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Generating quantum entanglement between macroscopic objects
with continuous measurement and feedback control
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This paper is aimed at investigating the feasibility of generating quantum conditional entanglement between
macroscopic mechanical mirrors in optomechanical systems while under continuous measurement and feedback
control. We consider the squeezing of the states of the mechanical common and the differential motions of
the mirrors by the action of measuring the common and the differential output light beams in the Fabry-Pérot-
Michelson interferometer. We carefully derive a covariance matrix for the mechanical mirrors in a steady state,
employing the Kalman filtering problem with dissipative cavities. We demonstrate that Gaussian entanglement
between the mechanical mirrors is generated when the states of the mechanical common and differential modes
of the mirrors are squeezed with high purity in an asymmetric manner. Our results also show that quantum
entanglement between 7-mg mirrors is achievable in the short term.
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I. INTRODUCTION

Cavity optomechanics deals with the coupled dynam-
ics of the oscillating end mirrors of cavities (mechanical
oscillators) and the optical mode therein. This field has
the potential to reveal the boundary between the classi-
cal and the quantum world [1–6]. The quantum states of
mechanical oscillators can be achieved by quantum con-
trol through interaction with optical cavity modes, whereas
mechanical oscillators lose quantum coherence owing to
thermal fluctuations. The technique of continuous measure-
ment cooling shows the potential to achieve the quantum
states of macroscopic mechanical oscillators [4,6,7]. Ref-
erence [8] demonstrated cooling a mechanical oscillator
to the ground state through cavity detuning and feedback
control. Moreover, optomechanical systems are helpful in
generating entanglements. Reference [9] discussed the role
of feedback cooling; the authors showed that the entangle-
ment between two levitated nanospheres due to the Coulomb
force could be measured experimentally with the feedback-
based setup. The authors in Refs. [10,11] considered the
detectability of entanglement between the optical cavity mode
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and the mechanical oscillator in the ground state. References
[12–14] showed that the generation of quantum entanglement
between nanoscale objects was realized experimentally. Re-
cently, cavity optomechanics has attracted significant interest
as a possible field for investigating the quantum nature of
gravity through tabletop experiments [15–21]. Entanglement
generation due to gravitational interaction can be considered
as evidence of the quantum nature of gravity [22,23], which
has sparked several investigations [24–30]. Moreover, related
to gravitational entanglement, the quantum nature of gravity
has been discussed in gravitons and quantum field theory
[31–38]. However, verifying the quantum nature of gravity
requires entanglement between heavier objects [16,19]. The
realization of macroscopic quantum systems is pivotal for
investigating the unexplored areas between the quantum world
and gravity.

In this paper, we consider the feasibility of realizing
Gaussian entanglement between macroscopic oscillators via
optomechanical coupling. It is known that entanglement
between two squeezed light beams with different squeez-
ing angles is generated by passing them through the beam
splitter (e.g., Ref. [39]). The authors of Ref. [40] ana-
lyzed the entanglement in a comparable situation where the
power-recycled mirror squeezed the oscillators’ common and
differential modes asymmetrically. However, their analysis
was limited to high-frequency regions, where the oscillators
were regarded as free mass. Namely, they only demon-
strated entanglement generation between Fourier modes of
the macroscopic oscillator’s motions in high-frequency re-
gions. Therefore the previous work is not enough to include
the analysis around resonant frequencies. Quantum control of
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macroscopic oscillators around resonant frequencies is impor-
tant for entanglement generation (e.g., Refs. [16,19]). Then,
our analysis here is not limited to high-frequency regions.

We revisit the realization of entanglement between macro-
scopic oscillators with the Kalman filter’s formalism in a
wide range of parameter spaces. We employ feedback con-
trol, which decreases the effective temperature, and detunes,
enabling us to trap the mechanical oscillator stably with the
optical spring, as discussed in Ref. [6]. To clarify the differ-
ence between the previous [40] and present paper, we note
that the detuning was not considered in the previous work
[40]. By using these quantum controls in an optomechanical
system with a power-recycled mirror, we clarified the rela-
tionship between the entanglement and squeezing of states.
Our results show that quantum cooperativity and detuning
characterize the entanglement behavior, quantum squeezing,
and purity. The entanglement generation requires quantum
squeezing of both the common and differential modes of the
oscillators. Squeezing, however, does not always result in en-
tanglement generation, as high-purity squeezed states are also
required. We demonstrate that the entanglement occurs for the
quantum cooperativity C±/n±

th � 3 with the experimentally
achievable parameters in amplitude quadrature measurement
(X measurement).

The remainder of this paper is organized as follows: In
Sec. II, we present a brief review of optomechanical systems
while under continuous measurement and feedback control.
In Sec. III, we provide a mathematical formula for the Riccati
equation to describe the covariance matrix using a quantum
Kalman filter to minimize the correlation. In Sec. IV, we
extended the formulations in the previous sections to those
with two optomechanical systems, in which we consider the
entanglement between them through a beam splitter in a
power-recycled interferometer. We determined the feasibility
of preparing entanglements between the mirror oscillators in
the space of the model parameter, depending on the ampli-
tude quadrature measurement (X measurement) and phase
quadrature measurement (Y measurement), respectively. Fi-
nally, Sec. V presents our conclusions. The derivation of
the input-output relation in the interferometer is presented
in Appendix A. In Appendix B, we describe the details of
logarithmic negativity for estimating the entanglement devel-
oped in this paper. In Appendix C, we describe the details of
computing the squeezing angle.

II. FORMULAS

In this section, we consider a driven optical cavity mode
that interacts with an oscillating mirror, which is regarded
as a mechanical harmonic oscillator. The Hamiltonian of our
system is as follows:

H = P2

2m
+ 1

2
m�2Q2 + h̄ωca†a + h̄

ωc

�
Qa†a

+ ih̄E (a†e−iωLt − aeiωLt ), (1)

where Q and P are the canonical position and momentum
operators of the oscillator, satisfying the commutation rela-
tion [Q, P] = ih̄, while m and � are the mass and resonance
frequency of the oscillator, respectively; a and a† are the

annihilation and creation operators of the optical modes in the
cavity, � is the cavity length, and ωc is the cavity frequency.
The last term describes the input laser with frequency ωL

and amplitude E = √
Pinκ/h̄ωL, where Pin is the input laser

power and κ is the optical decay rate. Here, we introduce
nondimensional variables

q =
√

2m�

h̄
Q, p =

√
2

mh̄�
P, (2)

that satisfy the commutation relation [q, p] = 2i.
The Langevin equations are given by

q̇ = �p,

ṗ = −�q − 2Ga′†a′ − �p +
√

2�pin, (3)

ȧ′ = i(ωL − ωc)a′ − iGqa′ + E − κ

2
a′ + √

κain,

where a′ = eiωLt a denotes the redefined annihilation operator
and G = (ωc/�)

√
h̄/2m� is the optomechanical coupling. �

denotes the mechanical decay rate and pin is the mechanical
noise input with a variance of 〈p2

in〉 = 2kBT/h̄� + 1. Simi-
larly, ain is the optical noise input specified by 〈a2

in〉 = (2Nth +
1)/2 with thermal photon occupation number Nth. Consid-
ering the linearization q → q̄ + δq, p → p̄ + δp, and a′ →
ā′ + δa′, we derive the following equations for the steady
state:

˙̄q = �p̄,

˙̄p = −�q̄ − 2G|ā′|2 − � p̄, (4)

˙̄a′ = i(ωL − ωc − Gq̄)ā + E − κ

2
ā′.

