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Certification of the maximally entangled state using nonprojective measurements
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In recent times, device-independent certification of quantum states has been one of the intensively studied
areas in quantum information. However, all such schemes utilize projective measurements which are practically
difficult to generate. In this paper, we consider the one-sided device-independent scenario and propose a self-
testing scheme for the two-qubit maximally entangled state using nonprojective measurements, in particular,
three three-outcome extremal positive operator-valued measures. We also analyze the robustness of our scheme
against white noise.
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I. INTRODUCTION

The existence of nonlocal correlations, as was first realized
by Einstein, Podolski, and Rosen in 1935 [1] as a paradox
and then subsequently by Schrödinger in the same year [2], is
one of the most intriguing features of quantum theory. Con-
sequently, Bell [3,4] proposed a mathematical formulation to
detect whether or not quantum theory is inherently nonlocal,
and thus it is commonly referred to as Bell nonlocality. Apart
from its relevance in the foundations of physics, Bell nonlo-
cality has given rise to an enormous number of applications in
computation, communication, and information theory [5].

A recent application of nonlocality is a device-independent
(DI) certification where, assuming quantum theory and some
other physically well-motivated assumptions, the statistics
obtained from a black box are enough to validate the under-
lying mechanism inside it. The strongest DI certification is
referred to as self-testing. First introduced in Ref. [6], self-
testing allows one to certify the underlying quantum states
and the measurements, up to some freedom based on the
maximal violation of a Bell inequality [7]. In recent times,
there has been increased interest to find protocols to self-test
various quantum systems due to their applicability in various
quantum information tasks. Despite the progress in designing
schemes to self-test various quantum states using projective
measurements, for instance, Refs. [8–18], a scheme that uti-
lizes nonprojective measurements is lacking.

The precision to experimentally generate sets of projective
measurements, which are a prerequisite to observe any form
of nonlocality, reduces as the dimension of the system grows
(see, for instance, Ref. [19]). Thus, a natural question arises
whether noisy measurements or nonprojective measurements
can also be used to self-test quantum states. Further on, to
self-test any state or measurement, one needs to observe the
maximal violation of an inequality which touches the set of
quantum correlations, or simply the quantum set, at a partic-
ular point. It is also an open question in quantum foundations
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whether a point on the boundary of the quantum set in some
scenarios can be saturated by only nonprojective measure-
ments.

Self-testing quantum states using nonprojective measure-
ments is not possible in the standard Bell scenario, the reason
being that the maximal violation of Bell inequalities can al-
ways be achieved by projective measurements. Consequently,
we consider another form of nonlocality, known as quantum
steering [20–22]. To witness quantum steering, one needs to
consider the Bell scenario with an additional assumption that
one of the parties is trusted. In the DI regime, this is referred
to as the one-sided device-independent (1SDI) scenario. The
certification of quantum states and measurements in the 1SDI
scenario has gained recent interest [23–29] as they are more
robust to noise and require detectors with lower efficiencies
when compared to fully DI scenarios [30,31].

In this paper, we provide a scheme to certify the two-qubit
maximally entangled state

|φ+〉 = 1√
2

(|00〉 + |11〉) (1)

using three three-outcome nonprojective extremal measure-
ments in the 1SDI scenario. For this purpose, we first
construct a steering inequality with two parties such that each
of them chooses three inputs and gets three outputs. We then
use the maximal violation of this steering inequality to obtain
the self-testing result. We finally show that our scheme is
highly robust when the states and measurements are mixed
with white noise.

II. PRELIMINARIES

Before proceeding to the results, let us first describe the
scenario and notions used throughout this work.

A. Extremal positive operator-valued measure (POVM)

Any measurement in quantum theory, usually referred to
as a POVM, is represented as M = {Ma}, where Ma are the
measurement elements corresponding to the ath outcome of

2469-9926/2023/107(3)/032408(6) 032408-1 ©2023 American Physical Society

https://orcid.org/0000-0001-5833-4466
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.032408&domain=pdf&date_stamp=2023-03-08
https://doi.org/10.1103/PhysRevA.107.032408


SHUBHAYAN SARKAR PHYSICAL REVIEW A 107, 032408 (2023)

M. These elements are positive semi-definite operators and∑
a Ma = 1. Now, a POVM that cannot be expressed as a

convex combination of other POVMs is defined as an extremal
POVM. As shown in Ref. [32], the elements Ma of any rank-
one extremal POVM can be expressed as Ma = λa|νa〉〈νa|,
where λa � 0 and the elements are linearly independent.

