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Correlation between resource-generating powers of quantum gates
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We analyze the optimal basis for generating the maximum relative entropy of quantum coherence by an
arbitrary gate on a two-qubit system. The optimal basis is not unique and the high-quantum-coherence-generating
gates are also typically high-entanglement-generating ones and vice versa. However, the profile of the relative
frequencies of Haar random unitaries generating different amounts of entanglement for a fixed amount of
quantum coherence is different from the one in which the roles of entanglement and quantum coherence are
reversed, although both follow a Beta distribution.
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I. INTRODUCTION

The characterization of resource theory within quantum
information science and technology was initiated with the
theory of entanglement [1–4]. In general, a resource theory
is constructed by putting certain natural constraints on the set
of all quantum-mechanical operations to perform a specific
job and the restrictions are overcome by utilizing certain
resources. The nature of the constraints of course depends
on the accessible physical system and the job at hand. In
entanglement theory and practice, the restriction is set by
the constraint that the observers, generally assumed to be at
distant locations, will be able to perform only local quantum
operations and classical communication and the resources are
the entangled states shared by the same observers. In this
manner, entanglement becomes useful in several interesting
phenomena and tasks like quantum teleportation [5–7], quan-
tum cryptography [8–10], and quantum dense coding [11,12].
Quantum coherence [13–16] (see also [17–19]) is also one
of the principal resources in quantum phenomena and infor-
mation tasks and along with being the reason for the classic
interference phenomena it is also useful in jobs in quantum-
enhanced metrology (see, e.g., [20–22]), quantum algorithms
(see, e.g., [23–27]), quantum state discrimination (see, e.g.,
[28,29]), etc. The allowed operations are now the so-called
incoherent operations and the resources are the quantum co-
herent states.

Quantifying the entanglement generated by quantum evo-
lutions has been extensively studied in the literature (see,
e.g., [30–50]). In particular, the two-qubit unitaries that gen-
erate maximal entanglement from zero-resource pure input
states (i.e., two-qubit pure product states) were identified,
among other things, in Ref. [31]. The effect of auxil-
iaries on the entanglement-generating ability was considered
in, e.g., [31,35,41]. The case of mixed-state inputs was
considered in, e.g., [32,34]. Generation of maximal entangle-
ment using global unitaries of arbitrary bipartite dimensions
was considered in, e.g., [43]. The asymptotic limit of the
entanglement-generating capacity of a bidirectional channel
acting on two d-dimensional systems has also been investi-
gated in, e.g., [44]. The relation of entanglement generation

of two-qubit unitary operators with their distinguishability
was uncovered in [46]. Reference [47] found two-qubit mixed
states whose entanglement content cannot be increased by
unitary transformations.

Similar to the path followed in entanglement theory, vari-
ous aspects of the quantitative theory of quantum coherence
have been uncovered [13–16]. In particular, different prop-
erties of the incoherent and coherence-generating operations
have been identified and maximally coherent states have been
analyzed. It is understood that interconnections exist between
the resource theories of entanglement and quantum coherence.
However, we recall that while entanglement is basis indepen-
dent as long as we stick to local bases, quantum coherence
is almost strictly basis dependent. Interrelations between the
two resource theories have been studied in, e.g., [51–65].
In particular, given a global unitary operation on a bipartite
system, an arbitrary unentangled input state does not gen-
erate entanglement. Also, defining quantum coherence with
respect to local bases leads to a conceptualization of entangle-
ment [60,65]. There have also been studies on interrelations
between quantum coherence and other resources such as non-
locality [66–68], non-Markovianity [69–74], and quantum
discord [75–77]. Also, a relationship between classical com-
munication and entanglement generation of two-qubit unitary
operators was found in [78]. Reference [79] considered a
thermal state and found the maximum amount of quantum
coherence that can be generated when acted upon by a unitary
operator. In [53] a basis-independent measure of quantum
coherence was constructed and it was shown that it is equiv-
alent to quantum discord. A quantum coherence-generating
power for quantum channels, acting on incoherent states, was
defined in [80]. The quantum-coherence-generating power of
quantum dephasing processes was considered in [81]. Parallel
to the concepts of distillable entanglement [82,83] and en-
tanglement cost [82,84], quantum coherence distillation and
quantum coherence cost were considered in [15].

In this paper we begin by exploring the maximal quantum-
coherence-generating power of an arbitrary two-qubit unitary
gate. The parallel case for maximal entanglement generation
was considered in [31]. We provide a formal definition of the
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power, which involves a maximum over all product bases of
the underlying tensor-product Hilbert space. We define the
same for arbitrary bases also.

We then compare the quantum coherence generation with
entanglement generation for generic two-qubit unitaries. We
find in particular that there exists a general tendency of a
randomly chosen unitary to produce high quantum coherence
when the entanglement generation is high and conversely
to produce high entanglement when the quantum coherence
generation is high. We make this statement more precise by
considering relative frequencies of randomly chosen unitaries
to fall in a chosen region on the entanglement-quantum coher-
ence plane (with finite precision). These facts are represented
in Figs. 3, 5, 7 below. We believe that this correlation be-
tween the different resource-generating powers for two-qubit
unitaries is potentially useful for further analysis of resources
and their generation within quantum technologies and also to
lead to fundamental interrelations between these resources.

Furthermore, we analyze the relative frequency of a ran-
domly generated unitary to have a certain entanglement
and quantum-coherence-generating power (with finite preci-
sion). We find that the profiles of the relative frequencies
for a fixed quantum-coherence-generating power and a fixed
entanglement-generating one are qualitatively similar and fol-
low a Beta distribution, but are quantitatively different.

Entanglement and quantum coherence are among the most
important resources for quantum information tasks and we
find that a unitary that generates maximum entanglement also
generates maximum quantum coherence and vice versa. This
fact may have fundamental as well as practical implications.
On the practical front, this result may potentially imply that
a quantum device implementing a task that necessarily re-
quires high entanglement can with little effort be transformed
into one implementing a different task which requires high
quantum coherence and vice versa. More fundamentally, the
result may indicate an underlying universality between entan-
glement and quantum coherence, in that devices creating a
high amount of one create a high amount of the other with
high probability.