Here, considering ˙̄q = ˙̄p = ˙̄a′ = 0, we have

q̄ = −2
G

�
|ā′|2,

p̄ = 0, (5)

ā′ = 2E

κ − 2i�
,

where we define the detuning � = ωL − ωc + 2(G|ā′|)2/�.
The perturbation equations are as follows:

δ̇q = �δp, (6)

δ̇p = −�δq − 2g(e−iφδa′ + eiφδa′†) − �δp +
√

2�pin

−
∫ t

−∞
dsgFB(t − s)X (s), (7)

δ̇a
′ = i�δa′ − igeiφδq − κ

2
δa′ + √

κain, (8)

where ā′ = eiφ |ā′| and g = (|ā′|ωc/�)
√

h̄/2m� denotes the
redefined optomechanical coupling. We add that the last
term in Eq. (7) described the feedback effects [2,6] and we
henceforth simply represent (δq, δp, δa′) as (q, p, a′). By in-
troducing the amplitude quadrature x = e−iφa′ + eiφa′† and
the phase quadrature y = (e−iφa′ − eiφa′†)/i, Eq. (8) yields

ẋ = −κ

2
x − �y + √

κxin, (9)

ẏ = −κ

2
y + �x + √

κyin − 2gq, (10)
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where xin and yin are the corresponding input noises similarly
defined as ain, whose variance is specified by 〈x2

in〉 = 〈y2
in〉 =

2Nth + 1.
Here, we consider the adiabatic limit κ 	 �, which allows

the continuous measurement of the oscillator position because
the cavity photon dissipation is sufficiently larger than the
frequency of the oscillator. The adiabatic limit is rephrased as
the limit of the dissipation dominant regime where the time
derivative term of the optical field ȧ′ is much smaller than
the terms of the right-hand side of Eq. (8). Then, the time
derivatives of the optical amplitude quadrature x and the phase
quadrature y are also negligible in Eqs. (9) and (10), which
leads to the following equations:

x = 8�g

κ2 + 4�2
q + 2κ

√
κ

κ2 + 4�2
xin − 4�

√
κ

κ2 + 4�2
yin, (11)

y = − 4κg

κ2 + 4�2
q + 4�

√
κ

κ2 + 4�2
xin + 2κ

√
κ

κ2 + 4�2
yin. (12)

Introducing the rescaled variables

q = q′
√

�

ωm
, p = p′

√
ωm

�
,

ωm =
√

�2 + �
16�g2

κ2 + 4�2
, gm = g

√
�

ωm
, (13)

we rewrite the equation of motion as

q̇′ = ωm p′, (14)

ṗ′ = −ωmq′ − γm p′ +
√

2γm p′
in

− 4gmκ
√

κ

κ2 + 4�2
xin + 8gm�

√
κ

κ2 + 4�2
yin, (15)

x = 8�gm

κ2 + 4�2
q′ + 2κ

√
κ

κ2 + 4�2
xin − 4�

√
κ

κ2 + 4�2
yin, (16)

y = − 4κgm

κ2 + 4�2
q′ + 4�

√
κ

κ2 + 4�2
xin + 2κ

√
κ

κ2 + 4�2
yin, (17)

where γm is the effective mechanical decay rate under feed-
back control, and the thermal noise input changes to 〈p′2

in〉 =
2nth + 1 with nth = kBT �/h̄γmωm.

The quadratures of the optical cavity modes x and y con-
tain information regarding the position of the mechanical
oscillator q′ in Eqs. (49) and (50). To estimate the oscil-
lator position, we either consider the measurement of the
amplitude quadrature x, or the measurement of the phase
quadrature y. The amplitude quadrature of the output optical
field is obtained by the input-output relation xout = xin − √

κx
[2,41]. However, we need to consider the additional noise
input due to the imperfect measurement. Thus, the observation
signal of amplitude quadrature x is described by the following
equation:

X = √
ηxout +

√
1 − ηx′

in, (18)

where η ∈ [0, 1] is the detection efficiency and x′
in is the ad-

ditional vacuum noise for the imperfect measurement, which

satisfies 〈xin′2〉 = 1. Under the limit of the dissipation domi-
nation, we have

X = − 8gm�
√

ηκ

κ2 + 4�2
q′ − √

η
κ2 − 4�2

κ2 + 4�2
xin + √

η
4κ�

κ2 + 4�2
yin

+
√

1 − ηx′
in. (19)

On the other hand, the observation signal of the phase quadra-
ture y is also described by the output equation

Y = √
ηyout +

√
1 − ηy′

in, with yout = yin − √
κy, (20)

which reduces to

Y = 4gmκ
√

ηκ

κ2 + 4�2
q′ − √

η
4κ�

κ2 + 4�2
xin − √

η
κ2 − 4�2

κ2 + 4�2
yin

+
√

1 − ηy′
in. (21)

III. RICCATI EQUATION

Because the observation signals in Eqs. (19) and (21)
include noise information, we employed the quantum fil-
ter for optimal estimation. Here, we consider the quantum
Kalman filter, which allows us to minimize the mean-
squared error between the canonical operators r = (q′, p′)T

and the estimated values r̃ = (q̃′, p̃)T, i.e., each component of
the covariance matrix V = 〈{r − r̃, (r − r̃)T}〉 is minimized.
The quantum filter is essential to reduce the thermal fluctu-
ations and increase the squeezing level. With the quantum
Kalman filter, we can track the behavior of r conditioned
on the measurement result, and its fluctuation is represented
by the conditional covariance matrix following the Riccati
equation. On the other hand, without the quantum filter, we
only have the average behavior of r. Importantly, the co-
variance matrix without the filter is always larger than the
covariance matrix conditioned on the measurement. Hence,
in the absence of the filter, the squeezing level and, accord-
ingly, the entanglement level must decrease. This is essential
for the entanglement between mechanical mirrors in the next
section.