B. Quantum steering scenario

In this paper, we consider a simple scenario to wit-
ness quantum steering, consisting of two spatially separated
parties, namely, Alice and Bob. They locally perform mea-
surements on their respective subsystems which they receive
from a preparation device. Bob can choose among three
measurements denoted by By such that y = 0, 1, 2, each of
which results in three outcomes labeled by b = 0, 1, 2. The
measurement performed by Bob might affect the received
subsystem with Alice which is denoted as σ

y
b ∈ HA, where

σ
y
b are positive semidefinite operators. The collection of these

operators σ = {σ y
b such that b = 0, 1, 2, y = 0, 1, 2} is called

an assemblage.
In quantum theory the operators σ

y
b are expressed for any

y, b as

σ
y
b = TrB

[(
1A ⊗ Nb

y

)
ρAB

]
, (2)

where ρAB ∈ HA ⊗ HB is the state shared between Alice and
Bob and By = {Nb

y } denote Bob’s measurements. Alice is
trusted here, which means that her measurements are known
or she can perform tomography on her subsystem. If the
shared state is not steerable, then the assemblage has a local
hidden state (LHS) model [20] defined as

σ
y
b =

∑
λ

p(λ)pλ(b|y)ρλ, (3)

where
∑

λ p(λ) = 1, pλ(b|y) are the probability distributions
over λ, and ρλ are density matrices over HA. As Alice can
perform topographically complete measurements on σ b

y , in
general, quantum steering is witnessed by the so-called “steer-
ing functional,” a map from the assemblage {σ b

y } to a real
number [33].

Instead of checking the steerability of the assemblage,
quantum steering can be equivalently witnessed similar to a
Bell scenario where trusted Alice and untrusted Bob performs
the measurements Ax = {Ma

x } and By = {Nb
y }, respectively,

and obtain the joint probability distribution �p = {p(a, b|x, y)},
where a, b, x, y = 0, 1, 2. Here, a, x denotes the output and in-
put of Alice, respectively. The probabilities can be computed
in quantum theory as

p(a, b|x, y) = Tr
[(

Ma
x ⊗ Nb

y

)
ρAB

] = Tr
(
Ma

x σ
y
b

)
. (4)

To witness quantum steering, a steering inequality B can now
be constructed from �p as

B( �p) =
∑

a,b,x,y

ca,b|x,y p(a, b|x, y) � βL, (5)

where ca,b|x,y are real coefficients and βL denotes the
maximum value attainable using assemblages admitting an
LHS model (3). The probabilities one obtains from such

FIG. 1. Quantum steering scenario. Alice and Bob are spatially
separated and each of them receive a subsystem on which they
perform three three-outcome measurements. They are not allowed
to communicate during the experiment. Once it is complete, they
construct the joint probability distribution {p(a, b|x, y)}.

assemblages are expressed using (3) as

p(a, b|x, y) =
∑

λ

p(λ)p(a|x, ρλ)p(a|x, λ). (6)

The above representation (6) will be particularly useful to find
the LHS bound of the steering inequality proposed in this
work. In the DI framework, the above-presented scenario is
also referred to as the 1SDI scenario (see Fig. 1).

C. Self-testing

Inspired by [28], we now define self-testing in the 1SDI
scenario.

