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Linear n-local networks are compatible with quantum-repeater-based entanglement distribution protocols.
Different sources of imperfections such as error in entanglement generation, communication over noisy quantum
channels, and imperfections in measurements result in decay of quantumness across such networks. From
practical perspectives it becomes imperative to analyze the nonclassicality of quantum network correlations in
the presence of different types of noise. The present discussion provides a formal characterization of non-n-local
features of quantum correlations in a noisy network scenario. In this context, persistency of non-n-locality has
been introduced. Such a notion helps in analyzing decay of non-n-local features of network correlations with
increasing length of the linear network in the presence of one or more causes of imperfections.
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I. INTRODUCTION

Formulation of the Einstein-Podolsky-Rosen (EPR) para-
dox [1] points out the inexplicability of quantum predictions
in terms of only local hidden variable models. Such an im-
possibility in turn gives rise to the notion of nonlocality [2].
Quantum nonlocality serves as a resource in multifaceted
practical tasks [3–10]. Over the past few years study of nonlo-
cality has been extended beyond paradigm of the standard Bell
scenario. The manifestation of nonlocal network correlations
has been a recent trend of analysis in the field of quantum
information theory [11].

Unlike the standard Bell-CHSH scenario, any measure-
ment scenario compatible with network topology involves
multiple distant sources. Each of the sources distributes phys-
ical systems to a subset of distant observers. In the case
where all the sources in the entire network are independent
of each other (n-local assumption), non-n-local correlations
may emerge under suitable measurement contexts [11]. The
simplest of this type of network, commonly known as a bilo-
cal network (see Fig. 1 for n = 2), was first introduced in [12]
followed by a vivid analysis in [13]. Keeping pace with the
utility of quantum networks in various information processing
tasks [15–19], the study of n-local networks has witnessed
multidirectional development [20–33].

The assumption of source independence adds new phys-
ical insights in analyzing nonclassical behavior of quantum
network correlations. For example, consider a (n + 1)-partite
entanglement-swapping network (see Fig. 1) involving n
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independent sources Si(i = 1, 2, . . . , n) arranged in a lin-
ear fashion. Each source distributes a two-qubit entangled
state between a pair of parties (see a detailed discussion in
Sec. II C). All the parties are thus not receiving qubits from
a single source. Hence, unlike the standard Bell scenario,
initially they do not share any common past. Moreover some
of the parties perform a single measurement. This leads to
another striking difference with the standard Bell experiment
where each party must randomly and independently choose
from a collection of two or more inputs [10]. The n-local
assumption thus reduces requirements for exploiting nonclas-
sicality in quantum networks [12–14].

Quantum repeaters form building blocks of any network
meant for distributing entanglement between distant observers
across a large length of quantum channel [15]. Now entangle-
ment swapping forms the basis of designing quantum repeater
networks. So any such network structure can be considered
as a n-local network [11]. In an ideal scenario, under suitable
measurement contexts, nonlocality in terms of non-n-locality
is thus generated in the network. However, in practical situ-
ations various factors of difficulties such as imperfection in
entanglement generation, communication over noisy quantum
channels, and many others hinder distribution of entanglement
over the entire length of the chain. Consequently, unlike that
in the idealistic scenario, simulation of non-n-local correla-
tions in the entire network structure becomes impossible. At
this junction it becomes imperative to explore for how long
such non classical behavior can be observed. To facilitate the
discussion we have introduced the concept of persistency in
this context.

In the literature, the idea of persistency has been used to
characterize different types of multipartite quantum correla-
tions [34–38]. Starting from a given m partite state ρ, for
example, exhibiting some form of quantum correlation C, e.g.,
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the number of parties is gradually decreased so as to find the
minimum number of parties m′, for example, such that none of
the possible m′ partite reduced state exhibits C. m′ is usually
referred to as the persistency of ρ with respect to the specified
quantum correlation (C). For the current discussion, we have
introduced the concept of persistency on a different note. Here
it will be used for exploiting sustainability of a non-n-local
feature varying with the length of a network in the presence of
different types of noise.

We have analyzed generation of non-n-local correlations in
the presence of various sources of imperfection. For our pur-
poses we have considered n-local linear [21] networks. There
may be error in entanglement generation at the sources. Distri-
bution of qubits may then occur over noisy channels. Also the
observers may be using local imperfect measurement devices
at their end. We have considered all such potential sources of
errors. For the rest of our work, n-local networks affected by
at least one such type of imperfection are referred to as noisy
n-local networks. To characterize non-n-local correlations in
such networks we put forward the notion of persistency of
non-n-locality.

First, we have derived the non-n-locality detection criterion
for noisy networks. That criterion is further used to develop
the concept of persistency. The first concept of persistency has
been introduced in the presence of a single noise factor at a
time. Then the notion has been generalized for more practical
situations when the network is affected by two or more noise
factors simultaneously.