We rewrite the Langevin equation in matrix form as fol-
lows:

ṙ = Ar +
(

0
w

)
, (22)

X = CX r + vX , (23)

Y = CY r + vY , (24)

where

A =
(

0 ωm

−ωm −γm

)
,

w =
√

2γm p′
in − 4gmκ3/2

κ2 + 4�2
xin + 8gmκ1/2�

κ2 + 4�2
yin, (25)

CX =
(
− 8gm�

√
ηκ

κ2+4�2 0
)
,

vX = −κ2 − 4�2

κ2 + 4�2

√
ηxin + 4κ�

κ2 + 4�2

√
ηyin +

√
1 − ηx′

in,

(26)
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CY =
(

4gmκ
√

ηκ

κ2+4�2 0
)
,

vY = − 4κ�

κ2 + 4�2

√
ηxin − κ2 − 4�2

κ2 + 4�2

√
ηyin +

√
1 − ηy′

in.

(27)

We use Eqs. (23) and (24) for the optical amplitude measure-
ment and the phase measurement, respectively.

For the Kalman filter [42,43], we obtained the time evo-
lution of the optimized covariance matrix as the following
Riccati equation:

V̇ = AV + V AT + N − (
VCT

I + LI
)
M−1

(
VCT

I + LI
)T

(28)

where I = X or Y , M = 〈v2
X 〉 = 〈v2

Y 〉 = (2ηNth + 1), r̃ is the
best estimated value to optimized the covariance matrix based
on the observation X or Y , which follows

˙̃r = Ar̃ + (
VCT

I + LI
)
M−1(I − CI r̃I ), (29)

and each matrix is given by

V =
(

V11 V12

V12 V22

)
, N =

(
0 0
0 〈w2〉

)
, (30)

LX =
(

0
〈wvX 〉

)
, LY =

(
0

〈wvY 〉
)

, (31)

with

〈w2〉 = 2γm(2nth + 1) + 16g2
mκ

κ2 + 4�2
(2Nth + 1) ≡ n̄, (32)

〈wvX 〉 = 4gmκ
√

κη

κ2 + 4�2
(2Nth + 1),

〈wvY 〉 = 8gm�
√

κη

κ2 + 4�2
(2Nth + 1). (33)

In the absence of the quantum filter, the covariance matrix
follows the Lyapunov equation V̇ = AV + V AT + N, whose
components are always larger than those with the filter. Hence,
we need the quantum filter to suppress the thermal fluctuation.

Considering the steady state V̇ = 0, the covariance matrix
satisfies the following equation:

2ωmV12 − λIV
2

11 = 0,

(γm + λIV11)V12 + (V11 − V22)ωm + IV11 = 0, (34)

2γmV22 + 2ωmV12 + (
√

λIV12 + I/
√

λI )2 − n̄ = 0,

where we define

λX = 64g2
mηκ�2

(2ηNth + 1)(κ2 + 4�2)2
,

λY = 16g2
mηκ3

(2ηNth + 1)(κ2 + 4�2)2
, (35)

X = −Y = − 32g2
mηκ2�

(κ2 + 4�2)2

2Nth + 1

2ηNth + 1
. (36)

The solution of Eq. (34) is derived as follows:

V11 = γI − γm

λI
,

V12 = (γI − γm)2

2λIωm
, (37)

V22 = (γI − γm)
(
2ωm(ωm + I ) + γ 2

I − γmγI
)

2λIω2
m

,

where we defined

γI =
√

γ 2
m − 2ωm(ωm + I ) + 2ωm

√
ωm(ωm + 2I ) + n̄λI .

(38)

The covariance matrix in Eqs. (37) is also derived using
the Wiener filter for the steady state, and is consistent with
Ref. [6] in relation to the optical amplitude measurement. The
result for the optical phase measurement with � = 0, Nth = 0,
and with no feedback control is consistent with that reported
in Ref. [7].

IV. ENTANGLEMENT BETWEEN TWO MIRRORS

Here, we consider the entanglement between two oscilla-
tors coupled with optical modes and passing through the beam
splitter in a power-recycled Fabry-Pérot-Michelson interfer-
ometer. We may consider the case using a signal-recycled
mirror (see Refs. [44–46]). However, we only consider the
case with the power-recycled mirror for simplicity. Figure 1
shows a schematic plot of this configuration. In quantum op-
tics, two squeezed beams passing through a half-beam splitter
become entangled as long as the two squeezed states are not
the same (e.g., Ref. [39]). Considering entanglement between
the mechanical mirrors is analogous to this entanglement gen-
eration between the two squeezed beams through a half-beam
splitter because the optical output quadrature is linearly re-
lated to the mechanical mirror position. Reference [40] shows
the entanglement between two oscillators where coupled cav-
ity modes occur by passing the output beams through the
beam splitter. However, the Y measurement is only consid-
ered in the high-frequency region, where the oscillator can
be considered as a free mass. In this paper, however, our
general analysis of the entanglement behavior is not limited
to the free-mass region. This is achieved through detuning and
feedback effects for X and Y measurements, respectively.

We first consider the Fabry-Pérot-Michelson interfer-
ometer without the power-recycled mirror. By introducing
the mechanical common and differential modes q± = (q1 ±
q2)/

√
2, p± = (p1 ± p2)/

√
2, and a± = (a1 ± a2)/

√
2, we

derive the Langevin equations of the mechanical common and
differential modes independently as

q̇± = �p±,

ṗ± = −�q± − 2G(a′†
+a′

± ± a′†
−a′

∓)/
√

2 − �p± +
√

2�p±
in,

ȧ′
+ = i(ωL − ωc)a′

+ − iG(q+a′
+ + q−a′

−)/
√

2 − κ

2
a′

+

+ √
κa+

in + E , (39)

ȧ′
− = i(ωL − ωc)a′

− − iG(q+a′
−+q−a′

+)/
√

2 − κ

2
a′

−

+ √
κa−

in,

where we assume that the individual mirror 1 and mirror 2
follow the same dynamics. Next, we consider the interfer-
ometer shown in Fig. 1 with the power-recycled mirror. The
asymmetry between the mechanical common and differential
modes originates from the power-recycled mirror in the com-
mon mode, which is described by the difference in optical
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FIG. 1. Schematic representation of the power-recycled Fabry-Pérot-Michelson interferometer.