The remainder of the paper is arranged as follows. The
relevant information from previous literature is discussed
in Sec. II. This includes the definition of entanglement-
generating power and its evaluation for two-qubit unitary
gates. We also present here a formal definition of the quantum-
coherence-generating power of unitary gates. In Sec. III
we present our results on the quantum-coherence-generating
power of two-qubit unitaries. We compare the entanglement
and quantum coherence generations of several paradigmatic
two-qubit gates in Sec. IV. In Sec. V we consider the same
comparison for Haar uniformly generated two-qubit unitaries.
We present a summary in Sec. VI.

II. PRELIMINARIES

We wish to deal with the resource-generating power of
two-party unitaries, when the resource is either entanglement
or quantum coherence. Let the two parties be Alice (A) and
Bob (B), with the system they possess being defined on the
Hilbert space HA ⊗ HB.

The amount of entanglement generated by applying an
arbitrary unitary operator UAB is given by

Eg(UAB) = max
�AB

[E (UAB�ABU †
AB) − E (�AB)], (1)

where the maximization is over all states �AB on HA ⊗ HB

and E is a measure of entanglement for two-party quantum
systems. One can also choose to consider the more general
situation where the evolution acts on locally extended Hilbert
spaces and an additional optimization is performed over all
such extensions. For pure bipartite states, the local von Neu-
mann entropy is a good measure of the state’s entanglement
[85], so we use

E (|ψ〉) = −Tr(ρA log2 ρA) = −Tr(ρB log2 ρB), (2)

where ρA is the partial trace of |ψ〉〈ψ | over the subsystem
B and similarly for ρB. In this paper we restrict the study
to pure input states and to input states having zero resource.
Therefore, the input states are pure product states so that

Eg(U ) = max
|ψ〉⊗|φ〉

S(TrA/BP[UAB|ψ〉A ⊗ |φ〉B]), (3)

where P[|χ〉] = |χ〉〈χ | and S(σ ) = −Tr(σ log2 σ ). More-
over, we will restrict ourselves to two-qubit systems, for
which the entanglement-generating power was considered in
Ref. [31].

A conceptually different entanglement quantifier can be
considered by using the Nielsen-Vidal entanglement mono-
tones, which characterize transformations between bipartite
pure states [86–90]. If |ψ〉 is a pure state representing a bi-
partite quantum system corresponding to Cn ⊗ Cn, then its
Schmidt decomposition is given by

|ψ〉 =
n∑

i=1

√
αi|iAiB〉, (4)

with {√αi} the Schmidt coefficients having
∑n

i=1 αi = 1, and
we further assume that they are ordered as αi � αi+1 � 0.
Here {|iA〉} and {|iB〉} are the sets of eigenvectors of the re-
duced subsystems of |ψ〉, corresponding to the eigenvalues αi.
A family of entanglement monotones Ek (|ψ〉) for a positive
bipartite system, for k = 1, 2, . . . , n, can be defined as [87]

Ek (|ψ〉) =
n∑

i=k

αi. (5)

So the amount of entanglement generated by applying an
arbitrary unitary operator UAB, by using Ek (|ψ〉) as a measure
of entanglement, is given by

Ēg(U ) = max
|ψ〉⊗|φ〉

Ek (UAB|ψ〉A ⊗ |φ〉B). (6)

Note that E1 is always unity. As we are concentrating on two-
qubit systems, here k runs over 1 and 2. Therefore, for our
purposes, k = 2 in Eq. (6).

We now discuss quantum coherence generation by the uni-
tary operator UAB. To deal with this question, we first need to
fix the basis with respect to which the quantum coherence is
to be calculated. Let us suppose that this basis of HA ⊗ HB is

B = |ψi〉dAdB
i=1 , (7)
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where dA = dim HA and likewise for dB. The coherence power
[53,91], with respect to a basis B, generated by the unitary
UAB, is given by

Cg(UAB|B) = max
�AB

[C(UAB�ABU †
AB|B) − C(�AB|B)], (8)

where again, like in the case of entanglement generation, the
maximization is over all states �AB on HA ⊗ HB. Again, it is
possible to consider the generating power by considering an
additional optimization over all local extensions on Alice’s
and Bob’s spaces. Here C is a measure of quantum coherence,
and while several quantum coherence measures are known in
the literature, we consider the relative entropy of quantum
coherence and the l1-norm of quantum coherence [14] for
our purposes. Just like for the case of entanglement, we will
consider pure inputs, so for relative entropy of coherence,

C(|ψ〉|B) = S(ρdiag), (9)

where ρdiag is a diagonal density matrix constructed by the
diagonal elements of |ψ〉〈ψ |, when written in the basis B.
We focus on product as well as arbitrary orthonormal bases of
the bipartite system to compute the relative entropy of quan-
tum coherence. Arbitrary product bases in general bipartite
quantum systems are a relatively less understood concept.
However, for two-qubit systems, all product orthonormal
bases have been characterized [92] and they can be expressed
as

|00〉, |01〉, |1η〉, |1η⊥〉. (10)

In the computational basis, |η〉 and |η⊥〉 can be
written as |η〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉 and
|η⊥〉 = −e−iφ sin(θ/2)|0〉 + cos(θ/2)|1〉, where 0 � θ � π

and 0 � φ < 2π . The elements for an arbitrary two-qubit
product basis can be chosen, for our purposes, as in (10).
Since we optimize over all input states of two qubits for a
given unitary, we have the freedom of choosing an arbitrary
basis as the computational basis on each local qubit space.
Therefore, while the general two-qubit product basis is |η′η′′〉,
|η′η′′⊥〉, |η′⊥η〉, and |η′⊥η⊥〉, we can use the mentioned
freedom to choose |η′〉 = |0〉 and |η′⊥〉 = |1〉 for the first
qubit and |η′′〉 = |0〉 and |η′′⊥〉 = |1〉 for the second qubit.