The rest of the work is organized as follows: Some basic
preliminaries are discussed in Sec. II. Characterization of the
noisy n-local linear is given in Sec. III. Persistency of non-
n-local correlations is studied in Sec. IV followed by some
concluding remarks in Sec. V.

II. PRELIMINARIES

We first proceed to discuss some basic prerequisites to be
used in forthcoming sections.

A. Density matrix representation of arbitrary two-qubit state

Let � denote an arbitrary two-qubit state. The density ma-
trix of � in terms of Bloch parameters is given by

� = 1

4

(
I2 × I2 + �a.�σ ⊗ I2 + I2 ⊗ �b.�σ

+
3∑

j1, j2=1

w j1 j2σ j1 ⊗ σ j2

)
, (1)

where �σ = (σ1, σ2, σ3), σ jk denote Pauli operators along
three mutually perpendicular directions ( jk = 1, 2, 3). �a =
(x1, x2, x3) and �b = (y1, y2, y3) denote local Bloch vectors
(�a, �b ∈ R3) corresponding to party A and B, respectively, with
|�a|, |�b| � 1 and (wi, j )3×3 denotes correlation tensor W(real).
Matrix elements w j1 j2 are given by w j1 j2 = Tr[ρ σ j1 ⊗ σ j2 ].
W can be diagonalized by subjecting it to suitable local uni-
tary operations [39,40]. A simplified expression is then given

FIG. 1. Schematic diagram of n-local linear network [21].

by

�′ = 1

4
(I2 × I2 + �a.�σ ⊗ I2 + I2 ⊗ �b.�σ +

3∑
j=1

t j jσ j ⊗ σ j ).

(2)

T = diag(t11, t22, t33) denotes the correlation matrix in Eq. (2)
where t11, t22, t33 are the eigenvalues of

√
WTW, i.e., singular

values of W .

B. n-local linear networks

Consider a network with n sources S1,S2, . . . ,Sn and
n + 1 parties A1,A2, . . . ,An+1 arranged in a linear pattern
(see Fig. 1). ∀i = 1, 2, . . . , n, and source Si independently
distributes physical systems (characterized by λi) to Ai and
Ai+1. For each of i = 2, 3, . . . , n, Ai receives two particles
and is referred to as the central party. Each of other two
parties A1 and An+1 receives one particle and is referred to
as the extreme party. Si is characterized by variable λi. As
sources are independent, joint distribution of λ1, . . . , λn is
factorizable:

ρ(λ1, . . . , λn) = �n
i=1ρi(λi ), (3)

where ∀i, ρi denotes the normalized distribution of λi. Equa-
tion (3) represents an n-local constraint.

∀i = 2, 3, . . . , n − 1 party Ai performs a single measure-
ment yi on the joint state of two subsystems received from
Si−1 and Si. Each of A1 and An+1 selects from a collection
of two dichotomous inputs. n + 1 partite network correlations
are local if

p(o1, �o2, . . . , �on, on+1|y1, yn+1) =
∫

�1

∫
�2

· · ·
∫

�n

× dλ1dλ2 . . . λn ρ(λ1, λ2, . . . , λn)N1, where

N1 = p(o1|y1, λ1)�n
j=2 p(�o j |λ j−1, λ j )p(on+1|yn+1, λn). (4)

Notations appearing in Eq. (4) are detailed below:
(1) ∀ j, � j labels the set of all possible values of local

hidden variable λ j .
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(2) y1, yn+1 ∈ {0, 1} denotes measurements of A1 and
An+1, respectively.

(3) o1, on+1 ∈ {±1} denotes outputs of A1 and An+1, re-
spectively.

(4) ∀ j, �o j = (o j1, o j2) labels four outputs of input y j for
o ji ∈ {0, 1}.

Correlations are n-local if those satisfy both Eqs. (3) and
(4). So any set of n + 1 partite correlations that do not satisfy
both of these constraints are termed non-n-local.

An n-local inequality [21] corresponding to this network
scenario is√

|I| +
√

|J| � 1, where

I = 1

4

∑
y1,yn+1

〈
O1,y1 O0

2 . . . O0
nOn+1,yn+1

〉

J = 1

4

∑
y1,yn+1

(−1)y1+yn+1
〈
O1,y1 O1

2 . . . O1
nOn+1,yn+1

〉
with

× 〈
O1,y1 Oi

2 . . . Oi
nOn+1,yn+1

〉= ∑
D

(−1)o1+on+1+o2i+···+oni N2,

where N2 = p(o1, �o2, . . . , �on, on+1|y1, yn+1), i = 0, 1

andD = {o1, o21, o22, . . . , on1, on2, on+1}. (5)

Violation of Eq. (5) ensures the non-n-local nature of corre-
sponding correlations.