decay rates for each mode κ±. The optical decay rates for the
differential mode κ− and common mode κ+ are introduced
in their Langevin equations and the power-recycled mirror
makes the optical decay rate of the common mode smaller
than that of the differential mode by reflecting only a por-
tion of the common-mode light. Considering the input-output
relation of the optical common mode and differential mode,
we introduce the parameter ζ � 1 to describe the asymmetry
using

κ+ = 1

ζ
κ−. (40)

We show the details in Appendix A. Therefore, in our frame-
work, ζ describes the asymmetry between optical common
and differential modes, which causes entanglement owing to
the half-beam splitter. Then, the Langevin equations (39) are
rewritten as

q̇± = �p±,

ṗ± = −�q± − 2G(a†
+a′

± ± a′†
−a′

∓)/
√

2 − �p± +
√

2�p±
in,

ȧ′
+ = i(ωL − ωc)a′

+ − iG(q+a′
+ + q−a′

−)/
√

2 − κ+
2

a′
+

+ √
κ+a+

in + E+, (41)

ȧ′
− = i(ωL − ωc)a′

− − iG(q+a′
−+q−a′

+)/
√

2 − κ−
2

a′
−

+ √
κ−a−

in,

where E+ = √
Pinκ+/h̄ωL denotes the input-laser ampli-

tude in the common side. Considering the linearization of
the quadratures, we derive the equations for the steady

state as

˙̄q± = �p̄± = 0,

˙̄p± = −�q̄± −
√

2G(ā′∗
+ā′

± + ā′∗
−ā′

∓) − � p̄± = 0,

˙̄a′
+ = i(ωL − ωc)ā′

+ − iG(q̄+ā′
+ + q̄−ā′

−)/
√

2 − κ+
2

ā′
+

+ E+ = 0, (42)

˙̄a′
− = i(ωL − ωc)ā′

− − iG(q̄+ā′
− + q̄−ā′

+)/
√

2 − κ−
2

ā′
− = 0.

Assuming that the individual quadratures are equal to q̄1 =
q̄2, p̄1 = p̄2, and ā′

1 = ā′
2, the quadratures of the differential

mode are zero: q̄− = p̄− = ā′
− = 0. Hence, Eq. (42) can be

rewritten as

q̄+ =
√

2q̄1 = −
√

2G|ā′
+|2

�
, q̄− = 0,

p̄± = 0, (43)

ā′
+ =

√
2ā′

1 = 2E+
κ+ − 2i�

, ā′
− = 0,

where we define the detuning as

� = ωL − ωc − G√
2

q̄+ = ωL − ωc + 2
G2

�
|ā′

1|2. (44)

Then, the perturbation equations are

q̇± = �p±,

ṗ± = −�q± − 2g(e−iφa± + eiφa′†
±) − �p± +

√
2�p±

in,

(45)

ȧ′
± = i�a′

± − igeiφq± − κ±
2

a′
± + √

κ±a±
in,
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where we denote the quadratures (δq±, δp±, δa′
±) as

(q±, p±, a′
±). The optomechanical coupling is

g = |ā′
+|G/

√
2 = |ā′

1|G, (46)

and ā′
+ = |ā′

+|eiφ .
Considering the adiabatic limit κ± 	 �, we derive the

equation of motions in the same form of Sec. II as

q̇′
± = ωm p′

±, (47)

ṗ′
± = −ω±

m q′
± − γm p′

± +
√

2γm p′±
in − 4g±

mκ±
√

κ±
κ2± + 4�2

x±
in

+8g±
m�

√
κ±

κ2± + 4�2
y±

in, (48)

x± = 8�g±
m

κ2± + 4�2
q′

± + 2κ±
√

κ±
κ2± + 4�2

x±
in − 4�

√
κ±

κ2± + 4�2
y±

in, (49)

y± = − 4κg±
m

κ2± + 4�2
q′

± + 4�
√

κ±
κ2± + 4�2

x±
in + 2κ±

√
κ±

κ2± + 4�2
y±

in,

(50)

where

q± = q′
±

√
�

ω±
m

, p± = p′
±

√
ω±

m

�
,

ω±
m =

√
�2 + �

16�g2

κ2± + 4�2
, g±

m = g

√
�

ω±
m

. (51)

x± and y± are the optical amplitude and phase quadratures.
γm is the effective mechanical decay rate under feedback con-
trol, the optical noise input is 〈(x±

in )2〉 = 〈(y±
in )2〉 = 2Nth + 1,

and the thermal noise input is 〈(p′±
in )2〉 = 2n±

th + 1 with n±
th =

kBT �/h̄γmω±
m .

We consider the measurement of the optical amplitude
quadratures of the common mode and the differential mode.

Due to the imperfect detection, the output quadratures are

X± = √
ηx±

out +
√

1 − ηx±′
in , (52)

where η ∈ [0, 1] is the detection efficiency and the additional
vacuum noise is 〈(x±′

in )2〉 = 1. Under the adiabatic limit, we
have

X± = − 8g±
m�

√
ηκ±

κ2± + 4�2
q′

± − √
η
κ2

± − 4�2

κ2± + 4�2
x±

in

+ √
η

4κ±�

κ2± + 4�2
y±

in +
√

1 − ηx±′
in . (53)

For the optical phase quadratures measurement, we similarly
obtain

Y± = 4g±
mκ±

√
ηκ±

κ2± + 4�2
q′

± − √
η

4κ±�

κ2± + 4�2
x±

in

− √
η
κ2

± − 4�2

κ2± + 4�2
y±

in +
√

1 − ηy±′
in . (54)

Then, we consider the Kalman filter to optimize the covari-
ance matrix of the mechanical common mode and differential
mode. Here, there is no correlation between the mechanical
common mode and differential mode since the common mode
is commutative with the differential mode. Using the Riccati
equation (28) for the steady state, we obtain the components
of the mechanical covariance matrices V ± as follows:

V ±
11 = γ ±

I − γm

λ±
I

,

V ±
12 = (γ ±

I − γm)2

2λ±
I ω±

m

, (55)

V ±
22 = (γ ±

I − γm)(2ω±
m (ω±

m + ±
I ) + (γ ±

I )2 − γmγ ±
I )

2λ±
I (ω±

m )2
,

where

λ±
X = 64(g±

m)2κ±�2η

(2ηNth + 1)(κ2± + 4�2)2
, λ±

Y = 16(g±
m)2κ3

±η

(2ηNth + 1)(κ2± + 4�2)2
, (56)