The construction of an arbitrary two-qubit basis, which
would then contain entangled elements, in general, can
be attained by applying a two-qubit arbitrary nonlocal
unitary on the four elements of the computational basis
{|00〉, |01〉, |10〉, |11〉}. The two-qubit unitary can be formed
by using the prescription of [31,93], discussed below [see
Eq. (16)]. When acted on by the unitary, the computational
basis elements |00〉, |01〉, |10〉, and |11〉 yield four states,
which serve as the four elements of an arbitrary basis.

Just like for the case of entanglement generation, we con-
sider only those inputs for which the resource is vanishing.
As we have already mentioned, we only consider pure inputs.
Therefore, for quantum coherence generation with respect to a
product or arbitrary orthogonal basis BC2⊗C2 on the two-qubit
Hilbert space, the inputs can only be the four states of BC2⊗C2 .
So finally the amount of quantum coherence with respect to
the basis BC2⊗C2 that is generated by using the unitary UAB is

given by

Cg(U |BC2⊗C2 ) = max
i

C(UAB|φi〉AB|BC2⊗C2 ), (11)

where BC2⊗C2 = {|φi〉AB}4
i=1. Now, to obtain the quantum-

coherence-generating power of the unitary with respect to
product bases, we have to take a maximization over arbitrary
product bases of the C2 ⊗ C2 Hilbert space. So we have

Cg(U ) = max
product bases BC2⊗C2

max
i

C(UAB|φi〉AB|BC2⊗C2 ). (12)

Similarly, to obtain the same for arbitrary bases, we have

C′
g(U ) = max

arbitrary bases BC2⊗C2

max
i

C(UAB|φi〉AB|BC2⊗C2 ). (13)

The quantum-coherence-generating power, with any other
measure of quantum coherence, can be defined similarly as
in Eqs. (12) and (13), for product and arbitrary bases, respec-
tively, with only the measure C being replaced by some other
measure. A measure of quantum coherence that is conceptu-
ally different from the relative entropy of quantum coherence
is the l1-norm of quantum coherence, being defined, for an
arbitrary state |ψ〉 and a basis B, as

Cl1 (|ψ〉|B) =
∑
i, j
i �= j

|ρi, j |. (14)

This is the sum of moduli of the off-diagonal elements of the
density matrix when written in the basis B. Similarly as for the
relative entropy of quantum coherence, we can, e.g., optimize
over all product bases to obtain

C̄g(U ) = max
product bases BC2⊗C2

max
i

Cl1 (UAB|φi〉AB|BC2⊗C2 ).

(15)
Henceforth in this paper, we continue with local von Neumann
entropy as the entanglement quantifier (for pure bipartite
states) as in Eq. (2) and the relative entropy of quantum
coherence as the quantifier of quantum coherence as in Eq. (9)
(for pure states). We will change the quantifier in Sec. V C.

An arbitrary two-qubit unitary operator can be written in
the form [31,93]

UAB = UA ⊗ UBUdVA ⊗ VB, (16)

where UA,VA,UB,VB ∈ U(2). Here UA, UB, VA, and VB are
unitaries acting on the local subsystems and Ud is a nonlocal
unitary on C2 ⊗ C2 having the form

Ud = exp(−iαxσx ⊗ σx − iαyσy ⊗ σy − iαzσz ⊗ σz ), (17)

where αx, αy, and αz are real numbers and σx, σy, and σz are
the Pauli matrices. The relevant ranges for αx, αy, and αz may
depend on the resource being generated, as we see below.

To obtain the maximum entanglement generated by a fixed
unitary, we have to perform a maximization over input states.
Since we are taking the input states as arbitrary pure product
states, we can forget about VA and VB, because they will just
rotate the space of product states into itself. Also, it is of no
use, in this case, to apply UA ⊗ UB, as local unitaries will keep
the entanglement unchanged. So while generating entangle-
ment by a two-qubit unitary, it is enough to only deal with Ud ,
as the amount of entanglement generated will not be affected
by the four local unitaries. In Ref. [31] it was shown that
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whenever αx + αy � π/4 and αy + αz � π/4, there always
exists an input state for which we get maximal entanglement
at the output, and outside the region, dictated by the above
inequalities, in the (αx, αy, αz ) parameter space, the maximum
entanglement is given by

E = H

(
1 + √

1 − C̄2

2

)
, (18)

where H (·) is the binary entropy function, with C̄ given by
[94,95]

C̄ = max
k,l

|sin(λk − λl )|, (19)

where k and l go from 1 to 4 and

λ1 = αx − αy + αz,

λ2 = −αx + αy + αz,

λ3 = −αx − αy − αz,

λ4 = αx + αy − αz. (20)

It is enough to consider the parameter range π/4 � αx �
αy � αz � 0, as the maximal entanglement generated is a
periodic function in the (αx, αy, αz ) parameter space and com-
pletes a full period in this range.

Considering now the case of maximal quantum coherence
generation over product bases and with the unitary UAB, we
note that the product basis {|φi〉}i in Eq. (11) is taken to
another product basis by VA ⊗ VB, which will anyway be con-
sidered in the maximization over product bases in (12). This
argument is essentially the same for arbitrary bases also. So,
in (12), (13), and (15), we can ignore VA ⊗ VB. The UA ⊗ UB

remains relevant throughout the quantum coherence part of
this paper and of course Ud is relevant in both entanglement
and quantum coherence parts. For the optimizations, we have
used the algorithms of NLOPT [96].

III. QUANTUM-COHERENCE-GENERATING
POWER OF THE UNITARY GATE

In this section we try to find the maximum-coherence-
generating powers of two-qubit unitary operators. The unitary
is of the form

UAB = UA ⊗ UBUdVA ⊗ VB. (21)

The Ud is referred to as the Cartan kernel part of the general
two-qubit unitary gate. The entanglement power of the gate
depends only on the Cartan kernel part of the unitary and is
not altered due to the presence of the local unitaries. However,
these local unitaries along with the Cartan kernel part play a
role in the quantum coherence power of the unitary. We set
W1 = VA, W2 = VB, W3 = UA, and W4 = UB, with Wk ∈ SU(2)
for k = 1, 2, 3, and 4, represented as

Wk =
(

cos θk
2 e(i/2)(ψk+φk ) sin θk

2 e−(i/2)(ψk−φk )

− sin θk
2 e(i/2)(ψk−φk ) cos θk

2 e−(i/2)(ψk+φk )