Definition 1. Consider the above 1SDI scenario with the
preparation device creating a state |ψ〉AB. Alice and Bob
perform measurements on this state and observe the joint
probability distribution {p(a, b|x, y)}. Alice is trusted and her
measurements Ax are fixed and Bob’s measurements repre-
sented as By = {Nb

y } are arbitrary. Let us now consider that
the distribution {p(a, b|x, y)} is generated by an ideal experi-
ment with a state |ψ̃〉AB and Bob’s measurements B̃y = {Ñb

y }.
Then, the state |ψ〉AB and measurements By are certified from
{p(a, b|x, y)} if there exists a unitary UB : HB → HB such that

(1A ⊗ UB)|ψ〉AB = ∣∣ψ̃ 〉
AB, (7)

and

UB 	BNb
y 	B U †

B = Ñb
y , (8)

where 	B is the projection onto the support of the local
support ρB = TrA(|ψ〉〈ψ |AB).

Let us now proceed towards the results of this work.

III. RESULTS

We begin by constructing a steering inequality stated using
the joint probability distribution �p as

W =
2∑

a,b,x=0

p(a, b 	= a|x, y = x) � βL. (9)

Using the fact that
∑

a,b p(a, b|x, y) = 1 for all x, y, we can
simplify the above steering inequality as

W = 3 −
2∑

a,x=0

p(a, a|x, x) � βL. (10)

Alice is trusted and performs the measurements Ax =
{Ma

x }a=0,1,2, where x = 0, 1, 2 and the measurement elements
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are given as Ma
x = 2

3 |ea,x〉〈ea,x|. Here, the vectors |ea,x〉 ∈ C2

are given by

|e0,0〉 = |0〉, |e0,1〉 = 1

2
|0〉 +

√
3

2
|1〉,

|e0,2〉 = 1

2
|0〉 −

√
3

2
|1〉, |e1,0〉 = |1〉,

|e1,1〉 =
√

3

2
|0〉 + i

2
|1〉, |e1,2〉 =

√
3

2
|0〉 − i

2
|1〉,

|e2,0〉 = 1√
2

(|0〉 + i|1〉), |e2,1〉 = 1√
2

(|0〉 + e
7πi

6 |1〉),
|e2,2〉 = 1√

2

(|0〉 + e
−πi

6 |1〉). (11)

Notice that Alice’s measurement is extremal.
Let us now compute the LHS bound βL of the steering

inequality (9). Using (6), we rewrite the steering functional
W from Eq. (10) as

W = 3 −
2∑

a,x=0

∑
λ

p(λ)p(a|x, ρλ)p(a|x, λ). (12)

We focus on the last term in Eq. (12) for each x and notice that
they can be bounded from below in the following way,

2∑
a=0

∑
λ

p(λ)p(a|x, ρλ)p(a|x, λ)

�
∑

λ

p(λ) min
a

{p(a|x, ρλ)}, (13)

where x = 0, 1, 2 and we used the fact that
∑

a p(a|x, λ) = 1
for any x and λ. Now, minimizing over ρλ, we obtain∑

λ

p(λ) min
a

{p(a|x, ρλ)} �
∑

λ

p(λ) min
ρλ

min
a

{p(a|x, ρλ)}.

(14)

Using the fact
∑

λ p(λ) = 1, we get that the LHS bound is
upper bounded by

βL � 3 −
2∑

x=0

min
|ψ〉∈C2

min
a

{p(a|x, |ψ〉)}. (15)

Notice that since the steering functional W is linear, the min-
imization can be carried out over pure states. Numerically
evaluating the above quantity by putting in Alice’s measure-
ments (11), we find that

βL � 2.673. (16)

For this purpose, we choose a state |ψ〉 ∈ C2 parametrized
using the Bloch representation as

|ψ〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉, (17)

where 0 � θ � π/2 and 0 � φ � π . Now, the probabilities
p(a|x, |ψ〉) when Alice performs the measurement Ma

x are
given by p(a|x, |ψ〉) = |〈ea,x|ψ〉|2 which are a function of
θ, φ. Then, a simple optimization over the parameters θ, φ

gives us the local bound (16).