±
X = −±

Y = −32(g±
m)2κ2

±�η

(κ2± + 4�2)2

2Nth + 1

2ηNth + 1
, (57)

n̄± = 2γm(2n±
th + 1) + 16(g±

m)2κ±
κ2± + 4�2

(
2Nth + 1

)
, n±

th = kBT �

h̄γmω±
m

, (58)

γ ±
I =

√
γ 2

m − 2ω±
m (ω±

m + ±
I ) + 2ω±

m

√
ω±

m (ω±
m + 2±

I ) + n̄±λ±
I . (59)

Then, we obtain the solution for each oscillator’s canonical
operator with a transformation operation using the half-beam
splitter:

⎛
⎜⎜⎝
Q1

P1

Q2

P2

⎞
⎟⎟⎠ = S

⎛
⎜⎜⎝
Q+
P+
Q−
P−

⎞
⎟⎟⎠, S = 1√

2

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎞
⎟⎟⎠, (60)

where Q j and P j with j = 1, 2 denote the dimensional posi-
tion operator and momentum operator for each mirror, and Q+
and P+ (Q− and P−) denote the dimensional position operator
and momentum operator for the common mode (the differen-
tial mode), satisfying [Q±,P±] = ih̄. The covariance matrix
with the basis of the individual mirror (Q1,P1,Q2,P2) is
given by

V = S
(
V+ 0
0 V−

)
S ≡

(
V1 V12

V12 V2

)
, (61)
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TABLE I. Parameters employed in Refs. [5,6] and expected from the state-of-art technique. The detuning for the optical common mode is
δ+ = ζ δ−, and Q+, C+, and n+

th are decided in Eqs. (68)–(70).

Symbol Name Value Reference

� Mechanical frequency 2π × 2.2 Hz [5,6]
�(�) Mechanical decay rate 2π × 10−6 Hz [5]
T Bath temperature 300 K [5,6]
η Detection efficiency 0.92 [5,6]
m Mirror mass 7.71 × 10−6 kg [5,6]
� Cavity length 10−1 m [5,6]
ωL (� ωc ) Laser frequency 2π × 300 × 1012 Hz [5,6]
κ− Optical decay rate 2π × 1.64 × 106 Hz [5,6]
F = 2πc/�κ− Finesse 1.8 × 103 [5,6]
Pin Input laser power 30 mW [5,6]
γm Effective mechanical decay rate under feedback control 2π × 6.9 × 10−3 Hz
Nth Thermal photon number 0
δ− = �/κ− (Normalized) detuning 0.2
ζ Normalized detuning ratio of differential mode to common mode 3

|ā| Expectation value of cavity photon quadrature 1.27 × 105

g = |ā|(ωc/�)
√

h̄/2m� Optomechanical coupling 2π × 2.68 × 105 Hz
Q− = ω−

m/γm Quality factor 7.5 × 104

Q+ is defined by Eq. (68) 1.6 × 105

C− = 4(g−
m )2/γmκ− Cooperativity 1.1 × 105

C+ is defined by Eq. (69) 1.6 × 105

n−
th Thermal phonon number 7.5 × 103

n+
th is defined by Eq. (70) 1.8 × 103

where V± is the covariance matrix with the basis (Q±,P±)
defined as

V± =
( h̄

2mω±
m

V ±
11

h̄
2V ±

12

h̄
2V ±

12
2

mh̄ω±
m

V ±
22

)
, (62)

and V1, V12, and V2 are 2 × 2 component matrices. To ana-
lyze the entanglement behavior between the individual mirror
1 and mirror 2 in Fig. 1, we introduce logarithmic negativity
[18,44] with the basis (Q1,P1,Q2,P2) as

EN = max

{
0,− log2

(
2

h̄

√
� − √

�2 − 4detV
2

)}
, (63)

where � = detV1 + detV2 − 2detV12. For a two-mode
Gaussian state, the system is only entangled if the logarithmic
negativity is positive: EN > 0. The critical value εcr is defined
as the second part of the brace in Eq. (63),

εcr = − log2

(
2

h̄

√
� − √

�2 − 4detV
2

)
, (64)

and εcr > 0 shows that the state is entangled. Using the
steady-state covariance matrix for the mechanical common
and differential modes, we have

� = h̄2(γ+ − γm)(γ− − γm)

8λ+
I λ−

I

(
γ 2

+ + γ 2
− − γ+γ− − γ 2

m

ω+
mω−

m

+2
+

I + ω+
m

ω−
m

+ 2
−

I + ω−
m

ω+
m

)
, (65)

detV =
(

h̄2(γ+ − γm)(γ− − γm)

16λ+
I λ−

I

)2(γ 2
+ − γ 2

m

(ω+
m )2

+ 4
+

I

ω+
m

+ 4

)

×
(

γ 2
− − γ 2

m

(ω−
m )2

+ 4
+

I

ω−
m

+ 4

)
. (66)

We introduce the quality factor Q± and cooperativity C± as

Q± = ω±
m

γm
, C± = 4(g±

m)2

γmκ±
. (67)

We can derive logarithmic negativity as a function of Q±, C±,
n±

th, Nth, �/κ±, and η (see Appendix B). Additionally, our
results are not limited to the free-mass region. By introducing
the normalized detuning δ± = �/κ±, the relation (40) leads
to

Q+ = Q−

(
1 + 4C−δ−(ζ 2 − 1)

Q−
(
1 + 4δ2−

)(
1 + 4ζ 2δ2−

))1/2

, (68)

C+ = ζC−

(
1 + 4C−δ−(ζ 2 − 1)

Q−
(
1 + 4δ2−

)(
1 + 4ζ 2δ2−

))−1/2

. (69)

Whereas the resonance frequency is written as �/γm =√
Q(Q − 4Cδ + 4Qδ2)/(1 + 4δ2), the stability condition

Q±(1 + 4δ2
±) > 4C±δ± is always satisfied for δ± > 0 from the

definition (67). As a result, we note that the stability condition
is satisfied for any (C±, Q±, δ±) as long as δ± > 0.

Next, we discuss the entanglement behavior of our re-
sults. We adopt the parameters in Table I, some of which
have already been achieved [5,6], whereas others are conser-
vative parameters expected in the midterm future. Here we
assume the structural damping �(ω±

m ) = �(�)�/ω±
m , which
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FIG. 2. Upper panels: The critical value εcr as a function of C−/n−
th and δ− is shown in the upper left panel, while the same is shown as

a function of �(�)/2π and δ− in the upper right panel. We consider the X measurement of both the optical amplitude quadratures of the
common and differential modes X±. We assumed the structural damping �(ω±

m ) = �(�)�/ω±
m , which leads to n±

th = kBT �(�)�/h̄�m(ω±
m )2.

