching and the proposed
method.

1. Quantum gate on the QRL

First, we describe general implementation of the gate us-
ing the cluster state with nonunity edge weight as described
in Ref. [30]. Then, we will explain the feature of the QRL
and our method which allows us to implement the gate as if
the edge weight is unity. The single-mode quantum gate in
each step of quantum computation (QC) using the QRL with
nonunity edge weight has the form

Û = Ŝ(s)R̂

(
θ+
2

)
Ŝ

(
tan

θ−
2

)
R̂

(
θ+
2

)
, (A1)

where θ± is the linear combination of the measurement bases
of the homodyne measurement, and s is a squeezing parameter
that depends on the edge weight t of the two-mode squeezed
vacuum state as es = 1/t . In this gate implementation, an
additional step of QC has to be implemented to compensate
for the effects of Ŝ(s) for some gates. For example, the Fourier
gate F̂ = R̂(π/2) using the two-mode squeezed vacuum with
the edge weight t requires two computational steps to com-
pensate and cancel out the squeezing gate Ŝ(s). In the first
computational step, the quantum gate Û1 = Ŝ(s)F̂ is imple-
mented by selecting θ+ = π/2 and θ− = 0. In the second step,
we implement the squeezing gate Û2 = Ŝ(−s). Overall, this
results in the Fourier gate Û2Û1 = Ŝ(−s)Ŝ(s)F̂ = F̂ .

Delay line

Optical switch

Delay line
50:50

Beamsplitter

Homodyne

Squeezed light

Qunaught

Qunaught

Qunaught

Qunaught

FIG. 9. Schematic diagram of the time-domain-multiplexed
quad-rail lattice cluster state setup for the Knill-type QEC, where
optical switches are set before first beam splitters and the Knill-type
QEC is implemented by the GKP-Bell pair. The GKP-Bell pair
is generated by 50:50 beam splitter coupling between two input
qunaught states. Note that in the calculation we ignore the optical
losses due to the optical switches after the two optical delay lines as
these losses are related mainly to the input state injection, rather than
Knill-type QEC.

For the QRL and our setup, as the generated states belong
to one of a class of states called the H-graph state, it is known
that we can implement the single-mode quantum gate using
quantum teleportation [31]. The form of the gate in this case
is

Û = R̂

(
θ+
2

)
Ŝ

(
tan

θ−
2

)
R̂

(
θ+
2

)
. (A2)

Thanks to the edge-weight parameter, the Fourier gate re-
quires only a single computational step with θ+ = π/2 and
θ− = 0.

2. Knill-type QEC with an optical switch

In this section, we describe the implementation of the
F̂ F̂Ĉz gate using the Knill-type QEC with optical switches
and calculate its error probability as a comparison to our
method. Figure 9 shows a schematic diagram of the setup. In
this setup, there is an optical switch on each path before the
first beam splitter coupling. These optical switches are used
for switching between the squeezed state and the ancillary
state for the Knill-type QEC. We add optical switches in all
four paths so that the simultaneous QEC of two data bits as
shown in Fig. 7(d) would also be possible in this setup. In the
Knill-type QEC, the required GKP Bell pairs are prepared as
the two-mode entanglement for the macronode in the QRL
cluster state. This is done by switching from the squeezed
states to the qunaught state given by

∑∞
m=−∞ |2m

√
2π〉q. By

interfering the qunaught state with a beam splitter, a GKP Bell
pair is generated. Then, the logical information is teleported
through this GKP Bell pair and the Knill-type QEC is imple-
mented. We note that this process corresponds to the qubit
quantum teleportation using the GKP Bell pair instead of the
CV quantum teleportation using the two-mode squeezed state.
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FIG. 10. The error probability of the F̂ F̂Ĉz gate using the Knill-
type QEC with the optical switching for several ηin.

Next, we consider the effects of the optical switch on the
squeezed vacuum state. The optical switch transforms the
variances of the squeezed vacuum state as

σ 2
in,x → ηinσ

2
in,x + 1 − ηin

2
, (A3)

σ 2
in,p → ηinσ

2
in,p + 1 − ηin

2
, (A4)

where σ 2
in,x (σ 2

in,p) is the variance of the x (p) quadrature of the
initial squeezed vacuum state before an optical switch, and
ηin is the efficiency of the optical switch. From this variance,
we can obtain the edge-weight and self-loop parameter of
the resulting two-mode entanglement [50], t = tanh2(2r) and
iε = isech(2r), where the squeezing parameter r is derived
from the relation

1

2
e−2r = ηinσ

2
in,x(p) + 1 − ηin

2
. (A5)

Hence, the variance of the squeezed vacuum state becomes
larger due to the optical switch.