Let us now evaluate the quantum bound βQ, the maximal
value achievable using quantum states and measurements, of
the steering functional W (9). The quantum bound is in fact
the same as the algebraic bound of W (9), that is, 3 and for
instance can be achieved by |ψ〉AB = |φ+〉AB and Bob’s mea-
surements Bx = {Na

x }a=0,1,2, such that x = 0, 1, 2. Here, the
measurement elements Na

x = 2
3 | fa,x〉〈 fa,x| such that | fa,x〉 =

|e∗⊥
a,x〉 ∈ C2, that is, 〈e∗

a,x| fa,x〉 = 0 where |ea,x〉 are specified
in Eq. (11) and ∗ denotes their conjugate.

It is important to note here that to achieve the maximal
violation of the steering inequality (9), all the probabilities
p(a, a|x, x) in (10) have to be 0, that is,

p(a, a|x, x) = 0, a, x = 0, 1, 2, (18)

along with the condition that
∑

a,b p(a, b|x, y) = 1 for all x, y.
This simple relation (18) is in fact sufficient to self-test the
unknown state and measurements that result in the maximal
violation of the steering inequality (9). Let us now proceed to
the main result of this work.

Theorem 1. Consider that the steering inequality (10) is
maximally violated by a state |ψ〉AB ∈ C2 ⊗ HB and three-
outcome measurements By = {Nb

y } (y = 0, 1, 2) acting on HB.
Alice is trusted and her measurements Ax are given in (11).
Then, there exists a local unitary transformation on Bob’s side,
UB such that

(1A ⊗ UB)|ψ〉AB = |φ+〉AB, (19)

and

UB 	BNb
y 	B U †

B = 2
3 |e∗⊥

b,y〉〈e∗⊥
b,y|, (20)

where |eb,y〉 are given in (11) and 	B is the projector onto the
support of ρB = TrA(|ψ〉〈ψ |AB).

Proof. We begin by considering a state ρAB that maximally
violates the steering inequality (9). However, Bob’s dimension
is unrestricted and thus we can always purify this state by
adding an auxiliary system to Bob. Thus without loss of gen-
erality, we consider that the state that results in the maximal
violation is given by |ψ〉AB.

Now, as the dimension of Alice’s Hilbert space is 2, as sug-
gested in Ref. [28] let us consider the Schmidt decomposition
of the state |ψ〉AB as

|ψ〉AB =
∑
i=0,1

λi|si〉A|ti〉B, (21)

where the coefficients λi > 0 and satisfy the condition∑
i λ

2
i = 1. The local vectors |si〉 ∈ C2 and |ti〉 ∈ HB are or-

thonormal. Notice that the coefficients λi 	= 0 as any violation
of the steering inequality (9) imposes that the state |ψ〉AB is
entangled.

Let us now observe that there exists a unitary UB such that
UB|ti〉 = |s∗

i 〉 for every i. Thus, the state (21) can be expressed
as

(1A ⊗ UB)|ψ〉AB = (1A ⊗ PB)
1√
2

∑
i=0,1

|si〉|s∗
i 〉, (22)

where

PB =
√

2
∑
i=0,1

λi|s∗
i 〉〈s∗

i |. (23)
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Notice that PB is full rank as λi 	= 0 in the state (21). The state
on the right-hand side of Eq. (22) is the two-qubit maximally
entangled state. Thus,

(1A ⊗ UB)|ψ〉AB = |ψ̃〉AB = (1A ⊗ PB)|φ+〉AB. (24)

Let us now consider that Bob’s measurements are POVMs
given by By = {Nb

y } such that b, y = 0, 1, 2. We can char-
acterize these measurements only on the support of Bob’s
reduced state ρB. Thus, we project these measurements onto
the support of ρB to get

	BNb
y 	B = N

b
y, (25)

where 	B = |t0〉〈t0| + |t1〉〈t1| such that |ti〉 are specified in
Eq. (21). Now, as shown in Ref. [34], a product of two
positive semidefinite matrices is also positive semidefinite.