We also assumed that the environmental temperature T , effective mechanical decay rate γm, mechanical frequency �, and optical decay rate
κ± are fixed, which are given in Table I. The entanglement generation between two oscillators is achieved for the region in dark brown εcr > 0
in the left and right panels, including black circles. We also show the entanglement behavior of each point as a function ζ in Fig. 9 with the
same color curve. Lower panels: The lower left and right panels show ω+

m and ω−
m as functions of δ−, respectively.

leads to

n±
th = kBT �(�)�

h̄γm(ω±
m )2

. (70)

The environmental temperature is effectively lowered by the
feedback control as T → Teff = T �/γm, which reduces the
thermal noise as in Eq. (70).

We now consider the tabletop experiments with mg
scale mirrors, so assume that the mechanical frequency �,

effective mechanical decay rate γm, bath temperature T , op-
tical decay rate κ±, and ratio of the optical decay rate ζ

are fixed as those in Table I; the variable parameters are
the bare mechanical decay rate � and the detuning �. In
these parameter regions, the measurement of the optical
phase quadrature is experimentally difficult. Thus, we primar-
ily consider the measurement of both the optical amplitude
quadratures of the common mode X+ and the differential
mode X−.

FIG. 3. The natural logarithm of the minimum eigenvalue for the differential mode covariance matrix of the mechanical mirrors E−
min is

shown in the upper panel, while the same operation for the mechanical common mode E+
min is shown in the lower panel. Here, the covariance

matrix is normalized at the frequency ω±
m and each component is given by (55) (also see Appendix C). When E±

min < 1, the squeezed uncertainty
is less than the vacuum fluctuation.
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The upper left panel of Fig. 2 plots εcr for the X mea-
surement of both the optical amplitude quadratures X± as a
function of the quantum cooperativity C−/n−

th and the normal-
ized detuning δ−. Here, the quantum cooperativity depends on
both � and δ±, and the upper right panel of Fig. 2 shows the
same plot as a function of � and δ−. Entanglement appears
for εcr > 0, which is achieved for the dark brown regions in
the upper left and right panels. The minimum quantum coop-
erativity required to generate the entanglement is C−/n−

th � 3,
and δ− � 0.1–0.2 is advantageous in generating entanglement
for the X measurement. The lower panels of Fig. 2 show the
behavior of the frequency ω±

m as a function of the detuning δ−.
In the X measurement, the entanglement is optimized near the
peak of the frequency of both modes, 800[Hz] � ω+

m/2π �
1.4[kHz] and 400[Hz] � ω−

m/2π � 500[Hz].
The quantum-squeezed state does not always mean the

entanglement between the mirrors. Namely, there is no one-to-
one connection between the quantum-squeezed state and the
entanglement, which is demonstrated in Figs. 3 and 4. Figure 3
shows the natural logarithm of the minimum eigenvalue for
the mechanical covariance matrix (55), for X measurement
as a function of C−/n−

th and δ−. When the minimum eigen-
value is less than 1, the state is quantum squeezed because
the squeezed uncertainty is less than that of the vacuum
state. Therefore, the region, C−/n−

th
>∼ 1 and 0.1 � δ− � 0.8

roughly, satisfies the condition of a quantum-squeezed state.
Figure 4 shows the curves as the contour for the Wigner

function satisfying W = e−1Wmax. The red dashed, blue solid,
and black dotted curves correspond to the Wigner contours
of the mechanical common mode, the mechanical differential
mode, and the ground state. Each panel assumes that the
parameters C−/n−

th and δ− correspond to the colored circles
in Figs. 2 and 3, respectively. Figure 4(a), which corresponds
to the green circles in Figs. 2 and 3, respectively, shows the
case when neither mode is quantum squeezed and the entan-
glement does not occur. Figures 4(b) and 4(c), corresponding
to the blue and red circles, illustrate the cases in which only
mechanical differential modes are quantum squeezed and both
the mechanical common and differential modes are quantum
squeezed, respectively. However, the entanglement is not gen-
erated in the case for Figs. 4(b) and 4(c). Thus, the behavior of
Figs. 4(b) and 4(c) on the negativity is similar, but the behavior
on the squeezing is different as is shown in Fig. 3. Figure 4(d),
corresponding to the black circle, represents an experimen-
tally feasible parameter expected from the proposed technique
[5,6] by using C±, n±

th, and Q± in Table I. In this case, both
the modes are quantum squeezed and the entanglement is
generated.

Now we discuss the relationship between quantum squeez-
ing and entanglement. The red circle in the upper panels of
Figs. 2 and 3 demonstrates that squeezing does not neces-
sarily imply the generation of entanglement. As shown in
Fig. 4(c), where entanglement is not generated in Fig. 2, we
find that the mechanical differential and common modes are
in a quantum-squeezed state. We infer that purity plays a role
in the generation of entanglement. Figure5 plots the purity as
a function of C−/n−

th and δ− for the mechanical differential
mode (upper panel) and common mode (lower panel). We
find that the high purity and the quantum squeezing are nec-
essary for generating entanglement. At δ− = 0.2, we roughly

FIG. 4. The Wigner ellipses of the mechanical common mode
(red dashed line), mechanical differential mode (blue solid line), and
ground state (black dotted line). The covariance matrices of common
and differential modes’ mechanical mirrors are normalized with the
frequency ω±

m in the left panels and with (ω+
m + ω−

m )/2 in the right
panels. Each panel corresponds to the parameters specified by the
colored circle in Fig. 2: (a) green circle, (b) blue circle, (c) red circle,
and (d) black circle. The circles with the same color in Figs. 2, 3, 5,
6, and 7 assume the same parameters.

need P− >∼ 0.5 and P+ >∼ 0.8 for generating the entanglement
between the two mirrors. The measurement rate in the X
measurement, which is the coefficient of q′

± in the first term
on the right side of Eq. (53), is maximized around δ− = 0.2.
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FIG. 5. The behavior of the purity of differential (upper panel) and common (lower panel) modes. By combining this figure and the upper
panels of Fig. 2, one can roughly read that P− >∼ 0.5 and P+ >∼ 0.8 are necessary at δ− = 0.2 for generating the entanglement.

Thus, the purity required for entanglement increases as δ−
shifts from 0.2.

