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Comprehending the connections between the geometric, topological, and dynamical structures of integrable
quantum systems with quantum phenomena exploitable in quantum information tasks, such as quantum entangle-
ment, is a major problem in geometric information science. In this work we investigate these issues in a physical
system of N interacting spin-s under the long-range Ising model. We discover the relevant dynamics, identify the
corresponding quantum phase space, and we derive the associated Fubini-Study metric. Through the application
of the Gauss-Bonnet theorem and the derivation of the Gaussian curvature, we proved that the dynamics occurs
on a spherical topology manifold. Afterwards, we analyze the gained geometrical phase under the arbitrary and
cyclic evolution processes and solve the quantum brachistochrone problem by establishing the time-optimal
evolution. Moreover, by narrowing the system to a two spin-s system, we explore the relevant entanglement
from two different perspectives. The first is geometrical in nature and involves the investigation of the interplay
between the entanglement degree and the geometrical structures, such as the Fubini-Study metric, the Gaussian
curvature, and the geometrical phase. The second is dynamical in nature and tackles the entanglement effect on
the evolution speed and geodesic distance. Additionally, we resolve the quantum brachistochrone problem based
on the entanglement degree.
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I. INTRODUCTION

One of the most outstanding aspects of modern physics
is the introduction of geometric concepts describing the fun-
damental constituents of nature. In particular, the appearance
of geometric quantum mechanics, which emerged more than
four decades ago through the works of Kibble [1,2]. This ge-
ometric approach aims to reconstruct a quantum phase space
that contains all possible physical states for a specific quan-
tum system [2–6]. Otherwise, the geometrical formulation of
quantum mechanics consists in replacing the usual Hilbert
space with the concept of quantum state manifold, which, in
turn, possesses naturally the structure of a Kähler manifold
[7–10]. In recent years, the manipulation of the geometrical
features characterizing the space of quantum states has played
a pivotal role in the study of the physical properties of many
integrable quantum systems [11–15]. Some of the most no-
table of these properties are those associated with quantum
dynamics. It is demonstrated that determining the quantum
phase space naturally introduces the concept of the evolu-
tion trajectory into quantum theory [16–19]. Furthermore, the
geodesic distance covered by an evolving quantum system be-
tween any two quantum states is closely related to the energy
uncertainty, which is correlated to the evolution speed [20].
The shortest path feasible between any two quantum states of
a spin-1/2 system has also been demonstrated, utilizing geo-
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metrical tools identifying the Bloch sphere S2 � CP [21,22].
Further, the geometrical structures are always very helpful
for solving the quantum brachistochrone problem, which is
related to achieving time-optimal evolution [23–26]. Such
evolution is essential in the construction of quantum circuits
that can be used to implement quantum logic gates [27–29].
For other additional dynamical properties investigated using
these geometric approaches, we advise readers to also consult
the papers [30–32].

Nowadays, the geometrization of quantum theory is the
foundation of geometrical science of information in which
the quantum phenomena are addressed geometrically on the
relevant quantum phase space, one can cite, for example,
the quantum entanglement which is a fascinating physi-
cal resource in the tasks of quantum information theory
[33–37]. It is shown that entanglement is closely linked to
the Mannoury-Fubini-Study metric, measuring the smallest
geodesic distance between an entangled state and the closest
disentangled state [38]. The interplay between the quantum
entanglement and the manifold-state curvature has been ex-
tensively investigated for N interacting spin-1/2 under the
all-range Ising-model [39]. Further to that, the geometrical in-
terpretation of entanglement is also discussed within the scope
of Hopf fibration, being a topological map narrowing the rele-
vant quantum-state manifold to an another lower-dimensional
manifold known as the Hopf bundle [40,41]. For more results
showing the connection between quantum entanglement and
geometrical features, see the following references [42–44].
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Some other important concept that has received a lot
of attention in quantum dynamics is the geometrical phase
[45–48], which is a noticeable intrinsic property in the evo-
lution of quantum systems. Geometrically, it is the holonomy
accumulated by the state vector during parallel transport
along the evolution path [49,50]. The geometric phase is now
inextricably linked to the other geometric structures that char-
acterize the quantum phase spaces. Indeed, it is established
that it can be written as the integral of the Berry-Simon
connection along a cyclic evolution process and that this
connection is also related by the Fubini-Study metric thru
the Bergmann kernel [51,52]. Several recent studies demon-
strated the valuable role of the geometrical phase in the
development of quantum information theory. Indeed, it is an
advantageous tool in the implementation of quantum logic
gates useful in quantum computing [53,54]. Besides that, the
experimental evidence for a conditional phase gate has been
supplied both through the nuclear magnetic resonance [55]
and trapped ions [56]. In addition, the fractional geometrical
and topological phases acquired by the two-qudit systems dur-
ing local unitary operations have been thoroughly investigated
in relation with the entanglement [57,58]. Other geometrical
and topological phase implementations are reported in the
references [59–61].

The primary goal of this work is to shed light on the
geometrical, topological, and dynamical features of a physical
system consisting of N interacting spin-s under the long-
range Ising model, as well as their interplay with the quantum
entanglement. It is worth noting that the ideas developed in
this work were mainly motivated by the results reported by
Krynytskyi and Kuzmak in [39,62]. In fact, by investigating
the dynamics of the system, we define the relevant quan-
tum phase space and the associated Fubini-Study metric. We
compute the Gaussian curvature (G-curvature) and determine
the state space topology using the Gauss-Bonnet theorem.
We investigate the gained geometrical phase and solve the
quantum brachistochrone problem. Eventually, we provide a
comprehensive description of the geometrical and dynamical
structures of two interacting spin-s, under the Ising model, in
relation to the quantum entanglement.