)
, (22)

where θk ∈ [0, π ], φk ∈ [0, 2π ], and ψk ∈ [0, 4π ). The form
of the nonlocal unitary Ud remains the same as in Eq. (17).
We choose an arbitrary product basis according to (10) and
evaluate the expression for the relative entropy of quantum
coherence which is generated by UAB when acting on an
incoherent pure two-qubit quantum state. The unitary UAB of
the form given in Eq. (21) can be expressed as

UAB =

⎛
⎜⎜⎝

r3 r1 m3 m1

r7 r5 m7 m5

r4 r2 m4 m2

r8 r6 m8 m6

⎞
⎟⎟⎠. (23)

We now calculate the relative entropy of quantum coherence
for each of the states in the basis {|00〉, |01〉, |1η〉, |1η⊥〉}.
They are given by

S̃i = −|r5−2i|2 log2 |r5−2i|2 − |r9−2i|2 log2 |r9−2i|2

−
∣∣∣∣r10−2i cos

θ

2
− eiφr2i−2(−1)i sin

θ

2

∣∣∣∣
2

× log2

∣∣∣∣r10−2i cos
θ

2
− eiφr2i−2(−1)i sin

θ

2

∣∣∣∣
2

−
∣∣∣∣r2i−2(−1)i cos

θ

2
+ e−iφr10−2i sin

θ

2

∣∣∣∣
2

× log2

∣∣∣∣r2i−2(−1)i cos
θ

2
+ e−iφr10−2i sin

θ

2

∣∣∣∣
2

(24)

for i = 1, 2. For i = 3, 4, the corresponding expressions for
quantum coherence are

S̃i = −
∣∣∣∣m9−2i cos

θ

2
− (−1)ie−(−1)i iφm2i−5 sin

θ

2

∣∣∣∣
2

log2

∣∣∣∣m9−2i cos
θ

2
− (−1)ie−(−1)i iφm2i−5 sin

θ

2

∣∣∣∣
2

×
∣∣∣∣m13−2i cos

θ

2
− (−1)ie−(−1)i iφm2i−1 sin

θ

2

∣∣∣∣
2

log2

∣∣∣∣m13−2i cos
θ

2
− (−1)ie−(−1)i iφm2i−1 sin

θ

2

∣∣∣∣
2

×
∣∣∣∣1

4
{m8[−(−1)i + cos θ ] + e2iφm2[(−1)i + cos θ ] − eiφ (m4 − m6) sin θ}

∣∣∣∣
2

× log2

∣∣∣∣1

4
{m8[−(−1)i + cos θ ] + e2iφm2[(−1)i + cos θ ] − eiφ (m4 − m6) sin θ}

∣∣∣∣
2

×
∣∣∣∣1

4
{eiφ[−(−1)im4 − (−1)im6 + (m4 − m6) cos θ ] + (e2iφm2 + m8) sin θ}

∣∣∣∣
2

× log2

∣∣∣∣1

4
{eiφ[−(−1)im4 − (−1)im6 + (m4 − m6) cos θ ] + (e2iφm2 + m8) sin θ}

∣∣∣∣
2

. (25)
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FIG. 1. Quantum coherence generation for a general two-qubit unitary. We plot here the relative entropy of quantum coherence that can
be generated by the unitary UAB as a function of the parameters of the product basis with respect to which the quantum coherence is defined
and the elements of which act as initial states for the unitary evolution. The four plots are for the four elements of the product basis that act as
the initial states of the evolution. The functions (a) S̃1, (b) S̃2, (c) S̃3, and (d) S̃4 are plotted with respect to the basis parameters θ and φ. The
fixed parameters of the unitary are taken as αx = 0.6078, αy = 0.2625, αz = 0.2287, θ1 = 2.2330, φ1 = 2.1630, ψ1 = 1.1980, θ2 = 3.0700
φ2 = 6.0630, ψ2 = 9.0910, θ3 = 1.1000, φ3 = 1.6570, ψ3 = 6.3530, θ4 = 1.9190, φ4 = 5.2110, and ψ4 = 11.2600. The quantities θ and φ

on the horizontal axes are presented in radians and the vertical axes are in bits. The θi, φi, and ψi, for i = 1, 2, 3, 4, are in radians.

If we fix the unitary, i.e., if we fix all r j and mj , we can
maximize these four functions with respect to θ and φ, the
parameters of the product basis. Hence, following Eq. (11),
the maximum quantum coherence for the fixed unitary and for
the fixed basis is max{S̃1, S̃2, S̃3, S̃4}, where the S̃i for i = 1, 2
are given in Eq. (24) and those for i = 3, 4 are in (25). So,
in accordance with Eq. (12), the maximum relative entropy
of quantum coherence generated by the fixed unitary UAB is
given by

Cg(UAB) = max
θ,φ

[max{S̃1, S̃2, S̃3, S̃4}]. (26)

All four functions S̃i are periodic with respect to each of αx,
αy, and αz with a period of π . So, to evaluate the generation
of relative entropy of quantum coherence, we can use the
bounds π � αx, αy, αz � 0 because beyond this region, the
functions repeat their natures. In Fig. 1 we plot the four S̃i

with respect to the basis parameters for a fixed unitary. The
numerical values of the parameters of the unitary considered
here are given in the caption of Fig. 1. There are several
maxima with respect to θ in [0, π ]. The last two functions