C. Quantum linear n-local network scenario

In the n-local network, let Si(i = 1, 2, . . . , n) generate
an arbitrary two qubit state �i. Each of the central parties
Ai(i = 2, 3, . . . , n) thus receives two qubits: one of �i−1 and
another of �i. A1 and An+1 receive a single qubit of �1 and �n,
respectively. Let each of the central parties perform projection
in the Bell basis {|ψ±〉, |φ±〉}, often referred to as a Bell state
measurement (BSM [13]). Let Mi denote BSM of central party
Ai. Let each of the extreme parties perform projective mea-
surements in any one of two arbitrary directions: { �m0.�σ , �m1.�σ }
for A1 and {�n0.�σ , �n1.�σ } for An+1 with �m0, �m1, �n0, �n1 ∈ R3.

Under these measurement settings, non-n-local correlations
are detected by violation of Eq. (5) if [30]√

�n
i=1ti11 + �n

i=1ti22 > 1 (6)

with ti11, ti22 denoting the largest two singular values of cor-
relation tensor (Ti) of �i (i = 1, 2, . . . , n). In the case where
Eq. (6) is violated nothing can be concluded about the n-local
behavior of the correlations.

III. NOISY n-LOCAL LINEAR NETWORK

Consider a n-local linear network (Fig. 1). The entire
procedure in the network can be divided into two phases:
preparation phase and measurement phase. The former phase
further comprises two parts: generation and distribution of
entanglement. For analysis of non-n-locality in the noisy net-
work, errors are considered in all these stages. In the case
where the network is used for distribution of entanglement,
ideally pure entanglement is to be distributed from each
source Si(i = 1, 2, . . . , n). However, errors in the preparation

phase lead to distribution of a mixed two-qubit state �i among
the parties Ai and Ai+1∀i.

We first analyze the correlations considering error in the
measurement stage. Precisely speaking, under measurement
imperfections, a closed form of an upper bound of n-local
inequality [Eq. (5)] is derived for arbitrary two-qubit states.
This form is further utilized in exploiting non-n-locality under
the effect of errors in the preparation phase.

A. Imperfection in measurements

As discussed in Sec. II C, each of A2,A3, . . . ,An per-
forms BSM. Now let the devices fail to detect particles with
some probability. Let βi ∈ [0, 1] characterize imperfection in
measurement operator Mi in the sense that it fails to detect
with probability 1 − βi. Measurement operator Mnoisy

i , e.g., of
Ai, thus turns out to be a positive operator valued measures
(POVM) with the elements {Mnoisy

i j1 j2
} given by

Mnoisy
i,00 = βi|φ+〉〈φ+| + 1 − βi

4
I2×2,

Mnoisy
i,01 = βi|φ−〉〈φ−| + 1 − βi

4
I2×2,

Mnoisy
i,10 = βi|ψ+〉〈ψ+| + 1 − βi

4
I2×2,

Mnoisy
i,11 = βi|ψ−〉〈ψ−| + 1 − βi

4
I2×2, ∀i = 2, 3, . . . , n. (7)

Now, it may be noted that in the case where Ai per-
forms perfect BSM then {|φ±〉〈φ±|, |ψ±〉〈ψ±|} is the set
of possible projectors. Where ∀i = 2, 3, . . . , n, denoting
M ideal

i,00 , M ideal
i,01 , M ideal

i,10 , M ideal
i,11 as the measurement operators cor-

responding to the BSM projectors, POVM elements of
imperfect BSM [Eq. (7)] can be represented as

Mnoisy
i, j1 j2

= βiM
ideal
i, j1 j2 + 1 − βi

4
I2×2. (8)

Similar to imperfection in measurement settings of central
parties, let each of the two extreme parties also use imperfect
detecting devices. For party A1, let μ ∈ [0, 1] parametrize a
faulty measurement device. For single-qubit projection, such
a device fails to detect any output with probability 1 − μ.

POVM resulting due to imperfection in �mk .�σ thus has two
elements {Pnoisy

k j } j=0,1 given by

Pnoisy
k0 = μO+ + 1 − μ

2
I2,

Pnoisy
k1 = μO− + 1 − μ

2
I2, k = 0, 1, (9)

where O+ (O−) denotes the projection operator correspond-
ing to the +1 (−1) eigenvalue. O± denotes projectors
corresponding to perfect projective measurement. Labeling
Pideal

k0 , Pideal
k1 as the projectors corresponding to perfect mea-

surement �mk .�σ , alternate representation of POVM elements
[Eq. (9)] is given by

Pnoisy
ki = μPideal

ki + 1 − μ

2
I2, i, k = 0, 1. (10)
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Similarly for An+1, let 1 − ν denote failure probability in
�nk .�σ . Elements of corresponding POVM are given by

Qnoisy
k0 = νQ+ + 1 − ν

2
I2,

Qnoisy
k1 = νQ− + 1 − ν

2
I2, k = 0, 1 (11)

where Q+ (Q−) denotes a projection operator corresponding
to the +1 (−1) eigenvalue.