Our results are organized as follows. In Sec. II, by study-
ing the quantum evolution of the N spin-s system under
the long-range Ising-model, we identify the corresponding
quantum phase space determining the Fubini-Study metric.
Additionally, we discover the associated topology using the
Gauss-Bonnet theorem. The geometrical phase accumulated
by the system during the arbitrary and cyclic evolution pro-
cesses is also investigated in Sec. III. The solution of the
quantum brachistochrone problem is given by examining the
evolution speed as well as the corresponding geodesic dis-
tance, in Sec. IV. In Sec. V, we study the entanglement
between two interacting spin-s under the Ising model from
two different aspects: geometric and dynamic. The first brings
to light the relation between the entanglement and derived
geometrical structures, such as the Fubini-Study metric, the
G-curvature and the geometrical phase, while the second dis-
cusses the entanglement effect on the evolution speed and
geodesic distance. Besides that, we use the entanglement
degree to solve the quantum brachistochrone problem. We
provide concluding remarks in Sec. VI.

II. UNITARY EVOLUTION, GEOMETRY, AND TOPOLOGY
OF N SPIN-s SYSTEM

A. Theoretical model and unitary quantum evolution

In this work, the considered system consists of N qudits
(with d = 2s + 1) represented by N interacting spin-s under
long-range Ising model governed by the Hamiltonian

H = 2J
∑

1�k<l�N
Sz

kS
z
l , (1)

with J is the exchange constant of the interaction and Sz
k stands

for the z component of the spin operator Sk = (Sx
k, S

y
k, S

z
k )T

associated with kth spin-s (i.e., the kth qudit) which fulfills
the eigenvalues equation of the form

Sz
k|mk〉 = mk|mk〉, (2)

with mk = {−s,−s + 1, . . . , s} are the possible values due
to the projection of the kth spin over the z axis and |mk〉
represent the associated eigenstates. It is worth noting that
the components of spin-s operators Sx

k, S
y
k, and Sz

k fulfill the
algebraic structure of the Lie group SU(2),[

Sα
k , Sβ

l

] = iδkl

∑
γ=x,y,z

εαβγ Sγ

k , (3)

where δkl and εαβγ denote the Kronecker and Levi-Civita
symbols, respectively. We presume that the system is initially
maintained in a coherent state achieved by a rotation of the
maximum weight state |s, s, . . . , s〉 (i.e., all the spins take
its maximal values) through an angle � around the axis r =
(sin �,− cos �, 0). It is then explicitly formulated by

|	i〉 = e−i�
∑N

k=1 Sk .r|s, s, . . . , s〉 = e
∑N

k=1 (μS+
k −μ∗S−

k )|s, s, . . . , s〉,
(4)

where μ = �
2 e−i�, such as � ∈ [0, π ] and � ∈ [0, 2π ] repre-

sent, respectively, the polar and azimuthal angles. The initial
state (4) can be also written as [10]

|	i〉 = (1 + ZZ∗)−Ns‖Z1, Z2, , ZN 〉 , (5)

with

‖Zk〉 =
s∑

mk=−s

Zs+mk

√
Cs+mk

2s |mk〉, (6)

is the nonnormalized SU(2) coherent state for the kth qudit, C
stands for the binomial coefficient, and the complex parameter
Z = tan �

2 e−i� defines the stereographic projection of the co-
herent state space (sphere) S2 � CP � SU(2)/U(1) from the
north pole on the relevant equatorial plane (i.e., local coordi-
nate on CP). Further, the state-space geometry resulting from
the rotation of the maximum weight state can be determined
using the Fubini-Study metric, which is defined by [8,9]

dS2 = ∂2 ln K(Z, Z∗)

∂Z∂Z∗ dZdZ∗, (7)

with

K(Z, Z∗)= 〈Z1, Z2, . . . , ZN‖Z1, Z2, . . . , ZN 〉 = (1+ ZZ∗)2Ns,

(8)
is the Bergmann kernel characterizing the resulting state
manifold. By a straightforward calculation, the Fubini-Study

032402-2



GEOMETRICAL, TOPOLOGICAL, AND DYNAMICAL … PHYSICAL REVIEW A 107, 032402 (2023)

metric (7) can be written as

dS2 = Ns

2
[d�2 + sin2�d�2]. (9)

It follows that the space of initial state (5) is indeed a sphere
of radius

√
Ns/2. We will now evolve the initial state (5) via

the time-evolution propagator P (t ) = e−iHt . As a result, the
evolved state of the N spin-s system is found as

|	(t )〉 = (1 + ZZ∗)−Ns

s∑
m1,m2,...,mN =−s

e−i2ξ (t )
∑

1�k<l�N mkml

( N∏
ν=1

Zs+mν

√
Cs+mν

2s

)
|m1, m2, . . . , mN 〉, (10)

where ξ (t ) = Jt . It should be noted that the evolution of the
system is ensured only by the parameter ξ , while the other
parameters, namely, N , s, �, and � specify the choice of the
initial state retained. Also, it is interesting to note that the N
spin-s state (10) fulfills the following periodic requirements:

|	(ξ + 2π )〉 = |	(ξ )〉 if s half-integer, (11)

and

|	(ξ + π )〉 = ±|	(ξ )〉 if s integer. (12)

Thus, the behavior of the wave function describing the collec-
tion of N particles is then periodic along the parameter ξ with
a period depending on the bosonic (integer spin) or fermionic
(half-integer spin) character of the particles under study.