S̃3 and S̃4 are neither periodic in θ ∈ [0, π ] nor symmetric
around θ = π . (The functions are of course periodic in θ with
a periodicity 2π .) On the contrary, S̃1 and S̃2 are periodic in
θ ∈ [0, π ]. It can be cumbersome to obtain the best choice
of basis analytically, but it can be done numerically, using
globally convergent routines. For a fixed unitary, we have
observed numerically that the maximum quantum coherence
corresponding to the initial states |00〉 and |01〉 (the maximum
values of S̃1 and S̃2) are different, but for the states |1η〉 and
|1η⊥〉, the maximum values of S̃3 and S̃4 are equal. Here,
along with the possibility that the θ̃mi and φ̃mi are different
for different i, each of the functions S̃i can have multiple
maxima in the parameter space of θ in [0, π ] and φ in [0, 2π ).
So we have that, for a general unitary, the best choice of
basis for quantum coherence generation is not unique and the
number of best bases can even be more than four. We have
numerically observed that the four functions S̃i are periodic
in each of αx, αy, and αz and considering the parameter range
[0, π ] for the α is sufficient; we use this information for fur-
ther analysis and illustration of the quantum coherence power
of UAB.
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FIG. 2. Highest quantum coherences for maximal entanglement generating general two-qubit unitaries and vice versa. We investigate here
the interplay between two resource-generating powers of the two-qubit unitaries UAB. In (a) we generate 2×105 unitaries which can create
maximal entanglement and plot the maximal relative entropy of quantum coherence that can be generated by the same. The plot is depicted
against a base of θ along the x axis and φ along the y axis, the parameters of the optimal basis for the quantum coherence generation. In (b),
for 2×105 points, we mark the region of the parameter space of the general two-qubit unitaries where the generated quantum coherence can
reach the maximal value. In (c) the entanglement power of unitaries which can generate maximal quantum coherence are presented. For more
details, see the text. The θ and φ axes are measured in radians. Here αx , αy, and αz are dimensionless. The quantum coherence used in the plots
is measured in bits and the entanglement therein are in ebits.

A. Dependence of resource-generating power
on parameters of UAB

We try to compare here the two resource-generating powers
(entanglement and quantum coherence) of the general uni-
tary UAB. As mentioned earlier, the local unitaries VA and
VB have no contribution in the maximal creation of entan-
glement and they also do not affect the maximum generated
quantum coherence. So here we perform the analysis and
illustration by discarding the VA ⊗ VB part and considering
ŨAB = UA ⊗ UBUd as equivalent to the whole unitary UAB. In
an actual experimental implementation, this can necessitate a
local rotation of the optimal input state.

1. Highest quantum coherence generated by UAB that allows
maximal entanglement generation

We now find the maximum quantum coherence that can be
generated by the unitary operators ŨAB, which can maximize
the entanglement of a bipartite quantum state to the maximal
value, i.e., by those ŨAB for which Eg(ŨAB) = 1. Kraus and
Cirac [31] showed that the maximal entanglement generated
by a two-qubit unitary has certain periodicity and symmetry
properties so that it is enough to consider the range π/4 �
αx � αy � αz � 0. As previously discussed, the parameter

region is bounded by 0 to π in the case of evaluating the max-
imal quantum coherence generated and therefore this is the
range that we use to numerically or analytically analyze quan-
tum coherence generation or its interplay with entanglement
generation. For this analysis, we first evaluate ŨAB|ψ〉A ⊗ |φ〉B

for arbitrarily chosen parameters of the unitary and then cal-
culate the local von Neumann entropy of the output state and
optimize over all |ψ〉A, |φ〉B ∈ C2, where |ψ〉A and |φ〉B are
taken as

|ψA〉 = cos(ᾱ/2)|0A〉 + eiβ̄ sin(ᾱ/2)|1A〉,
|φB〉 = cos(γ̄ /2)|0B〉 + eiδ̄ sin(γ̄ /2)|1B〉. (27)

Therefore, to find the best entanglement generation, the max-
imization will be over ᾱ, γ̄ ∈ [0, π ] and β̄, δ̄ ∈ [0, 2π ), of
S(trA/BP[ŨAB|ψ〉A ⊗ |φ〉B]), for every set of values of the
parameters ŨAB, which are αx, αy, αz, θi, and φi and ψi,
where i stands for 3 and 4. We choose 2×105 unitaries in this
parameter space, which can create maximal entanglement,
and search for the maximum relative entropy of quantum
coherence maximized over arbitrary pure product bases. The
algorithm Direct-L [97] of NLOPT is used for the optimization.
We get a finite probability of finding the maximal quantum
coherence [see Fig. 2(a)]. The maximum value of the relative
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entropy of quantum coherence for a two-qubit system is two
bits, but here, for easy comparison with the maximal value of
generated entanglement, we normalize the generated quantum
coherence as

C̃g(ŨAB) = 1
2Cg(ŨAB), (28)

and so we get the maximum quantum coherence equal to one
bit instead of two bits. We recall that the maximal value of
generated entanglement in a two-qubit system, according to
the definition that we have used, is one unit of bipartite entan-
glement (ebit). It may be noted that instead of numerically
optimizing entanglement with respect to the parameters of
ŨAB to identify the unitaries which can generate maximal en-
tanglement, one can also decompose any arbitrary two-qubit
unitary matrix UAB into the form given in Eq. (21) following
the procedure suggested in [31] and then the constraints on the
parameters of the unitaries for generating Eg(UAB) = 1 can be
used. However, to keep using the expressions for entangle-
ment generation from Ref. [31], we must identify the rule for
going from the bigger range of parameters to the smaller one.
This is as follows.

We choose αi, where i can be x, y, or z, in the range [0, π ].
If we wish to find the maximal entanglement generated by
the corresponding unitary, we set α̃i = αi if αi � π/4 and
α̃i = π/2 − αi if π/4 � αi � π/2, and using the symmetry
of generated entanglement around π/4, Ud ({α̃i}) and Ud ({αi})
generate the same entanglement. As previously mentioned,
the local unitaries UA, UB, VA, and VB can be ignored in
the case of entanglement generation. If αi ∈ [π/2, π ], we
first use periodicity of the generated entanglement and go
to an equivalent set of parameters α′

i , equivalent with re-
spect to entanglement generation, where α′

i = αi − π/2. If
α′

i ∈ [0, π/4], then we set α̃i = α′
i , and if α′

i ∈ [π/4, π/2],
then we use the symmetry of the entanglement generated and
set α̃i = π/2 − α′

i .
So now we have all the α̃i in the parameter range from 0

to π/4, but the order αx � αy � αz, which was present in the
range 0 to π , may get altered in the case of α̃i, as the symmetry
about π/4 of generated entanglement is a reflection symme-
try. Hence, the conditions αx + αy � π/4 and αy + αz � π/4
for obtaining maximal entanglement in the case when the αi

belong to the range [0, π/4] have to be modified. Suppose that
after the mapping we have the order α̃i � α̃ j � α̃k , where i, j,
are k are from the set {x, y, z} and there are no repetitions.
The conditions for getting maximal entanglement will then be
α̃i + α̃ j � π/4 and α̃ j + α̃k � π/4. Therefore, we have the αi

in the parameter space 0 to π , which can generate maximal
entanglement. Then we can analyze the maximal quantum
coherence that can be generated by unitaries that can generate
maximally entangled states.