We now put forward the criterion that suffices to detect
non-n-locality when all the parties are performing imperfect
measurements. For An+1, the analog of representation given
by Eq. (10) is

Qnoisy
ki = νQideal

ki + 1 − ν

2
I2, i, k = 0, 1. (12)

Theorem 1. With each source Si generating an arbitrary
two-qubit state and all the parties performing imperfect mea-
surements, a sufficient criterion for detecting non-n-locality in
a linear n-local network is given by√

�n
i=1ti11 + �n

i=1ti22 >
1(

μν�n
j=2β j

) 1
2

. (13)

Proof. See the Appendix.
Equation (13) being a sufficient detection criterion, vi-

olation of the same gives no definite conclusion regarding
simulation of non-n-local correlations in a corresponding
noisy network. The above criterion points out the effect of the
imperfection parameters over the usual non-n-locality crite-
rion [Eq. (6)]. Comparing the right-hand side of both Eqs. (6)
and (13) it is observed that if at least one of the detectors turns
out to be imperfect with some nonzero probability, then that
reduces the chances for generation of non-n-locality in the
noisy network compared to the ideal situation. Moreover, if
any of the detectors used in the network always fail to detect,
i.e., the corresponding success probability turns out be 0, then
the above criterion [Eq. (13)] can never be satisfied.

B. Noisy entanglement generation

Let us first discuss an ideal entanglement generation pro-
cedure [15]. Without loss of any generality, we consider the
ideal generation of |φ−〉〈φ−|. Let � = |01〉〈01| be the state at
each source Si. To generate entanglement, the Hadamard gate
(H) is applied on the first qubit. Considering the first qubit
as the control qubit, the CNOT gate is then applied resulting
in generation of the Bell state |φ−〉〈φ−| [15]. Ideally, each of
S1,S2, . . . ,Sn is supposed to generate |φ−〉〈φ−|.

However, in practical situations imperfections in prepara-
tion devices lead to generation of mixed entangled states. Such
imperfections result from erroneous applications of Hadamard
and/or CNOT gates. At each source Si, let αi and δi denote the
imperfection parameters characterizing H and CNOT gates, re-
spectively. ∀i = 1, 2, . . . , n, starting from �i = |01〉〈01|, and
the noisy Hadamard gate generates [41]

�′
i = αi(H ⊗ I2�H† ⊗ I2) + 1 − αi

2
I2 ⊗ �2i, with αi ∈ [0, 1]

and �2i = Tr1(�i )

= 1

2
(|00〉〈00|+|10〉〈10|) − αi

2
(|00〉〈10|+|10〉〈00|). (14)

Subjection of �′
i to noisy CNOT gives [41]

�′′
i = δi(CNOT�′

i(CNOT)†) + 1 − δi

4
I2 ⊗ I2

= 1

4

[
1∑

i, j=0

(1 + (−1)i+ jδi]|i j〉〈i j|

− 2αiδi[|11〉〈00| + |00〉〈11|)
]
. (15)

The correlation tensor of �′′
i is diag(−αiδi, αiδi, δi ). In the

case where Si distributes �′′
i , and the parties perform imperfect

measurements, non-n-locality is observed if

√
�n

i=2δiβiμνδ1
(
1 + �n

j=1α j
)

> 1. (16)

C. Noisy quantum communication

Let us now consider that communication of �′′
i from Si to

respective parties is occurring through noisy channels. Such a
communication affects generation of non-n-local correlations
for obvious reasons. To analyze the effect of such noise pa-
rameters over n-locality detection, we are considering a few
standard noisy channels [42].

1. Amplitude-damping channel

∀i = 1, 2, . . . , n, and let γ
amp
i , ξ

amp
i characterize channels

connecting Si with Ai and Ai+1, respectively. Two qubits of
�′′

i [Eq. (15)] are thus passed through two different amplitude-
damping channels. Let �′′′

i denote a corresponding noisy state.
Any amplitude-damping channel (e.g., parametrized by γ amp)
is represented by Krauss operators |0〉〈0| + √

1 − γ amp|1〉〈1|
and

√
γ amp|0〉〈1|. The correlation tensor of �′′′

i is given

by diag(−αiδi

√
Damp

i , αiδi

√
Damp

i , δiD
amp
i + γ

amp
i ξ

amp
i ) where

Damp
i = (1 − γ

amp
i )(1 − ξ

amp
i ). Using the closed form of the

n-local bound [Eq. (13)] under the imperfect measurement
context, non-n-locality is detected if

√
�n

i=2βiμνMax(2F1, F2) > 1 , where

F1 = �n
j=1α jδ j

√(
1 − γ

amp
j

)(
1 − ξ

amp
j

)
and

F2 = �n
j=1α jδ j

√(
1 − γ

amp
j

)(
1 − ξ

amp
j

)
+ �n

j=1

[
δ j

(
1 − γ

amp
j

)(
1 − ξ

amp
j

) + γ
amp
j ξ

amp
j

]
. (17)