B. Geometry and topology of the resulting state space

After performing the evolution of the N particle system via
the temps-evolution propagator and identifying the evolved
state (10), let us now explore the geometry and the topology
of the resulting quantum state manifold containing all the
states that the system can attain during the evolution. For this
purpose, we employ the Fubini-Study metric which is defined
by the infinitesimal distance dS between two neighboring
pure quantum states |	(ζ a)〉 and |	(ζ a + dζ a)〉 and given by
[21,63]

dS2 = gabdζ adζ b, (13)

where ζ a are the freedom degrees �, �, and ξ defining the
evolving state (10) and gab represent the components of this
metric having the form

gab = Re(〈	a|	b〉 − 〈	a|	〉〈	|	b〉), (14)

with |	a,b〉 = ∂
∂ζ a,b |	〉. Using the definition (13) and taking

into account the binomial theorem
s∑

mk=−s

(
tan2 �

2

)s+mk

Cs+mk
2s =

(
1 + tan2 �

2

)2s

, (15)

we get the explicit form of the metric tensor (13) as

dS2 = dS2 + 1
2N (N − 1)s2sin2�[1 + (4s(N − 1) − 1)

× cos2�]dξ 2 + N (N − 1)s2 cos �sin2�d�dξ,

(16)

where dS2 is the line element given in (9). Thus, we man-
aged to establish the Riemannian geometry of the resulting
state manifold after performing the temporal evolution of the
N spin-s system. It is simple to verify that, for ξ = 0 (no
evolution), the space of N spin-s states (16) reduces to the

sphere (9). As we can see, the components of the metric
tensor (16) are � independent, meaning that the quantum
state spaces with a predetermined azimuthal angle possess
the same geometry. Accordingly, we conclude that the space
of states (i.e., quantum phase space) associated with the N
qudits (under study) is a curved two-dimensional manifold
being parameterized by � and ξ . Therefore, it is defined by
the following metric tensor:

dS2 = 1
2N (N − 1)s2sin2�{ 1 + [4s(N − 1) − 1]cos2�}dξ 2

+ Ns

2
d�2. (17)

Here, we are interested in the topological aspect of the N
spin-s system by determining the topology of the relevant
quantum state manifold. To realize this, we start by computing
G-curvature which can be expressed in terms of the metric
tensor (17) as follows [64]:

K = 1

(g��gξξ )1/2

{
∂

∂ξ

[(
gξξ

g��

)1/2

���ξ

]

− ∂

∂�

[(
gξξ

g��

)1/2

��ξξ

]}
, (18)

with ���ξ and ��ξξ are the Christoffel symbols take the form

�
ξ
�� = − 1

2gξξ

(
∂g��

∂ξ

)
, and �

ξ
�ξ = 1

2gξξ

(
∂gξξ

∂�

)
.

(19)
Notice that the metric component g

ξξ
vanishes at the points

� = 0 or � = π , hence the G-curvature (18) of the quantum
state manifold (17) is not defined in these two points. Thus,
we can say that the G-curvature has two singularities, one in
� = 0 and the other in � = π . Otherwise, the curvature is
defined in all other points of the manifold. Inserting the metric
components in the equation (18), we obtain the G-curvature
written as

K = 4

Ns

(
2 − {4s(N − 1) − 1}cos2� + 2s(N − 1) + 1[{4s(N − 1) − 1}cos2� + 1

]2
)

.

(20)

Interestingly, the G-curvature (20) of the resulting quantum
phase space (17) depends on the initial parameters (�, N , s)
of the considered system, while it is independent of the time,
which clearly shows that the state-space geometry is not af-
fected by the dynamics of the system. On the other hand, it
is straightforward to check that for N > 2 and s � 1

2 , the
G-curvature can take negative values for some values of �.
This is consistent with the outcomes reported in [62].
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Given this fact and the fact that the G-curvature (20)
possesses two singularities, we conclude that the relevant
quantum state manifold (17) includes two conical defects: the
first one is located close to the point � = 0, while the second
one is located close to the point � = π . Let us now determine
the topology associated with the space of N spin-s states (17).
For this, we need to calculate the integer Euler characteristic
χ (M ) [M represents the state manifold (17)] given in the
Gauss-Bonnet theorem as follows [64]:

1

2π

[∫
M

KdS +
∮

∂M
kgdl

]
= χ (M ), (21)

where dS and dl are, respectively, the area and line elements
on M, while kg stands for the geodesic curvature. Further, the
first and second terms on the left side of equation (21) indi-
cate, respectively, the bulk and boundary contributions to the
Euler characteristic specifying the state manifold topology.
We can easily verify that the Gauss-Bonnet theorem (21) can
be written in terms of the Fubini-Study metric (17) as∫ π