We can also calculate the effects of the optical switches on
the GKP Bell pair. As the optical loss affects the codewords
of the GKP qubits, the qunaught state needs to be amplified
using the preamplification technique prior to passing through
the optical switches (see Appendix 4). Thus, the variances are
transformed as

δ2
in,x → δ2

in,x + 1 − ηin, (A6)

δ2
in,p → δ2

in,p + 1 − ηin, (A7)

where δ2
in,x(δ2

in, p) is the initial variance of the qunaught state
in the x (p) quadrature before an optical switch. After beam
splitter coupling between two qunaught states, the GKP-Bell
pair, where each peak has the variance of δ2

in,x + 1 − ηin, is
generated. We note that variances of one of the modes of the
GKP-Bell pair in the x and p quadratures are equal to those of
the qunaught states.

Figure 10 shows the error probability of the F̂ F̂Ĉz gate
using the Knill-type QEC. Numerical results imply that fault-
tolerant quantum computation with the squeezing level 15 and
20 dB will be possible up to loss parameters around 0.5 and
2.0%, respectively, since the error probability of F̂ F̂Ĉz re-
quired for the fault-tolerant quantum computation is generally
assumed to be around 1.0%.

3. Error probability of F̂F̂ĈZ with the proposed method

To calculate the error probability of the two-mode gate
(thus the error threshold) of our proposed method, we consider
the nullifiers of the two-sided tree graph. In our proposed
setup, we employ the two types of the Bell state, e.g., the
Bell state of the squeezed vacuum states (two-mode squeezed
states) and that of GKP qubits. These two types of Bell
states are used for measurement-based quantum computation
(MBQC) and QEC, respectively. Those Bell states are pre-
pared from the two-sided tree graph described in Fig. 7 in the
main text, where the two-sided tree graph is prepared from
the two-sided tree graph state. The nullifiers for the tree graph
state are

δ̂1 = p̂1 − x̂a −
∑
k∈K

x̂k, δ̂2 = p̂2 − x̂b −
∑
l∈L

x̂l , (A8)

δ̂k = p̂k − x̂1, δ̂l = p̂l − x̂2, (A9)

δ̂a = p̂a − x̂1, δ̂b = p̂b − x̂2, (A10)

where the labels 1, 2, k, and l correspond to the modes for
the two-sided tree graph in Fig. 7 in the main text, and the
labels a and b correspond to the modes used for the Bell
measurement to prepare the two-sided tree graph. Although
the variances of the nullifiers are zero in the ideal case, for
the physical finite squeezing, the nullifiers will be nonzero.
After the Bell measurement, the values of the nullifiers that
are associated with mode a and b will be increased due to the
finite squeezing.

Here we describe the variances for the Bell state of
squeezed vacuums and the GKP qubits. For simplicity, we
will assume that the two-sided tree graph state is symmetric
and the number of the mode n is given by n = 2N + 2, where
N is the number of the branches on each side. When we con-
sider the teleportation protocol, the amount of the squeezing
in the Einstein-Podolsky-Rosen correlation is what deter-
mines the noise of the protocol. Similarly, although the
variance of the nullifier becomes zero for the ideal state, the
variance will always be finite for the actual physical system.
For the Bell state of squeezed vacuums used for MBQC, after
we disentangle mode k (l ) from mode 1 (2), the variance for
the mode 1 (2) via the measurement in the x quadrature and
the variances of the nullifiers of the resultant two-mode entan-
glement state have the values as if the state is generated using
p-squeezed states whose squeezing level is (N + 2)σ 2 and the
ideal controlled-Z gate. We can easily verify this by looking at
the variances of the nullifiers given in Eqs. (8)–(11). For the
Bell state of GKP qubits used for the QEC, we disentangle
mode k (l ) from mode 1 (2), while we select the measurement
bases so that a mode of the GKP qubit is successfully prepared
in the quantum memory [which we will label as mode i ( j)],
entangled with mode 1 (2). After the measurements, the width
of the peaks of the GKP qubit will become 2σ 2 and (N + 2)σ 2

for x and p quadratures, respectively. Note that there is addi-
tional σ 2 compared to the Bell state of the squeezed vacuum
due to the finite squeezing of the GKP qubit.