From an analogy of the entanglement generation by pass-
ing the two squeezed beams through a half-beam splitter, it
is known that the difference in the squeezing angles is an
important factor. This can be read from the right panels of
Fig. 4. We note that this is the property when the Wigner
ellipse is plotted with the variables normalized by the fre-
quency (ω+

m + ω−
m )/2, as is done in Ref. [40]. However, the

left panels of Fig. 4 show the same plots as the right panels
but with the different normalization of the variables with ω±

m.
The common mode and the differential mode are normalized
with ω+

m and ω−
m , respectively, and then the phase diagram of

the vacuum state is the circle with the unit radius. Following
this normalization of the variable, the entanglement can be
generated even for the cases of the small difference of squeez-
ing angle between the mechanical common mode and the
differential mode. Figure 6 plots the difference of squeezing
angle between the common mode and the differential mode as
a function of C−/n−

th and δ−, where squeezing angle is defined
using the Wigner ellipses normalized with the ω±

m as shown

FIG. 6. The behavior of the difference of two squeezing angles
between the mechanical common mode and differential mode nor-
malized by the frequency ω±

m , which is small in our system.

in the left panels of Fig. 4. One can see that the difference
of the squeezing angle is quite small in the entire region of
the plot. We note that these differences of the normalization
do not affect the entanglement at all because the entangle-
ment does not depend on the normalization of the Wigner
ellipse.

We next discuss the entanglement behavior and phase dis-
tribution for the Y measurement in Figs. 7 and 8, which
are similar to those of the X measurement. Figure 7 shows
that the entanglement is more easily generated for small δ±
compared to the case in the X measurement (upper panels
of Fig. 2). The difference is understood by the efficiency of
the measurements, which is described by the first term of the
right-hand side of Eqs. (19) and (21). The ellipses in Fig. 8
show the significance of squeezing for the Y measurement,
where each panel corresponds to the parameters specified by
the colored circles in Fig. 7. For the free-mass limit with
δ± = 0 and ζ ≈ 70, the squeezing angles looks near orthogo-
nal when the Wigner ellipses are normalized by the common
measurement rate, which is consistent with Ref. [40]. From an
experimental point of view, it should be noted that conducting
the homodyne (Y ) measurement assumed in Table I is not
easy due to the problem of detection of such a high-power
laser, which might make entanglement generation with the X
measurement advantageous under the condition of the param-
eters in Table I. Finesse can be enhanced in order to avoid
this difficulty; however, it reduces the linear range of the op-
tical cavity such that cavity length control becomes difficult.
In the above analysis we fixed the parameter ζ = 3, which
characterizes the asymmetry of the mechanical common and
differential modes. Here we discuss how the entanglement
behavior depends on the parameter ζ . Figure 9 shows the
logarithmic negativity for the X measurement (left panel) and
the frequency ratio ω+

m/ω−
m (right panel) as a function of ζ .

The entanglement with the parameters in Table I, which is the
solid black curve, saturates for ζ >∼ 10. The green curve in
the left panel of Fig. 9 increases significantly as ζ increases.
We infer that the joint effect of the mechanical common mode
and the differential mode on the entanglement is important.
Figure 10 plots the purity of the common mode P+ as func-
tions of ζ , where the purity of the differential model P− is
fixed for each curve as P− = 0.67 (black solid curve), 0.05
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FIG. 7. Same as the upper panels of Fig. 2 but for the Y measurement. We consider the Y measurement of both the optical phase quadratures
of the common and differential modes Y±.

(green solid curve), 0.81 (blue dashed curve), and 0.60 (red
dash-dotted curve). The green curves in Fig. 10 and the left
panel of Fig. 9 demonstrate that the entanglement appears by
increasing the purity of the common mode when ζ increases,
even when the purity of the differential mode is small. We note
that this statement relies on the fact that the squeezing level of
the differential mode is fixed. Furthermore, the measurement
efficiency, which is the coefficient of q in the first term of the
right-hand side in Eq. (19), plays an important role for the
squeezing through the detuning parameter when ζ changes.
Thus ζ is important for entanglement to control the purity
and the asymmetry of the squeezing between the mechanical
common and the differential modes which is caused by the
asymmetric measurement efficiency.

V. SUMMARY AND CONCLUSIONS

We investigated the feasibility of generating a macroscopic
Gaussian entanglement between mechanical oscillators cou-
pled with cavity optical modes under continuous measurement
and feedback control. The mechanical oscillators are trapped
with an optical spring owing to the detuning and squeezing
achieved by measuring the output light. We considered a
Fabry-Pérot-Michelson interferometer with a power-recycled
mirror to generate asymmetry between the mechanical com-
mon and differential modes. In this system, the two oscillators
are entangled by the optical beams passing through the half-
beam splitter. This follows from the fact that the entangled
beam is generated by squeezed beams passing through a
half-beam splitter. In our optomechanical systems, the
squeezed states of optical beams are produced through
measurement with the Kalman filter, which optimizes the esti-
mation of the oscillator quadratures, whose covariance matrix
is determined by the Riccati equation in a steady state. We
derived the logarithmic negativity for the X and Y measure-
ments in an analytic manner, including detuning and feedback
control, and they are not limited to only the free-mass regions.

We analyzed the logarithmic negativity and phase-space
distribution, assuming tabletop experiments with the ex-
perimentally feasible parameters expected from the present
technique [5,6]. The quantum cooperativity C±/n±

th and the
detuning δ± characterize the entanglement behavior. The com-

mon mode and the differential mode of the oscillators are
quantum squeezed for C±/n±

th
>∼ 1; however, it is not enough

for entanglement generation. Namely, entanglement does not
occur in the region with low purity even if both mechani-
cal modes are squeezed. Therefore, quantum-squeezed states
with high purity are necessary to generate entanglements. The
required values for generating the entanglement depend on
the detuning and measurement schemes. For the X measure-
ment, the condition of the quantum cooperativity C−/n−

th
>∼ 3

is required, assuming ζ = 3 and δ− = 0.2. These values will
be achieved in the midterm. The required values for the Y
measurement can be slightly weakened depending on the level
of detuning applied, though the homodyne (Y ) measurement
with high-power laser is experimentally difficult to achieve.
Thus, it is possible to experimentally generate quantum entan-
glement between mg-scale objects in the near future. These
predictions of quantum entanglement between macroscopic
objects are not only a first step towards verifying the quantum
nature of gravity but may also assist in verifying quantum
mechanics in the macroscopic world.

For a realistic experimental setup, there are issues to be
further considered. In the present analysis, coating thermal
noise is ignored. This approximation is typically valid for
the bandwidth around 1 kHz [5], but the influence of such
a noise should be clarified in wide parameter regions. In an
optomechanics with suspended mirrors, there exist additional
mechanical modes other than the pendulum mode, e.g., rota-
tion mode and violin modes [47], which is also left for future
investigations.