0

∫
0ξmax

K (g��gξξ )1/2d�dξ + � = 2πχ (M ), (22)

with � corresponds to the Euler boundary integral containing
the conical defects contribution. Explicitly, the Gauss-Bonnet
theorem (22) rewrites

4sξmax(N − 1) + � = 2πχ (M ). (23)

Thus, to compute the Euler characteristic χ , we must first
determine the Euler boundary integral �. For this aim, one
assumes that the angular defects are located very close to the
singular points � = 0, π . In this respect, the metric tensor
(17) can be expanded, close to these two singular points, up to
the second order in �. Indeed, we find

dS2 = Ns

2
d�2 + 2N (N − 1)2s3�2dξ 2. (24)

In addition, it is worth noting that the solid angle of a rev-
olution cone of angle at the apex 2� is defined by � =
2π (1 − cos �) where the last term of this expression stands
for the partial solid angle traced out by the system around the
cone apex in the evolution. Taking advantage of the proximity
of the angular defects to the two singular points, we simply
find

2π cos � ≈ S(ξmax)

d
=

√g
ξξ
ξmax√

g
��

�
, (25)

with S(ξmax) representing the distance covered by the system
in the time period t = ξmax/J around one of the two singular
points (� = 0 or π ) and d denoting the distance between
the trajectory of the system and the relevant singular point.
Consequently, we obtain the angular defects as follows:

� = 2

[
2π −

√g
ξξ
ξmax√

g
��

�

]
= 2[2π − 2sξmax(N − 1)], (26)

where we multiplied it by the factor of 2 since we have
two singular points. Reporting this last equation into the
Gauss-Bonnet formula (23), we obtain the integer Euler char-
acteristic χ (M ) = 2, meaning that the quantum state space
(17) of the N spin-s system has the topology of a sphere. The
upcoming section will reserved for the study of the geometric
phases that can be accumulated by the N spin-s during the
evolutionary process on the resulting state manifold.

III. GEOMETRIC PHASES ACCUMULATED BY THE N
SPIN-s SYSTEM

Having exploring the geometry and the topology of the
quantum state space specified by the squared line element
(17). Let us now examine the geometric phase that can be
acquired by the evolving state (10) for arbitrary and cyclic
evolution processes.

A. Geometric phase in an arbitrary evolution

At this stage, we consider that the N spin-s system evolves
arbitrarily on the two-dimensional manifold (17). In this
scheme, the geometrical phase acquired by the evolved state
(10) has the following form [57,65]:

�g(t ) = arg〈	i|	(t )〉 − Im
∫ t

0

〈
	(t ′)

∣∣∣∣ ∂

∂t ′

∣∣∣∣	(t ′)
〉
dt ′, (27)

being, of course, the global phase minus the dynamical phase.
To evaluate the geometrical phase, we first derive the global
phase accumulated by the system. The transition-probability
amplitude (i.e., the overlap) between the initial state (5) and
the evolved state (10) can be written as

〈	i | 	(t )〉 =
(

1 + tan2 �

2

)−2Ns s∑
m1,...,mN =−s

e−i2ξ
∑

1�k<l�N mkml

[ N∏
ν=1

(
tan

�

2

)2(s+mν )

Cs+mν

2s

]
. (28)

Reporting this last equation (28) into the first term on the right-hand side in equation (27), the total phase accumulated by the N
spin-s state reads as

�glob = − arctan

⎛
⎝∑s

m1,m2,...,mN =−s sin
(
2ξ
∑

1�k<l�N mkml
)(∏N

ν=1

(
tan �

2

)2(s+mν )
Cs+mν

2s

)
∑s

m1,m2,...,mN =−s cos
(
2ξ
∑

1�k<l�N mkml
)(∏N

ν=1

(
tan �

2

)2(s+mν )
Cs+mν

2s

)
⎞
⎠. (29)

It seems that the global phase is composed of two main parts: the first part is of geometrical nature (i.e., the geometrical phase)
being profoundly linked to the geometrical and topological features of these systems. This part can be explained by the explicit
dependence of the global phase upon the dynamical parameters (�, ξ ) defining the evolution path on the quantum phase space
(17), which means that this phase depends both on the evolution path and the geometry (or the topology) in the state manifold
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(17). The second part is of dynamical nature (i.e., the usual dynamical phase) which can be justified by the dependence of the
global phase on the average value of the Hamiltonian (1). Moreover, it is simple to check that the global phase is defined modulo
2π and verifies the periodic requirement

�glob(ξ + 2π ) = �glob(ξ ). (30)

On the other hand, the dynamical phase can be derived by inserting the evolving state (10) into the second term on the right-hand
side of equation (27). Explicitly, we obtain

�dyn = −ξs2N (N − 1)cos2�. (31)

Hence, the geometrical phase accumulated by the N spin-s system (10), undergoing an arbitrary evolution over the quantum
state space (17) is then given by

�g = − arctan

⎛
⎝∑s

m1,m2,...,mN =−s sin
(
2ξ
∑

1�k<l�N mkml
)(∏N

ν=1

(
tan �

2

)2(s+mν )
Cs+mν

2s

)
∑s

m1,m2,...,mN =−s cos
(
2ξ
∑

1�k<l�N mkml
)(∏N

ν=1

(
tan �

2

)2(s+mν )
Cs+mν

2s

)
⎞
⎠+ ξN (N − 1)s2cos2�. (32)