With the preparations above, we now calculate the error
probability of the F̂ F̂ĈZ gate for our proposed scheme. The ĈZ
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gate between input modes 1 and 2 transforms the peak width
of the GKP state as

δ̃2
xin1(2) 	→ δ̃2

xin1(2), (A11)

δ̃2
pin1(2) 	→ δ̃2

pin1(2) + δ̃2
xin2(1), (A12)

where δ̃2
xin1(2) and δ̃2

pin1(2) are the initial variances of GKP qubits
in the x and p quadratures, respectively. Then, after the F̂ gate
on the input mode 1 (2), additional noise variance ξ̃ from the
Bell state of the squeezed vacuum is added to the variance of
the the mode 1 (2) in both x and p quadratures, where ξ̃ is
given as

ξ̃ = (N + 1)σ 2. (A13)

As a consequence, the noise variances for the F̂ F̂ĈZ gate
become

ξ̃x = δ̃2
pin1(2) + δ̃2

xin1(2) + ξ̃ , (A14)

ξ̃p = δ̃2
xin1(2) + ξ̃ . (A15)

Then we implement the QEC using the Bell state of the GKP
qubits. In the QEC, after the beam splitter coupling between
the input mode and one of the Bell state, the variances of
the input mode in the x quadrature and that of the Bell state
in the p quadrature become ξ̃p + (N + 2)σ 2 and ξ̃x + 2σ 2,
respectively. This corresponds to a sum of the variances of
the data and the ancilla GKP qubits. Thus, the error proba-
bility of the QECs can be calculated from the noise variances
σ 2

1(2),x = ξ̃p + (N + 2)σ 2 and σ 2
1(2),p = ξ̃x + 2σ 2, resulting in

the graph in Fig. 8.

4. Optical loss with amplifications

In the Heisenberg picture, a loss channel with the efficiency
η transforms the quadratures as

x̂ → √
ηx̂ +

√
1 − ηx̂vac, p̂ → √

η p̂ +
√

1 − η p̂vac, (A16)

where x̂vac ( p̂vac) is the position (momentum) quadrature of an
ancillary vacuum state. This results in the transformation of
the variances as

σ 2
in,x → ησ 2

in,x + 1 − η

2
, (A17)

σ 2
in,p → ησ 2

in,p + 1 − η

2
, (A18)

where σ 2
in,x (σ 2

in,p) are variances of the initial states before the
loss channel.

From Eq. (A16), we observe that the positions of the peaks
of the GKP qubits are deamplified by a factor

√
η. To recover

the codeword of the GKP qubit in both x and p quadra-
tures simultaneously, a phase insensitive amplification with
an amplification factor of 1/

√
η is used. This amplification

transforms the quadratures as

x̂ →
√

1

η
x̂ +

√
1

η
− 1x̂vac, (A19)

p̂ →
√

1

η
p̂ +

√
1

η
− 1 p̂vac. (A20)

Therefore, this amplification transforms the variance of the
input state as

σ 2
in,x → 1

η
σ 2

in,x + 1 − η

2η
, (A21)

σ 2
in,p → 1

η
σ 2

in,p + 1 − η

2η
. (A22)

Now we describe two amplification techniques used in
the recovery of the codewords of the GKP qubits. First, we
explain the amplification after the loss channel, which we
refer to as postamplification . In this case, the variance after
both loss channel and amplification in both quadratures is

σ 2
in,x(p) → σ 2

in,x(p) + 1 − η

η
, (A23)

where σ 2
in is the initial variance. We observe that the additional

noise (1 − η)/η comes from both the loss channel and the
phase insensitive amplification.

Second, we consider the amplification before photon loss,
which we refer to as preamplification. For this case, the vari-
ances are transformed as

σ 2
in,x(p) → σ 2

in,x(p) + 1 − η. (A24)

We observe that preamplification introduces less noise than
the postamplification [51]. In our paper, to compare and
consider the performance of the conventional scheme using
optical switches, we employ the preamplification technique
before an optical switch to implement the QEC with GKP
qubits.
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