2. Phase-damping channel

∀i = 1, 2, . . . , n, Let γ
ph

i , ξ
ph
i characterize channels con-

necting Si with Ai and Ai+1 respectively. Let �′′′
i de-

note the corresponding noisy state. Krauss operators cor-
responding to the phase-damping channel (e.g., having
noise parameter γ ph) are given by |0〉〈0| +

√
1 − γ ph|1〉〈1|

and
√

γ ph|0〉〈1|. The correlation tensor of �′′′
i is given

by diag(−αiδi

√
Dph

i , αiδi

√
Dph

i , δi ) where Dph
i = (1 − γ

ph
i )

032404-4



PERSISTENCY OF NON-n-LOCAL CORRELATIONS IN … PHYSICAL REVIEW A 107, 032404 (2023)

(1 − ξ
ph
i ). In this case non-n-locality is detected if√

�n
i=2βiμνMax(G1, G2) > 1 where

G1 = 2�n
j=1α jδ j

√(
1 − γ

ph
j

)(
1 − ξ

ph
j

)
and

G2 = �n
j=1α jδ j

√(
1 − γ

ph
j

)(
1 − ξ

ph
j

) + �n
j=1δ j . (18)

After analyzing non-n-locality detection in the presence of
noise we next introduce the notion of persistency in this
context.

IV. PERSISTENCY OF NON-n-LOCALITY

The discussion in Sec. III clearly points out the dependence
of the upper bound of n-local inequality over noise parame-
ters. Closer observation of different relations derived therein
gives rise to the intuition that increasing the length of a net-
work hinders simulation of non-n-local correlations. Formal
characterization of such an interpretation will be provided in
this section. In this context, let us now consider that for each
of the three categories of errors discussed in Sec. III, noise
parameters remain identical. To be precise:

(1) Each of n noisy sources is identical: (αi, δi ) = (α, δ),
e.g., ∀i = 1, 2, . . . , n.

(2) Parties are interconnected via identical noisy quantum
channels.

(3) A single parameter characterizes imperfection in mea-
surements of central parties, e.g., A2, . . . ,An : β2 = · · · =
βn = β.

Under such assumptions Eq. (16) becomes√
μνδnβn−1(1 + αn) > 1. (19)

We now define persistency of non-n-locality for each of the
three types of errors individually.

A. First type of persistency of non-n-locality

Definition 1. The first type of persistency of non-n-locality
PI (say) may be defined as the maximum number (n) of inde-
pendent identical sources that can be connected so as to form
a linear n-local network where Eq. (5) detects non-n-locality
under the assumption that each source distributes a two-qubit
mixed entangled state through noiseless quantum channels
and all parties perform perfect measurements.

The above definition can be interpreted as a measure of
the maximum length of an entanglement distribution network
in which non-n-local correlations can be detected when the
sources fail to generate pure entanglement. The measure is
given in terms of independent sources as the length of any
network can be specified by it. If PI = m for a noisy network,
addition of even a single source (generating mixed entan-
glement) to the network will result in generation of (m + 1)
partite correlations whose non-(m + 1)-local feature cannot
be detected by Eq. (5).

Let us now consider a noisy network where error in entan-
glement generation is the only source of noise. For β = μ =
ν = 1, Eq. (19) becomes√

δn(1 + αn) > 1. (20)

FIG. 2. Variation of the first type of persistency of non-n-
locality with that of variables parametrizing error in entanglement
generation.

For any specified values of α, δ, PI is given by

PI = 
nI�, (21)

where nI denotes the upper bound of n given by Eq. (20).
Variation of PI with that of (α, δ) is plotted in Fig. 2. For
an example, let α = δ = 0.9. Equation (20) gives

n < nI = 4.567. (22)

So PI = 4 in this case.

B. Second type of persistency of non-n-locality

Definition 2. The second type of persistency of non-n-
locality PII , e.g., may be defined as the maximum number (n)
of independent identical sources that can be connected so as to
form a linear n-local network where non-n-locality is detected
by Eq. (5) when communication over identical noisy quantum
channels is the only source of error in the network.

Let N denote a linear n-local network configuration for
some fixed value of n = m, e.g., such that each of m identical
sources distributes pure entanglement through identical noisy
channels and all parties perform perfect measurements. Let
corresponding correlations turn out to be non m-local. Now let
N be extended to an (m + 1)-local network N ′ under preva-
lent conditions. PII turns out to be m if Eq. (5) fails to detect
non (m + 1)-locality (if any) of corresponding correlations.

Let us first consider that the sources and the par-
ties are interconnected via identical amplitude-damping
channels: for example, γ amp

i = ξ
amp
i = γamp,∀i = 1, 2, . . . , n.
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(a)

(b)

FIG. 3. Decrease in PII , i.e., Pamp
II with increasing noise level

(γamp) in amplitude-damping channels (a). Similarly for the phase-
damping channel, P ph

II vs γph (b).