Unlike the dynamical phase, it is clear that the resulting geometrical phase (32) evolves nonlinearly with the time. This phase
depends on the dynamical parameters (�, ξ ), meaning that it depends on the form of the evolution trajectory followed by the N
spin-s state (10) over the quantum phase space (17), whereas the dependence on the initial parameters (N , s) can be interpreted
by the dependence of the geometrical phase on the state space geometry. Let us now consider a special case in which we
investigate the geometrical phase accumulated by the N spin-s state (10) during a very short time period. In this respect, by
expanding the exponential factor in (28) up to the second order in ξ , we find

〈	i|	(t )〉 � 1 − ξ 2s2N (N − 1)

4
[s(N − 1)(2sN cos4� + sin22�) + sin4�] − iξs2N (N − 1)cos2�. (33)

In this view, the geometrical phase (32) reads as

�g � − arctan

(
4ξs2N (N − 1)cos2�

4 − ξ 2s2N (N − 1)[s(N − 1)(2sN cos4� + sin22�) + sin4�]

)
+ ξs2N (N − 1)cos2�. (34)

It is interesting to note that for ξ = 0 the system does not
acquire any phase since the evolved state (10) coincides with
the initial state (5). Moreover, we can observe that, in the ther-
modynamic limit (N → ∞) the global phase disappears. This
implies that the geometric phase and the dynamical phase are
equal throughout the evolution process of the system, which
gives us the possibility to measure experimentally the geomet-
ric phase since it can be expressed in terms of the Hamiltonian
(1). A similar outcome can be obtained for particles with large
spin values (s → ∞).

B. Geometrical phase in a cyclic evolution

Here, we focus on investigating the geometrical phase
emerging from the cyclic evolution of the N spin-s system.
In this scheme, the evolving state (10) fulfills the cyclic con-
dition |	(T)〉 = ei�glob |	(0)〉 where T denotes the required
time for a cyclic evolution process. The AA-geometrical phase
(Aharonov-Anandan phase) accumulated by the system dur-
ing a cyclic evolution (i.e., enclosed path in the relevant
parameter space) reads as [46,66]

�AA
g = i

∫ T

0

〈
	̃(t )

∣∣∣∣ ∂∂t

∣∣∣∣	̃(t )

〉
dt, (35)

where |	̃(t )〉 standing for the cross section introduced by
Anandan and Aharonov in [46]. It is given in terms of the
evolving state (10) as |	̃(t )〉 = e−i f (t )|	(t )〉 where f (t ) is any
smooth function verifying f (T) − f(0) = �glob. Therefore,

the AA-geometrical phase (35) can be rewritten as

�AA
g =

∫ T

0
d�glob + i

∫ T

0

〈
	(t )

∣∣∣∣ ∂∂t

∣∣∣∣	(t )

〉
dt . (36)

Setting equations (29) and (31) into (36), the AA-geometric
phase accumulated by the N spin-s state (10), experiencing
any cyclic evolution over the quantum state manifold (17), is
of the form

�AA
g = ξmaxN (N − 1)s2cos2�. (37)

Remark that the integral of the global phase vanishes (�glob =
0) due to the cyclic evolution of the N spin-s system. Conse-
quently, the AA-geometrical phase is the cyclic integral, in the
interval [0, ξmax], of the average value of the Hamiltonian (1).
Otherwise, during the parallel transport the state vector (10)
over the quantum phase space (17), the AA-geometrical phase
gained coincides with the dynamical phase. Thus, the calcu-
lation of the AA-phase geometrical requires the knowledge
of the Ising Hamiltonian (1), which reflects the possibility of
measuring it experimentally. This can be related to the time-
optimal evolution of the considered system by examining the
evolution speed and the corresponding geodesic distance. This
is the quantum brachistochrone problem that we will solve in
the next section.
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IV. EVOLUTION SPEED AND QUANTUM
BRACHISTOCHRONE PROBLEM FOR N SPIN-s SYSTEM

The quantum brachistochrone problem consists essentially
in establishing the optimal time evolution of such a system
[17,23,24]. The solution of this problem involves finding the
smallest possible duration such that the system travels the
smallest path between the departure state (5) and the arrival
state (10). The main objective in this section is to achieve
the time-optimal evolution by maximizing the evolution speed
and minimizing the corresponding geodesic distance carried
by the system.

A. Evolution speed of the system

To compute the evolution speed, we presume that the evo-
lution of N spin-s system is only dependent on time, whereas
all other parameters are constant. In this respect, the Fubini-
Study metric (17) reduces to

dS2 = 1
2N (N − 1)s2sin2�{ 1 + [4s(N − 1) − 1]cos2�}dξ 2.

(38)
It results that the evolution of the system happens over a circle
of radius

√
gξξ for half-integer s and

√
gξξ /2 for integer s.

The evolution speed of N spin-s system reads as [20]

V = dS
dt

= 2

h̄
�E , (39)

with �E is the energy uncertainty associated with the Ising
Hamiltonian (1). From equation (39), we can observe that the
greater the energy uncertainty, the shorter the evolution time,
and vice versa. By inserting equation (38) into equation (39),
the evolution speed of the N spin-s system is given by

V = Js

√
N (N − 1)sin2�{ 1 + [4s(N − 1) − 1]cos2�}

2
.