2. Maximal-quantum-coherence-generating unitaries

We now try to identify the αx, αy, and αz, corresponding to
which we get C̃g(ŨAB) = 1, when the unitary operator ŨAB acts
on an incoherent two-qubit pure quantum state. In Fig. 2(b)
we depict the region of the (αx, αy, αz ) space for random
choices of the remaining parameters (i.e., θ j , φ j , and ψ j for
j running over 3 and 4), at which the unitary ŨAB can lead

to maximal quantum coherence (maximization using ISRES
[98]).

3. Highest entanglement generated by UAB that allows maximal
quantum-coherence generation

In Fig. 2(c) we look at the entanglement that can be gener-
ated by the unitaries which can generate maximum quantum
coherence while operating on the set of two-qubit incoherent
pure states. The unitaries are chosen from Fig. 2(b). We use
the parameters αx + αy and αy + αz as axes of the base against
which the generated entanglement is depicted. Note however
that these αx, αy, and αz belong to the range [0, π ] and so
for calculation of the maximal entanglement generation, we
need to go to the range [0, π/4]. Since there is a reflection
symmetry that is used in the transformation between the two
ranges, the ordering between the α’s is lost. Consequently, the
condition for reaching maximal entanglement from Ref. [31]
cannot be used directly in the presentation in Fig. 2(c). In
Fig. 2(c) we find a finite probability of points (representing
unitaries) for which the generated entanglement is one ebit.
From Figs. 2(a) and 2(c) we can conclude that unitaries exist
for which both entanglement and quantum coherence genera-
tions are maximal.

IV. RESOURCE-GENERATING POWERS
OF PARADIGMATIC QUANTUM GATES

We choose here a few paradigmatic two-qubit gates that are
widely used in quantum device circuits and compare their en-
tanglement and quantum coherence power. For completeness,
we first define the gates and then present a table containing
the powers.

Arguably, the most well-known two-qubit gate is the
controlled-NOT (CNOT) operator. The NOT gate is the same as
the Pauli σx operator. The CNOT operator is defined on the two-
qubit space as UCNOT = |0〉〈0| ⊗ I2 + |1〉〈1| ⊗ σx, where I2 is
the identity operator on the qubit space. The CNOT is there-
fore the controlled-σx operator. Similarly, one can consider
the controlled-σz operator as UCZ = |0〉〈0| ⊗ I2 + |1〉〈1| ⊗ σz,
which is usually referred to as the CZ gate. The SWAP gate is
a two-qubit linear operator defined as USWAP|ψ〉|φ〉 = |φ〉|ψ〉,
where |ψ〉, |φ〉 ∈ C2. (One can of course define a SWAP gate
in arbitrary bipartite dimensions Cd ⊗ Cd .) The SWAP gate
of course cannot create any entanglement by acting on a
product state. The situation is very different for its square
root, for which the matrix representation in the computational
basis is

U√
SWAP =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1

2 (1 + i) 1
2 (1 − i) 0

0 1
2 (1 − i) 1

2 (1 + i) 0
0 0 0 1

⎞
⎟⎟⎟⎠. (29)

So far, we have not considered any product unitaries (i.e.,
product of two single-qubit unitaries), which trivially have
vanishing entanglement power. They however can have non-
trivial quantum coherence power. We consider three such
product unitary gates. The first one that we choose is UYX =
σy ⊗ σx. One can of course consider any other combination of
the Pauli spin- 1

2 operators. An important single-qubit unitary
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TABLE I. Powers of entanglement and quantum coherence gen-
eration for unitaries discussed in Sec. IV, correct to four significant
figures.

Gate (U ) Eg(U ) C̃g(U )

CNOT 1 0.5
CZ 1 0.5
SWAP 0 0.7768√

SWAP 1 0.75
YX 0 0.5
H ⊗ H 0 1
H ⊗ I2 0 0.75

that is almost universally present in a quantum algorithm
circuit is the Hadamard gate, defined by H |0〉 = 1√

2
(|0〉 + |1〉)

and H |1〉 = 1√
2
(|0〉 − |1〉), supplemented by linearity. The

other two product unitaries that we consider are H ⊗ H and
H ⊗ I2. In Table I we present the powers of entanglement and
quantum coherence generation for the above unitaries, correct
to four significant figures.

In the succeeding section, we look at Haar uniformly
generated random two-qubit unitaries and compare their en-
tanglement and quantum coherence powers.

V. RESOURCE-GENERATING POWERS OF HAAR
RANDOM QUANTUM GATES

In this section we compare the entanglement and quantum-
coherence-generating powers of Haar uniformly generated
gates on two-qubit systems. The Haar uniform generation is
effected by using the Ginibre ensemble [99]. For each unitary,
we numerically evaluate the Eg by optimizing over arbitrary
two-qubit pure product states as inputs [Eq. (27)]. For the
same unitary, we also obtain C̃g for a pure incoherent input
state and optimize over the inputs as well as the product
(10) or arbitrary bases, with respect to which the quantum
coherence is defined. The two maximizations are done in-
dependently so that the input state for which the maximum
entanglement is attained can be different from the state for
which we obtain the maximum quantum coherence. Instead of
numerically maximizing the entanglement for a unitary, one
can also use the canonical decomposition given in [31]. We
present our observations on the resource-generating powers
of Haar uniformly generated unitaries in the next three sub-
sections. The first two contain discussions using the measures
of entanglement and coherence as the local von Neumann
entropy and the relative entropy of coherence, respectively.
In the third one, we illustrate the results of our investigations,
considering the Nielsen-Vidal monotone and l1-norm of co-
herence, defined in Eqs. (6) and (15), respectively, as measures
of the corresponding resources.