Non-n-locality is detected in the network if√
Max(2F1, F2) > 1, where

F1 = (1 − γamp)n and

F2 = F1 + [(1 − γamp)2 + (γamp)2]n. (23)

Equation (23) is obtained from Eq. (17) under the assumption
of noisy communication as the only source of error in the
n-local network. Equation (23) provides an upper bound on
the number of sources n. If namp

II denotes the corresponding
upper bound of n, then the second type of persistency of
non-n-locality is given by PII = 
namp

II �. Dependence of the
source count (n) and hence that of Pamp

II on the noise parameter
(see Fig. 3) is given by Eq. (23).

Let us now consider the noisy network where commu-
nication through identical phase-damping channels is the
only source of noise. Setting, e.g., γ

ph
i = ξ

ph
i = γph,∀i =

1, 2, , . . . , n and the rest of the parameters to be 1 in Eq. (18),
the non-n-locality detection criterion is given by√

1 + (1 − γph)n > 1. (24)

Equation (24) in turn gives P ph
II = 
nph

II � with nph
II denoting the

upper bound of n given by the detection criterion [Eq. (24].
Comparison of Eqs. (23) and (24) indicates P ph

II > Pamp
II

for any fixed value of noise parameter γamp = γph = γ (see
Fig. 3).

C. Third type of persistency of non-n-locality

Definition 3. The third type of persistency of non-n-locality
may be defined as the maximum number (n) of independent
identical sources that can be connected so that non-n-locality
is detected by Eq. (5) in the corresponding network under
the assumption that each source distributes pure entanglement
over noiseless channels and all parties perform imperfect mea-
surements.

Let PIII denote the third type of persistency of non-n-
locality. Consider an n-local network N for some fixed value
of, e.g., n = m such that each of m identical sources distributes
pure entanglement through noiseless channels. Let each of
the extreme parties(A1,Am+1) perform imperfect projective
measurements, whereas each of central parties(A2, . . . ,Am)
performs imperfect Bell basis measurements. Under such
measurement contexts, let corresponding correlations turn out
to be non-m-local. Now let N be extended to an (m + 1)-
local network N ′ by adding another identical source Sm+1.

In N ′, there are m central parties. With all the parties per-
forming imperfect measurements, if Eq. (5) fails to detect
non-(m + 1)-locality (if any) in N ′, then PIII = m.

With imperfection in measurements considered as the only
source of error, the non-n-locality detection criterion (16)
becomes √

2μνβn−1 > 1. (25)

If nIII denotes the upper bound of n in Eq. (25), then PIII =

nIII�. With an increase in imperfection, PIII decreases (see
Fig. 4). For example, in the case μ = ν = β = 0.9, non-
n-locality is detected up to n = 5. Hence, PIII = 5. Until
now persistency of non-n-locality has been analyzed under
the presence of only one type of noise at a time. However,
for practical purposes, it is important to study the same when
at least two of the three possible factors of noise are present
in the network. So generalization of the notion follows below.

D. Persistency of non-n-locality

Definition 4. The persistency of non-n-locality (e.g., P)
may be defined as the maximum number (n) of independent
identical sources that can be connected to form a network such
that Eq. (5) detects non-n-local correlations when at least two
of the three noise factors are present in the network.

The above definition corresponds to the most general no-
tion of persistency. Consider an n-local network N for some
fixed value of n = m, e.g., under the assumption that at
least two of the three categories of noise are present in the
network. For better understanding, without loss of any gen-
erality, let sources distribute mixed entanglement, whereas
parties perform imperfect measurements. Let non-m-locality
be observed in the network. On extension of N to an (m + 1)-
local network in the presence of existing noise factors only,
if Eq. (5) fails to detect non-n-locality for n = m + 1, then
P = m for N . At this point it must be noted that in order to
measure P, extension of any network N to another one N ′,
e.g., by adding identical sources, must be considered under the
assumption that noise factors of N and N ′ remain invariant.

Clearly P < P1,P2,P3. Let us now provide an example
for further illustration.
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FIG. 4. Variation of the third type of persistency of non-n-
locality with that of imperfection in measurements. Imperfections
in single-qubit projective measurements of the extreme parties are
parametrized by a single variable, e.g., μ = ν = �.

Let us consider a noisy network where noise due to quan-
tum communication may occur due to use of phase damp
channels. The non-n-locality detection criterion [Eq. (18)] is
given by √

βn−1μνMax(2G1, G2) > 1, where

G1 = αδ(1 − γph)n and

G2 = [αδ(1 − γph)]n + δn. (26)

Persistency of non-n-locality for some specific values of noise
parameters is given in Table I.