(40)
The evolution speed is affected both by the exchange inter-
action between spins J, the particle number N , and the spin
value s. Furthermore, the greater these physical parameters
are, the faster the evolution of the system is, except for � = 0
or � = π , where the evolution speed vanishes (V = 0) (no
evolution) whatever these physical parameters are. This is due
to the fact that the N spin-s state is not defined at these
singular points.

B. Quantum brachistochrone problem

To derive the smallest possible duration needed to realize
the time-optimal evolution, we start by maximizing the evo-
lution speed (40) by solving the equation dV/d� = 0. As a
result, one finds

sin 2�{ 2s(N − 1) − [4s(N − 1) − 1]sin2�} = 0, (41)

which implies that

sin �max =
√

2s(N − 1)

4s(N − 1) − 1
. (42)

Hence, the corresponding maximum evolution speed has the
form

Vmax = Js2(N − 1)

√
2N (N − 1)

4s(N − 1) − 1
. (43)

Having established the maximal value of the evolution speed
that can be achieved by the N spin-s system during evolution,
we must also to derive the geodesic distance measured by the
squared line element (38) between the starting state (5) and
the ending state (10). To do this, employing equation (39), we
find

S = s

√
ξ 2N (N − 1)sin2�{ 1 + [4s(N − 1) − 1]cos2�}

2
.

(44)
Since the evolution speed (40) is independent of time, the
geodesic distance (44) varies linearly with the time t . As we
can see that for � = 0 or � = π , the geodesic distance (44)
cancels (S = 0). This is because the relevant state space has
a singularity at these points. Furthermore, for � = π/2, the
geodesic distance has a local minimum given by

Smin = s

√
ξ 2N (N − 1)

2
. (45)

Therefore, the smallest possible time (i.e., the optimal time)
needed to achieve the time-optimal evolution of the N spin-s
system is obtained as

τ = Smin

Vmax
= 1

2Js(N − 1)

√
ξ 2[4s(N − 1) − 1], (46)

which depends only on the maximum speed and minimum
distance obtained during an evolutionary process and not
on the parameter �. The condition (46) ensures the time-
optimal evolution of the system over the state circle (38). In
other words, such an evolution is identified by the maximal
speed (43) and the minimal distance (45) between the points
representing the departure and arrival quantum states. Conse-
quently, one can generate the optimal evolution states via the
following unitary transformation:

|	i〉 → |	(τ)〉 = e−iHτ |	i〉. (47)

Further, using equation (46), the smallest possible time τ can
be expressed in relation to the ordinary time t as

τ = 1

2s(N − 1)

√
[4s(N − 1) − 1]t . (48)

It is worth noting that the ordinary time t corresponds to
the circular trajectory defined by the Fubini-Study metric
(38). From the equation (48), we note that the optimal and
ordinary times are proportional. More precisely, the increase
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of the ordinary time is accompanied by the increase of
the optimal time. In the case of N = 2 and s = 1/2 (i.e.,
two-qubit system), the optimal and ordinary times coincide
(τ = t), whereas in the case of N � 2 and s > 1/2 (i.e.,
N qudits system), the optimal time is strictly less than
the ordinary time (τ < t). As we can see in the thermo-
dynamic limit (N → ∞), the optimal time tends to zero
(τ → 0). In this picture, the state circle (38) becomes a
straight line because the radius of the state circle is endless.
The same results are obtained when the spin value tends to
infinity (s → ∞).

It is also interesting to discuss the solution of the quantum
brachistochrone problem which can be obtained by minimiz-
ing the time evolution with respect to the parameter �. In this
instance, one finds

τ = Smin

Vmax
= S(� = π/2)

V (� = π/2)
= t .

This is a trivial case in which the ordinary time coincides with
the optimal time (t = τ ), which is only valid for a two-qubit
system (N = 2, s = 1/2) and not for general values of N
and s. Furthermore, we could never achieve optimal-time
evolution, which is why this approach is inadequate. To end
up this section, we note that it very important to explore the
dynamical and geometrical aspects of quantum entanglement
by restricting our study to a two spin-s system under the Ising
interaction.

V. GEOMETRICAL AND DYNAMICAL ASPECTS OF THE
ENTANGLEMENT FOR TWO SPIN-s SYSTEM (N = 2)

As already mentioned, our goal is to explore the connec-
tions between the geometrical features and the amount of
quantum entanglement exhibited in our theoretical model. By
employing the I-concurrence as a reliable quantifier of quan-
tum entanglement [58,67,68], we will study the entanglement
between the two spin-s system (two-qudit system) through
two approaches. The first approach is of geometrical nature
which concerns the study of the entanglement effect on geo-
metrical structures established above, namely, the state space
geometry, G-curvature, and the geometrical phase. Second,
the dynamic approach deals with the effect of entanglement
on the dynamics of the system. Furthermore, we try to solve
the quantum brachistochrone problem by means of the degree
of quantum entanglement.