Thus, N
b
y is also positive semidefinite as 	B, Nb

y are both
Hermitian and positive semidefinite matrices. The condition∑

a,b p(a, b|x, y) = ∑
b p(b|y) = 1 imposes that

∑
b N

b
y = 1B

for all y. Applying the unitary UB, we arrive at

UBN
b
yU

†
B = Ñb

y ∀b, y. (26)

Notice from the above formula (26) that Ñb
y acts on

the Hilbert space C2. Now, evaluating the joint probability
p(a, a|x, x) using the state (24) and the measurements (26),
we obtain

p(a, a|x, x) = 〈φ+|(1A ⊗ PB)
[
Ma

x ⊗ Ña
x

]
(1A ⊗ PB)|φ+〉,

(27)
where Ma

x denote Alice’s measurement elements and are given
in Eq. (11). Now using the condition (18), we arrive at

p(a, a|x, x) = 〈φ+|Ma
x ⊗ PBÑa

x PB|φ+〉 = 0. (28)

Using the fact that R ⊗ Q|φ+〉 = 1 ⊗ QRT |φ+〉, where RT

denotes the transpose of R in the standard basis, we get from
Eq. (28) that

Tr
[
PBÑa

x PBMaT
x

] = 0. (29)

Now, notice from (23) that PB and Ña
x are positive semidefi-

nite. Thus PBÑa
x PB is also positive semidefinite [34]. Now, we

take the eigendecomposition of PBÑa
x PB as

PBÑa
x PB =

∑
i=0,1

αi,a,x|ki,a,x〉〈ki,a,x|, (30)

such that αi,a,x � 0. Expanding Ma
x using (11), we obtain from

Eq. (29) that ∑
i=0,1

αi,a,x|〈e∗
a,x|ki,a,x〉|2 = 0, (31)

where we used the fact that for any projector 	T = 	∗. As
Ña

x acts on C2 along with the fact that |ea,x〉 ∈ C2 for any a, x,
we expand |ki,a,x〉 in the basis {|e∗

a,x〉, |e∗⊥
a,x〉} to obtain from

(31) that

PBÑa
x PB = βa,x|e∗⊥

a,x〉〈e∗⊥
a,x|, (32)

where βa,x > 0. Then, using the fact that
∑

a Ña
x = 1 for any

x, we get

P2
B =

∑
a

βa,x|e∗⊥
a,x〉〈e∗⊥

a,x| ∀x. (33)

Thus, βa,x must satisfy the following condition,
∑

a

βa,x|e∗⊥
a,x〉〈e∗⊥

a,x| =
∑

a

βa,x′ |e∗⊥
a,x′ 〉〈e∗⊥

a,x′ | (34)

for any x, x′ = 0, 1, 2. Solving the above conditions by putting
in the explicit form of |ea,x〉 (11), we get that βa,x = βa′,x′ for
any a, x, a′, x′. Thus, from Eq. (33) we arrive at

P2
B = 3β0,0

2
1B, (35)

where we used the fact that
∑

a |e∗⊥
a,x〉〈e∗⊥

a,x| = 3
21 for any x.

This implies from (24) that

|ψ̃〉AB =
√

3β0,0

2
|φ+〉AB. (36)

Normalizing the above state, we get that β0,0 = 2/3. Thus,
we have that the state up to some local unitary UB is the two-
qubit maximally entangled state while the measurements from
Eq. (32) are

Ña
x = 2

3 |e∗⊥
a,x〉〈e∗⊥

a,x|. (37)

This completes the proof. �

Robustness against white noise

From an experimental perspective, it is important to find
the robustness of our certification scheme against noise that
might be present in the sources or the detectors. However, to
perform an experiment it is not always necessary to find the
full robustness, which captures the fidelity between the real
and ideal state with respect to the violation of the steering
inequality.

Here, inspired by practical experiments, we find the robust-
ness of our scheme with respect to a specific noise model,
that is, when the ideal states and measurements, that result
in the maximal violation of the steering inequality (9), are
mixed with white noise. For this purpose, let us consider ideal
Bob’s POVMs Bx = { 2

3 |e∗⊥
a,x〉〈e∗⊥

a,x|}a=0,1,2 where x = 0, 1, 2,

and |ea,x〉 given in Eq. (11). We add white noise to every
measurement element and define the new measurement as
Bx = {Na

x }a=0,1,2 such that

Na
x = 2

3

(
(1 − εa,x )|e∗⊥

a,x〉〈e∗⊥
a,x| + εa,x

2
1

)
. (38)