A. Maximal entanglement vs maximal quantum
coherence in product bases

In Fig. 3 we depict Eg and C̃g on the base axes and ν, the
relative frequency of the number of unitaries generating the
corresponding Eg and C̃g, plotted along the vertical axis. Of
course, finite precision is needed to calculate the relative fre-

FIG. 3. Resource-generating tendencies of Haar random two-
qubit unitaries. We Haar uniformly generate a large number of
two-qubit unitaries and find their entanglement and quantum coher-
ence power. We then divide the (Eg, C̃g) space into small squares
and find the relative frequencies of the number of unitaries that fall
in those squares. These relative frequencies are plotted along the
vertical axis, which is on a logarithmic scale. The quantity plotted
on the vertical axis is dimensionless, while Eg and C̃g are in ebits and
bits, respectively. See the text for more details.

quencies, and we have a total of 1.6×103 squares, each being
of area 2.5×10−2 ebits×2.5×10−2 bits on the entanglement-
quantum coherence plane. We generate a total of 1.6×106

two-qubit unitaries, Haar uniformly, and for each square we
plot (on the vertical axis) the relative frequency of the number
of unitaries having the ability to generate the numerical values
of resources in ebits and bits corresponding to that square.

This depiction describes how the relative frequency
increases progressively from approximately zero to approx-
imately one, as we go along the plane in the direction of
increasing entanglement and increasing quantum coherence,
and reaches a peak value at the point where entanglement and
quantum coherence are both maximal. Note that the vertical
axis has a logarithmic scale in the depiction and this implies
that there is a large fraction of unitaries, in the space of two-
qubit unitaries, for which both entanglement and quantum
coherence generation are nearly maximal.

In Fig. 4(a) we focus attention on the high-entanglement
end of Fig. 3. Precisely, we have restricted the entanglement
range to [0.9775,1] in ebits. Similarly, Fig. 4(b) depicts the
same in the high-quantum coherence range [0.9775,1] in bits.
We find that there is asymmetry between the entanglement and
quantum coherence generations, near their respective maxi-
mal values.

In Figs. 4(c) and 4(d) we look at both resources by first
fixing the other resource at a fixed value. Precisely, we take
the fixed values to be the maximal ones in both cases. In
Fig. 4(c) the fixed resource is entanglement, while in Fig. 4(d)
it is quantum coherence. The asymmetric nature between
entanglement and quantum coherence generation, as seen in
the relative frequencies of Haar random unitaries, that we had
mentioned before is now visible more clearly. We find that the
numerically generated red circles in Figs. 4(c) and 4(d) can
be well described by the Beta distribution, suitably scaled and
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FIG. 4. Asymmetrical nature of resource-generating powers of two-qubit unitaries. (a) Magnified view of the plot in Fig. 3 when restricted
to the range [0.9775,1] on the entanglement axis. (b) Same as in (a) but for quantum coherence. The vertical axes are again in logarithmic
scale in both (a) and (b). Just one cross section of the surface in (a) is analyzed in (c). The chosen cross section is for Eg = 1. The inset and
the main plot in (c) differ only in the range of the horizontal axis. Also note that the vertical axis is in the normal scale in (c). The analysis in
(d) is exactly the same as in (c) but with the roles of entanglement and quantum coherence reversed. The quantity plotted on the vertical axes
is dimensionless, while on the horizontal axes Eg is in ebits and C̃g is in bits. See the text for more details.

shifted; however, the parameters of the Beta distributions that
fit the two cases are different. The fitting function therefore
has the form

fB(x) = dB(x; αB, βB) + h (30)

for x ∈ [0, 1], αB > 0, and βB > 0. The explicit form of the
Beta distribution B(x; αB, βB) is given in the Appendix. For
Fig. 4(c), the best-fit values of the exponents of fB(x) are

αB = 21.0539(±1.244),

βB = 0.4694(±3.057), (31)

with error equal to 1.85×10−4. The numbers in parentheses
indicate the respective 95% confidence intervals and the error
mentioned is the minimum χ2 error. The same numbers in
Fig. 4(d) are

αB = 9.1513(±0.1627),

βB = 0.3766(±0.0097), (32)

with error equal to 1.186×10−3. (See the Appendix for the
values of the other parameters.) We have used nonlinear least-
squares fitting to obtain the values of the parameters, their
95% confidence intervals, and the error estimates for the fit-
ting curves [100].

B. Maximal entanglement vs maximal quantum
coherence in arbitrary bases

Figure 5 depicts C̃′
g with Eg as a scatter plot. Here C̃′

g is
just the normalized version of C′

g: C̃′
g(UAB) = 1

2C′
g(UAB). The

choice of zero-resource inputs and the methods of optimiza-
tion are the same as in the preceding case of arbitrary product
bases. Just like the preceding case, here also we observe the
tendency of unitary gates to produce maximal entanglement
along with maximal coherence. Most of the points of the
scatter plot, depicted for 16×105 Haar uniformly generated
two-qubit unitaries, are concentrated near the region having
both coherence and entanglement close to unity with a higher
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FIG. 5. Resource-generating power of Haar random two-qubit
unitaries. Here we demonstrate a scatter plot of the maximum co-
herence C̃′

g vs maximum entanglement Eg by generating 16×105

two-qubit unitaries Haar uniformly. Among the quantities plotted
here, Eg is in ebits and C̃′

g is in bits.

spread along the entanglement axis. We can observe that the
majority of unitaries produce C̃′

g approximately greater than
or equal to 0.96 and there exist a finite probability to gener-
ate C̃′

g from 0.84 to 0.96. Typically, there appears almost no
possibility to generate C̃′

g < 0.84.
We now depict the relative frequency of the number of

unitaries generating Eg and C̃′
g, with the corresponding Eg and

C̃′
g along the base axes in Fig. 6(a), in a manner similar to that

in Fig. 4(b). We can see that the nature of the frequency in
the former is qualitatively similar to that in the latter, with a
progressively increasing frequency from approximately zero
to one, reaching the maximum at Eg = 1. In Fig. 6(b) we plot

a cross section of Fig. 6(a) at C′
g = 1, and in this case also, the

relative frequency exhibits a nature which can be fitted with
the Beta function given in Eq. (30). The best-fit values for the
parameters of fB(x) and their corresponding 95% confidence
intervals are provided in the Appendix.