A. Entanglement between two spin-s

The evolved state of the entire quantum system (10) can be
reduced for a two spin-s system as

|	(t )〉 = (1 + ZZ∗)−2s
s∑

m1,m2=−s

e−i2ξm1m2Z2s+m1+m2

×
√

Cs+m1
2s Cs+m2

2s |m1, m2〉. (49)

The I-concurrence of a two-qudit state is given by [57,67]

C =
√

2
(
1 − Tr

[
ρ2

k

])
, (50)

where ρk is the partial density matrix with respect to spin-s k
(k = 1, 2). To compute the I-concurrence, we start by evaluat-
ing the reduced density matrix ρ1 associated to the first spin-s.
The density matrix ρ of the entire system (49) reads as

ρ = (1 + ZZ∗)−4s
s∑

m1,m2=−s

s∑
m′

1,m
′
2=−s

e−i2ξm1m2Z2s+m1+m2

× ei2ξm′
1m′

2Z∗2s+m′
1+m′

2

√
Cs+m1

2s Cs+m2
2s C

s+m′
1

2s C
s+m′

2
2s

× |m1, m2〉〈m′
1, m′

2|. (51)

It follows that the reduced density matrix ρ1 is given by

ρ1 =
(

1 + tan2 �

2

)−4s s∑
m1,m′

1=−s

⎡
⎣ s∑

m2=−s

e−i2ξm1m2 ei2ξm′
1m2

×
(

tan
�

2
e−i�

)2s+m1+m2
(

tan
�

2
ei�

)2s+m′
1+m2

Cs+m2
2s

×
√

Cs+m1
2s C

s+m′
1

2s

⎤
⎦|m1〉〈m′

1|. (52)

Adopting the approximation in which we consider the system
evolves over a short period of time. In this framework, one can
expand the two exponential factors in equation (52) up to the
second order in ξ , we have then

e−i2ξm1m2 ≈ 1 − 2iξm1m2 − 2ξ 2(m1m2)2, (53)

and

ei2ξm′
1m2 ≈ 1 + 2iξm′

1m2 − 2ξ 2(m′
1m2)2. (54)

Putting equations (53) and (54) into (52), the reduced density
matrix ρ1 becomes

ρ1 =
(

1 + tan2 �

2

)−4s s∑
m1,m′

1=−s

⎡
⎣ s∑

m2=−s

[
1 + 2iξ (m′

1 − m1)m2 + 4ξ 2m1m′
1m2

2 − 2ξ 2
(
m2

1 + m′
1

2)m2
2

](
tan2 �

2

)s+m2

Cs+m2
2s

×
(

tan
�

2
e−i�

)s+m1
(

tan
�

2
ei�

)s+m′
1
√

Cs+m1
2s C

s+m′
1

2s

]
|m1〉〈m′

1|. (55)

Using the binomial theorem (15) and its derivatives

s∑
mk=−s

mk

(
tan2 �

2

)s+mk

Cs+mk
2s = −s

(
1 + tan2 �

2

)2s

cos �, (56)
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and
s∑

mk=−s

m2
2

(
tan2 �

2

)s+mk

Cs+mk
2s =

(
s2 − s

2
(2s − 1) sin2 �

)(
1 + tan2 �

2

)2s

, (57)

we obtain the reduced density matrix (55) of the form

ρ1 =
(

1 + tan2 �

2

)−2s s∑
m1,m′

1=−s

[
1 − 2isξ (m′

1 − m1) cos � − 2ξ 2(m1 − m′
1)2

(
s2 − s

2
(2s − 1) sin2 �

)](
tan

�

2
e−i�

)s+m1

×
(

tan
�

2
ei�

)s+m′
1
√

Cs+m1
2s C

s+m′
1

2s |m1〉〈m′
1|. (58)

Inserting equation (58) into (50) and employing the binomial
theorem and its derivatives, we obtain easily the I-concurrence
of the two spin-s system as follows:

C = 2ξs sin2 �. (59)

Thus, we find that the entanglement between the two spins is
affected by the dynamical parameters (�, ξ ). This means that
the entanglement evolution depends on the path followed by
the system over the relevant state space. Otherwise, each point
of the state manifold corresponds to a particular degree of en-
tanglement defined by these parameters. Moreover, taking into
account the approximation used in equations (53) and (54),
we can see that for � = π/2 and ξ = ξ ′

max = Jdt (i.e., ξ ∈
[0, ξ ′

max] where we take the exchange constant 0 < J � 1 for
the sake of precision), the I-concurrence C reaches the max-
imum value (Cmax = 2sξ ′

max), which, in turn, depends on the

spin value. For � = 0 or � = π , we can never achieve an
entangled state. This happens because the initial state |	i〉 =
|s, s〉 is an eigenstate of the two spin-s system. Geometrically,
we can say that the G-curvature (18) presents a singularity
in these two points. However, for all other points (e.g., � ∈
]0, π [), the entanglement is well defined and evolves linearly
with time for a predefined value of �.

B. Geometrical picture of the entanglement

To highlight the geometrical appearance of the quantum
correlations between the two spins under consideration, we
propose a detailed study visualizing the interplay between the
entanglement and the geometrical features established above.
Using equations (59) and (17), the metric tensor, defining the
space of two-spin-s states, can be expressed in terms of the
I-concurrence as

dS2 = s

2ξ 2C(2sξ − C)

[
ξ 2

2
dC2 − ξCdCdξ +

{C2

2
+ ξ ′

maxC(2sξ − C)

[
1 + (4s − 1)

(
1 − ξ ′

maxC
2sξ 2

)])
dξ 2

}
. (60)