ACKNOWLEDGMENTS

We are grateful for the discussions in the QUP theoretical
collaboration. We especially thank S. Iso for his support and
helpful discussions. K.Y. was partially supported by Japan So-
ciety for the Promotion of Science (JSPS) KAKENHI Grant
No. 22H05263. N.M. is supported by JSPS KAKENHI Grant
No. 19H00671 and Japan Science and Technology Agency
FORESTO Grant No. JPMJFR202X. D.M. is supported by
JSPS KAKENHI Grant No. 22J21267. Y.S. was supported
by the Kyushu University Innovator Fellowship in Quantum
Science.

032410-11



DAISUKE MIKI et al. PHYSICAL REVIEW A 107, 032410 (2023)

FIG. 8. Same as Fig. 4 but for the Y measurement, i.e., the
Wigner ellipses in the the phase space for the colored grid points
in Fig. 7.

APPENDIX A: INPUT-OUTPUT RELATION
FOR THE INTERFEROMETER

We consider the input-output relation for the power-
recycled Fabry-Pérot-Michelson interferometer shown in
Fig. 1. The input-output relation of the individual Fabry-Pérot
cavity is obtained by

x1
out = x1

in − √
κx1, (A1)

x2
out = x2

in − √
κx2, (A2)

where we assume that the optical decay rate is the same. Since
there is no mirror on the differential mode side, we obtain the
output optical quadrature of the differential mode as

x−
out = x1

out − x2
out√

2
= x1

in − x2
in − √

κ (x1 − x2)√
2

= x−
in − √

κx−. (A3)

Then, we consider the input-output relationship considering
the power-recycled mirror on the optical common mode side.
Using the transmissivity T and the reflectivity R = 1 − T , we
have

x+
out =

√
Rx+

in +
√

T ρ+
out,

ρ+
in = −

√
Rρ+

out +
√

T x+
in, (A4)

where ρ+
out and ρ+

in are

ρ+
out = x1

out + x2
out√

2
, (A5)

ρ+
in = x1

in + x2
in√

2
. (A6)

Hence, the output optical quadrature of the common mode is

x+
out =

x1
in + x2

in −
√

1−√
R

1+√
R
κ (x1 + x2)

√
2

= x+
in −

√
1 − √

R

1 + √
R

κx+.

(A7)

Hence, we derive the relation between the optical decay rates
of common mode and differential mode as

κ+ = 1 − √
R

1 + √
R

κ− ≡ 1

ζ
κ−. (A8)

APPENDIX B: LOGARITHMIC NEGATIVITY

Using the quality factor Q± = ω±
m/γm and cooperativity

C± = 4(g±
m)2/γmκ±, we obtain

λ±
X

γm
= 16C±δ2

±η

(2ηNth + 1)(1 + 4δ2±)2
≡ λ±′

X ,

λ±
Y

γm
= 4C±η

(2ηNth + 1)(1 + 4δ2±)2
≡ λ±′

Y , (B1)

±
X

γm
= −±

Y

γm
= − 8C±δ±η

(1 + 4δ2±)2

2Nth + 1

2ηNth + 1
≡ ±′

X , (B2)

n̄±
γm

= 4n±
th + 2 + 4C±

(1 + 4δ2±)
(2Nth + 1) ≡ n̄′

±, (B3)

γ ±
I

γm
=

√√√√1 − 2Q2±

(
1 + ±

I

γmQ±
−
√

1 + 2
±

I

γmQ±
+ n̄±λ±

I

γ 2
mQ2±

)

≡ γ ±′
I , (B4)
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FIG. 9. The behavior of the logarithmic negativity for the X measurement (left panel) and the ratio of frequency of the mechanical common
mode to that of the differential mode (right panel) as a function of ζ . Each curve in the four colors assumes the same parameters as those of
the circle in the same corresponding color in Fig. 2.

where we define δ± = �/κ±. From Eqs. (65) and (66), we exactly derive the critical value as

εcr = − 1

2
log2

[
(γ +′

I − 1)(γ −′
I − 1)

4λ+′
I λ−′

I

{(
(γ +′

I )2 + (γ −′
I )2 − γ +′

I γ −′
I − 1

Q+Q−
+ 2

+′
I + Q+

Q−
+ 2

−′
I + Q−

Q+

)

−
(

((γ +′
I )2 + (γ −′

I )2 − 1)(γ +′
I − γ −′

I )2

Q2+Q2−
+ 4

(
+′

I + Q+
Q−

− −′
I + Q−

Q+

)2

+ 4
γ +′

I (γ +′
I − γ −′

I )(+′
I + Q+)

Q+Q2−
− 4

γ −′
I (γ −′

I − γ +′
I )(−′

I + Q−)

Q2+Q−

)1/2}]
. (B5)

APPENDIX C: SQUEEZING ANGLE

The covariance matrix of a single mirror is diagonalized as

V = P−1

⎛
⎝ 1

2

(
V11 + V22 −

√
(V11 − V22)2 + 4V 2

12

)
0

0 1
2

(
V11 + V22 +

√
(V11 − V22)2 + 4V 2

12

)
⎞
⎠P

≡ P−1

(
Emin 0

0 Emax

)
P (C1)

where Emin (Emax) denotes the minimum (maximum) eigen-
value of the covariance matrix V±. P is the rotation

FIG. 10. Purity of the mechanical common mode for the X mea-
surement as a function of ζ . Here P− is fixed for each curved as
P− = 0.67 (black solid curve), 0.05 (green solid curve), 0.81 (blue
dashed curve), and 0.60 (red dash-dotted curve).

matrix

P =

⎛
⎜⎝
√

1
2

(
1 + Emax+Emin−2V11

Emax−Emin

) √
1
2

(
1 − Emax+Emin−2V11

Emax−Emin

)
−
√

1
2

(
1 − Emax+Emin−2V11

Emax−Emin

) √
1
2

(
1 + Emax+Emin−2V11

Emax−Emin

)
⎞
⎟⎠,

(C2)

and its components are defined as

P =
(

cos(−θ ) − sin(−θ )
sin(−θ ) cos(−θ )

)
. (C3)

Hence, the squeezing angle can be obtained as follows:

θ = arctan

⎡
⎢⎢⎣
√√√√√
√

(V22 − V11)2 + 4V 2
12 + V11 − V22√

(V22 − V11)2 + 4V 2
12 − V11 + V22

⎤
⎥⎥⎦

= arctan

⎡
⎣
√

V11 − Emin

Emax − V11

⎤
⎦. (C4)
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