C. Examining the correlation between resource-generating
powers for altered measures

We now discuss the resource-generating powers of Haar
random quantum gates using an altered pair of measures of
the resources. Here we use a Nielsen-Vidal entanglement
monotone and the l1-norm of quantum coherence as measures
of entanglement and quantum coherence, respectively. The
respective resource generating powers Ēg and C̄g, given in
Eqs. (6) and (15), respectively, are presented in a scatter plot
in Fig. 7 for 13.5×105 Haar random unitaries. Like in pre-
vious investigations, here also most of the unitaries generate
maximum entanglement and maximum coherence. Along the
coherence axis, the spread dies out after 0.4 bits, while along
the entanglement axis, the spread is very small and most of
the points are concentrated between 1–10−5 and 1. Hence,
in this scenario also, the maximum entanglement-generating
unitaries are the maximum coherence-generating ones and
vice versa.

VI. CONCLUSION

There are two main themes of this paper. The first is to
find the maximum quantum coherence that can be generated
by two-qubit unitary gates from pure incoherent states and
the second is to compare this generation with entanglement
generation for the same gate from pure unentangled states, for
generic two-qubit unitary gates.

With respect to the first theme, we dealt with the maxi-
mum quantum coherence generated by a general two-qubit
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FIG. 6. Relative frequency vs the two resources generated by the Haar uniform random unitaries, where the optimum coherence is obtained
by maximizing over all bases. (a) Relative frequency plotted in the range [0.9975,1] on the coherence axis. (b) One cross section of (a) for
C̃′

g = 1. All other considerations are the same as in Fig. 4. The quantities Eg and C̃′
g are expressed in ebits and bits, respectively, on the horizontal

axes and the quantity represented on the vertical axis is dimensionless.
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FIG. 7. Maximum coherence vs maximum entanglement gen-
erating power, defined by Eqs. (6) and (15), generated by Haar
uniform random unitaries. Here C̄g is presented with respect to Ēg

for 13.5×105 Haar uniformly chosen two-qubit unitaries. The quan-
tity plotted along the horizontal axis is in ebits and the one along
the vertical axis is in bits. Along the horizontal axis, k represents
1 − k×10−5 for k = 0, . . . , 3.

unitary operator acting on an incoherent pure state of an
arbitrary product basis of two qubits and also a generic ba-
sis of the same. We discussed the best choice of basis to
obtain the maximum coherence for a fixed unitary and the
nature of the quantum coherences generated by the unitary
when acting on different elements of the basis. The work
of Kraus and Cirac [31] considered the parallel problem for
entanglement generation and identified a class of two-qubit
unitaries, which they called nonlocal unitaries. The same was
referred to as the Cartan kernel part in the work of Khaneja
and Glaser [93]. It is this part of the whole unitary that is
responsible for entanglement generation, provided there is a
certain arbitrariness present in the input. We performed the
analysis for the general two-qubit unitaries, as even local uni-
taries can generate quantum coherence. We also analyzed the
quantum-coherence-generating powers of unitaries that can
create maximal entanglement and in parallel the entanglement
power of maximally quantum-coherence-generating unitaries.

Finally, for the second theme, we considered the correla-
tion between entanglement and quantum coherence genera-
tion for a generic two-qubit unitary gate, which we generated
Haar uniformly by using the Ginibre ensemble. We found that
the high-entanglement-generating unitaries are also typically
high-quantum-coherence generating ones and, conversely, the
unitaries that generate high quantum coherence also typically
generate high entanglement. It should be noted, however,
that there is an inherent asymmetry between the entangle-
ment and quantum-coherence generations. In particular, we
analyzed the profile of the relative frequency of unitaries
that can generate maximal entanglement to have the ability
to create a given amount of quantum coherence and found
that it can be well described by the Beta distribution. Role

reversal between entanglement and quantum coherence leads
one to obtain a steeper curve, but still describable by the
Beta distribution, albeit with a different set of distribution
parameters.

Relations between different resource theories may help
us understand a general structure among resource the-
ories in quantum systems. Entanglement and quantum
coherence are ubiquitous resources in quantum technologies.
The connection uncovered here between entanglement and
quantum-coherence generation for generic two-qubit global
unitaries can potentially lead to fundamental interrelations
between these resources and also to fresh applications and
towards optimized usage of these resources in quantum de-
vices. The interrelations between different resources of the
same quantum device could potentially be of fundamental
importance in utilizing these resources in an optimal way. A
device that is known to be significantly good for generating
a certain resource may not be so for generating another. We
show however that the two quintessential quantum resources,
viz., entanglement and quantum coherence, are related, and
once we know that a device can generate a significant amount
of entanglement, then we can be sure, with high probability,
that the same can generate a significant amount of quantum
coherence and vice versa.
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APPENDIX: BETA DISTRIBUTION AND FITTING
PARAMETERS FOR FIGS. 4(c), 4(d), AND 6(b)

The Beta distribution is a probability density function
given by

B(x; αB, βB) = �(αB + βB)

�(αB)�(βB)
(x − x0)αB−1[1 − (x − x0)]βB−1

(A1)

for x ∈ [0, 1], αB > 0, and βB > 0. Here x0 is a real number.
For Fig. 4(c) the best-fit values of the parameters of fB(x) and
their respective 95% confidence intervals, within the nonlinear
least-squares fit method, are

αB = 21.0539(±0.2618),

βB = 0.4694(±0.0143),

d = 0.0135(±0.0003),

x0 = 0.0022(±0.0001),

h = −8.0159×10−6(±1.793×10−5). (A2)
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The values of the same parameters in Fig. 4(d) are

αB = 9.1513(±0.1627),

βB = 0.3766(±0.0097),

d = 0.0019(±3.049×10−5),

x0 = 6.8175×10−5(±5.969×10−6),

h = 9.6372×10−6(±5.78×10−6). (A3)

The following are the values of the same parameters in
Fig. 6(b):

αB = 8.9527(±0.1871),
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