V. DISCUSSION

Characterization of non-n-local correlations in the pres-
ence of three different noise factors is provided in the present

work. For our purpose the existing upper bound [Eq. (6)] of
n-local inequality [Eq. (5)] has been used as the detection
criterion of non-n-locality. Persistency of non-n-locality has
been introduced for analyzing decay of non-n-local correla-
tions with increasing length of a noisy network. Considering
persistency of n-locality for each of three types of noise indi-
vidually, the notion has been generalized to the more practical
situation when at least two of the error factors exist in the
network.

To this end, it must be pointed out that from experimental
perspectives, the current study turns out to be a simple form
of error analysis for exploiting non-n-locality. Though we
have considered three broad categories of errors that usually
occur in any entanglement-swapping-based network scenario,
yet the discussion is oversimplified as any discussion of the
technical difficulties, associated with experimental realization
of quantum networks [43], lies beyond the scope of this paper.

In [44] the authors have pointed out multiple problems
associated with physical implementation of any network con-
figuration based on entanglement swapping. For instance, one
of the most significant problem is the exponential decrease in
coherence of quantum states. Such decoherence of a quantum
system occurs due to long-range distribution of entanglement
over noisy channels and on being subjected to operations
over a considerably long span of time [43]. Methods such
as entanglement purification [45–48], concentration [45,48,
52–55], and distillation [49–51] have been developed to dis-
tribute entanglement along a long chain of networks. With
technological advancements in the field of quantum informa-
tion science, practical implementations of these procedures
with tolerable error rates have become possible [47–55]. Apart
from loss in coherence, long-range fiber-based quantum com-
munications become challenging due to photon loss, noise
in photon detection, and many other factors [43]. The expo-
nential decrease of the signal-to-noise ratio with increasing
length of the fiber in quantum key distribution protocols is one
of the consequences of limitations over long-range quantum
communication. Though remarkable technological progress
has been attained over the years [56–61], yet, to date, there
exist several limitations constraining quantum communication
over large distances.

Apart from the issues mentioned above, experimentalists
face several other challenges while implementing a network
configuration [43]. Hence, from experimental perspectives, it
becomes important to consider at least some of these crucial
factors while making any form of error analysis in a net-
work scenario. However, our analysis has not included any
such practical problem. At this junction, it is needed to be

TABLE I. Persistency of non-n-locality in networks under variation of noise factors. Error in communication of qubits is considered to
be due to the use of phase-damping channels. The first row gives persistency of non-n-locality(P) when there is no error in entanglement
generation. The second row gives P when parties perform perfect measurements, and the third row gives P when qubits pass through a
noiseless channel. The last row gives P when all three forms of errors exist in the network.

Error in entanglement generation Noisy communication Imperfect measurements P

(α, δ) = (1, 1) γ = 0.1 (μ, ν, β ) = (0.94, 0.93, 0.92) 4
(α, δ) = (0.94, 0.93) γ = 0.1 (μ, ν, β ) = (1, 1, 1) 7
(α, δ) = (0.92, 0.95) γ = 0 (μ, ν, β ) = (0.92, 0.94, 0.95) 9
(α, δ) = (0.92, 0.95) γ = 0.12 (μ, ν, β ) = (0.94, 0.93, 0.95) 4
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mentioned that the sole aim of the present study is to introduce
the notion of persistency of non-n-locality in the context of
exploiting nonclassicality in a linear network configuration.
So the study, in its present form, can be considered to be
in a nascent stage which needs gradual upgrading keeping
pace with present day technology. Consequently, it will be
interesting to extend the study taking into consideration the
practical problems.

In [62] an entanglement-swapping network has been used
as a Bell nonlocality activation protocol. The key role of any
such protocol is to generate Bell-CHSH nonlocal quantum
states starting from two or more Bell-CHSH local states. Over
the years such a type of protocol has been generalized so as to
activate different other notions of nonlocality [63–65]. Now,
as already discussed in Sec. I, an entanglement-swapping
network is a n-local network where each independent source
distributes an entangled state. The present study on persis-
tency of non-n-local correlations can thus be considered as
one way of analyzing errors in exploiting a particular form of
nonclassicality (non-n-locality) of n + 1-partite correlations
generated across any such network. In place of considering
correlations across the entire network configuration, it will
also be interesting to study the persistency of Bell nonlocality
or any other notion of nonclassicality of the conditional states
generated at the end of any such activation network [62,63].

Our entire analysis is limited to noisy linear n-local net-
works only. It will be interesting to exploit the same for
any nonlinear configuration. Also in the network scenarios
considered here, each source distributes two-qubit entangled
states. Analyzing the decay of nonclassicality with growing

imperfections in network when each of the sources generate
multipartite and/or higher dimensional entangled states is a
potential direction of future research.