Similarly, adding white noise to the maximally entangled
state, we obtain that the noisy state shared between Alice and
Bob is

ρAB = (1 − 2εs)|φ+〉〈φ+|AB + εs

2
1. (39)

It is worth noting here that the term 1 − εi for any index i is
usually referred to as the visibility parameter. Notice that the
measurement elements and state being positive semidefinite
imposes that noise parameters εa,x � 0 for any a, x along with
εs � 0. Let us denote ε = max{maxa,x{εa,x}, εs}. Without loss
of generality, we can replace all the noise parameters εa,x, εs

in Eqs. (38) and (39) with ε.
Let us now evaluate the steering functional (10), with Alice

being trusted and her measurements are given in (11), using

032408-4



CERTIFICATION OF THE MAXIMALLY ENTANGLED … PHYSICAL REVIEW A 107, 032408 (2023)

the noisy state (39) and noisy Bob’s measurements (38). For
this purpose, let us first compute p(0, 0|0, 0) as

p(0, 0|0, 0) = 2
3 Tr

(|e0,0〉〈e0,0| ⊗ N0
0 ρAB

)
. (40)

Substituting |e0,0〉 from (11), N0
0 from (38) and ρAB from (39),

we obtain that

p(0, 0|0, 0) = ε

9
(3 − 2ε). (41)

Proceeding in a similar manner, we obtain for any a, x =
0, 1, 2 that

p(a, a|x, x) = ε

9
(3 − 2ε). (42)

Thus, the value of the steering functional (10) when the ideal
states and measurements are mixed with white noise is given
by

W = 3 + 2ε2 − 3ε � 3(1 − ε). (43)

Therefore, the proposed self-testing scheme is highly robust
against white noise as the value of the steering functional
changes linearly with respect to the noise parameter ε.

Let us also analyze the robustness of our protocol when the
state shared between Alice and Bob has a noise model of the
form

ρAB = (1 − 2εs)|φ+,δ〉〈φ+,δ|AB + εs

2
1, (44)

where

|φ+,δ〉 = 1√
2[1 + (1 − δ)2]

[|00〉 + (1 − δ)|11〉]. (45)

Evaluating the steering functional W (10) using the above
state (44) and noisy Bob’s measurements (38), we get that

W = 3 − f (δ, ε) (46)

such that

f (δ, ε)

= 3
√

2δ(3 − 2ε)ε + 3ε(−3 + 2ε) + δ2(−2 + ε)(1 + 2ε)

−3 + 3(
√

2 − δ)δ
.

(47)

Thus, even when the state consists of noise along with
an imbalance in the coefficient of the maximally entan-
gled state, our scheme is highly robust as f (δ, ε) � O(δ, ε)
when ε, |δ| � 1.

IV. CONCLUSIONS

There are a few certification schemes in the prepare-and-
measure scenarios, for instance [35,36], that utilize nonpro-
jective measurements. However, none of these schemes can
certify entangled states. In this paper, utilizing the quantum
steering scenario, we propose a scheme for the certification
of the two-qubit maximally entangled state using nonpro-
jective measurements. Along with it, we also certified three
three-outcome extremal POVMs on the untrusted Bob’s side.
We then show that our scheme is highly robust against the
presence of white noise in the experimental devices. It is worth
noting here that the certification of states using nonprojective
measurements cannot be implemented in the standard Bell
scenario. Thus, we identify a task that can be done using
quantum steering but not using Bell nonlocality. This work
also suggests that quantum steering might be useful towards
designing highly noise-tolerant self-testing schemes, that is,
quantum states might be certifiable using noisy projective
measurements in the quantum steering scenario.

Some follow-up questions arise from our work. First, it will
be interesting to find 1SDI certification of any pure two-qubit
entangled state using only nonprojective measurements. A
challenging problem in this regard would be to find a 1SDI
scheme that can certify states of arbitrary dimension using
only POVMs. In this work, we utilized extremal measure-
ments, however, it will be interesting if one can find similar
certification schemes using nonextremal measurements.
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