APPENDIX

Proof of Theorem 1. Let us first consider the n-local in-
equality [Eq. (5)] for the noisy network:

√|Inoisy| + √|Jnoisy| � 1, where

Inoisy = 1

4

∑
y1,yn+1

〈
O1,y1 O00

2nOn+1,yn+1

〉
noisy

Jnoisy = 1

4

∑
y1,yn+1

(−1)y1+yn+1〈O1,y1 O1
2 . . . O1

nOn+1,yn+1〉noisy with

〈
O1,y1 Oi

2 . . . Oi
nOn+1,yn+1

〉
noisy=

∑
D

(−1)o1+on+1+o2i+···oni Nnoisy,

where Nnoisy = p′(o1, �o2, . . . , �on, on+1|y1, yn+1), i = 0, 1

andD = {o1, o21, o22, . . . , on1, on2, on+1}. (A1)

A different symbol p′() has been used for probability terms
so as to discriminate those arising in a noisy scenario from
that in an ideal scenario. Let us denote the overall state in
the network as � = ⊗n

l=1�l . Next we consider the expectation
terms given by Eq. (5). Without loss of any generality let us
fix i = 0 and fix the labeling of (y1, yn+1) as (0,0) and consider
the corresponding expectation term 〈O1,0O0

2 . . . O0
nOn+1,0〉:

〈
O1,0O0

2 . . . O0
nOn+1,0

〉
noisy =

∑
o1,o21,o22,...,on1,on2,on+1

(−1)o1+on+1+o20+···+on0 p(o1, �o2, . . . , �on, on+1|0, 0)

=
1∑

i, j=0

1∑
g2,h2=0

1∑
g3,h3=0

· · ·
1∑

gn,hn=0

(−1)i+ j+g2+g3+···+gn Tr
[
Pnoisy

0i ⊗n
k=2 Mnoisy

k,gk hk
Qnoisy

0 j �
]

by Eqs. (7), (9), and(11) =
1∑

i, j=0

1∑
g3,h3=0

· · ·
1∑

gn,hn=0

R2

where R2 = (−1)i+ j+g3+···+gn
(
Tr

[
Pnoisy

0i Mnoisy
2,00 ⊗n

k=3 Mnoisy
k,gk hk

Qnoisy
0 j �

] + Tr
[
Pnoisy

0i Mnoisy
2,01 ⊗n

k=3 Mnoisy
k,gkhk

Qnoisy
0 j �

]
− Tr

[
Pnoisy

0i Mnoisy
2,10 ⊗n

k=3 Mnoisy
k,gkhk

Qnoisy
0 j �

] − Tr
[
Pnoisy

0i Mnoisy
2,11 ⊗n

k=3 Mnoisy
k,gk hk

Qnoisy
0 j �

])
. (A2)

Further simplifying R2, we get

R2 = (−1)i+ j+g3+···+gn Tr
[
Pnoisy

0i

(
Mnoisy

2,00 + Mnoisy
2,01 − Mnoisy

2,10 − Mnoisy
2,11

) ⊗n
k=3 Mnoisy

k,gk hk
Qnoisy

0 j �
]

(A3)

= β2(−1)i+ j+g2+g3+···+gn Tr
[
Pnoisy

0i ⊗ M ideal
2,g2h2

⊗n
k=3 Mnoisy

k,gkhk
Qnoisy

0 j �
]

[using Eq. (8)]. (A4)

Using Eq. (A3) in Eq. (A2), we get

〈
O1,0O00

2nOn+1,0
〉
noisy = β2

1∑
i, j=0

1∑
g2,h2=0

1∑
g3,h3=0

· · ·
1∑

gn,hn=0

(−1)i+ j+g2+g3+···+gn Tr
[
Pnoisy

0i ⊗ M ideal
2,g2h2

⊗n
k=3 Mnoisy

k,gkhk
Qnoisy

0 j �
]
. (A5)

Following a similar approach of breaking sums over the rest of the indices appearing in Eq. (A5), we have

〈
O1,0O0

2 . . . O0
nOn+1,0

〉
noisy = �n

i=2βiμν

1∑
i, j=0

1∑
g2,h2=0

1∑
g3,h3=0

. . .

1∑
gn,hn=0

(−1)i+ j+g2+g3+···+gn Tr
[
Pideal

0i ⊗n
k=2 M ideal

k,gk hk
Qideal

0 j �
]
. (A6)
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Following the same procedure for each expectation term appearing in Eq. (A1), we get

Inoisy = μν�n
i=2βiI, (A7)

Jnoisy = μν�n
i=2βiJ. (A8)

Equation (A1) thus gives √
μν�n

i=2βi(
√

|I| +
√

|J|) = 1. (A9)

Equation (A9) is the n-local inequality for a linear n-local network where the parties perform imperfect measurements and
each of the sources generates an arbitrary two-qubit state. As upper bound of n-local inequality [Eq. (5)] in an ideal linear

n-local network is given by Eq. (6), and clearly an upper bound of Eq. (A9) is given by
√

μν�n
j=2β j

√
�n

i=1ti11 + �n
i=1ti22. A

non-n-locality detection criterion is thus given by Eq. (13). Proved.
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