Therefore, we managed to parametrize the two-spin state
space in relation to the entanglement degree as well as the
evolution time being two quantifiable physical quantities. This
shows the ability to investigate experimentally some geomet-
rical and dynamical features identifying the state space (60),
such as the state space geometry, the geometrical phase, the
evolution speed, and the geodesic distance between the entan-
gled states. On the other hand, the entanglement provides the
possibility to lower the state space dimensions, for example,
the two spin-s states of the same entanglement degree con-
stitute a curved one-dimensional manifold identified by the
following metric tensor:

dS2 = s

2ξ 2C(2sξ − C)

{ C2

2
+ ξ ′

maxC(2sξ − C)

×
[

1 + (4s − 1)

(
1 − ξ ′

maxC
2sξ 2

)]}
dξ 2. (61)

Hence the relevance of quantum correlations for the adap-
tation of the state-space geometry. In this respect, we can
also explore the entanglement effect on the G-curvature of
two-spin state space (60). Indeed, introducing the equa-
tion (59) into (20), we give the G-curvature in terms of the

I-concurrence as follows:

K = 2

s

[
2 − (4s − 1)

(
1 − ξ̃ C

Cmax

)+ 2s + 1[
(4s − 1)

(
1 − ξ̃ C

Cmax

)+ 1
]2
]
, (62)

where ξ̃ = ξ ′
max/ξ . This result proves, once again, the sen-

sitivity of the state-space geometry against the quantum
correlations existing between the two spins.

To get an insight into the G-curvature with respect to
quantum entanglement, we plotted the behavior of (62) versus
the I-concurrence for several spin values and fixed ξ̃ = 1 in
Fig. 1. We observe that increasing the degree of entanglement
between the two spins leads to a decrease in the state-space
curvature. Further, for s > 1/2, the G-curvature takes nega-
tive values. This can be interpreted by the fact that the increase
of the quantum correlations between the two spins compact-
ifies the corresponding state space (61). As we can see that
the disentangled states (C = 0) are located in the maximal
curvature areas

Kmax = 2

s

[
2 − 3

8s

]
, (63)
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FIG. 1. The G-curvature (62) versus the I-concurrence (59) for
some spin values with ξ̃ = 1.

whereas the maximally entangled states (C = Cmax) are lo-
cated in the minimal curvature areas

Kmin = 2

s

[
2 − (4s − 1)(1 − ξ̃ ) + 2s + 1

[(4s − 1)(1 − ξ̃ ) + 1]
2

]
. (64)

In this way, we conclude that the amount of entanglement
of the two spin-s system identifies the physical states of the
system in the quantum phase space (60). This allows us to ob-
tain information about the geometry of state manifold through
the entangled states. Besides, we see that for high spin values
(s → ∞), the G-curvature vanishes (K = 0) at any point of
the state space, hence this space becomes flat. In the same
framework, we discuss the interplay between the geometrical
phase and the entanglement. Indeed, putting equation (59) into
(34), the geometrical phase acquired by the two spin-s system
can be expressed in terms of the I-concurrence as

�g = 2ξs2

(
1 − ξ̃

C
Cmax

)
− arctan

×
⎛
⎝ 4ξs2

(
1−ξ̃ C

Cmax

)
2−ξ 2s2(2s−1)

(
(2s−1)ξ̃ 2 C2

C2
max

−4sξ̃ C
Cmax

+4s2
)
⎞
⎠.

(65)

In Fig. 2, we depict the geometrical phase behavior of
the two spin-s system versus the quantum entanglement for
various spin values with ξ̃ = 1. From the results reported in
this figure, it can be clearly seen that the geometrical phase
varies as a decreasing affine function with increasing entan-
glement degree. This behavior can be explained by returning
to the expression of the geometrical phase (65), where the
contribution of the dynamical phase is clearly more dominant
than that of the global phase. Notice that the disentangled
states constitute the category of the two-spin states most ac-
cessible to accumulate the geometric phase maximum, while
the maximally entangled states form the category of states
that never accumulate it. The intermediate entangled states are
situated between these two types of categories. Accordingly,
we find that the existence of quantum correlations favors the
loss of the geometrical phase during the evolution on the state
space (60). This result agrees with the result demonstrated

FIG. 2. The geometrical phase (65) versus the I-concurrence (59)
for some spin values with ξ̃ = 1.

above that quantum correlations decrease the G-curvature (62)
because the geometrical phase is a consequence of such cur-
vature. On the other hand, we notice that the larger the spin
value, the greater the gain (or the loss) of the geometric phase.
Therefore, we conclude that the entanglement and the spin
value are two interesting keys for controlling the gain or loss
of the Berry phase of the two spin-s system.

C. Dynamical picture of the entanglement

At the end of this section, we will investigate the interplay
between the entanglement of the two spin-s system and the
corresponding dynamics over the quantum phase space (60).
As a result, we attempt to solve the quantum brachistochrone
problem based on the degree of quantum entanglement be-
tween the two interacting spins. For this purpose, by inserting
the equation (59) into (39) for two-spin system (N = 2), the
evolution speed can be rewritten in terms of the I-concurrence
as

V = Js

√
ξ̃

C
Cmax

(
4s − (4s − 1)ξ̃

C
Cmax

)
. (66)

Thereby, we succeeded in connecting the evolution speed of
two spin-s system with the degree of entanglement. Other-
wise, the expression (66) translates the connection the unitary
evolution of the system and the dynamics of quantum corre-
lations. Therefore, we deduce that the information about the
dynamics of the system can be obtained through its entangled
states. The evolution speed behavior with respect to the I-
concurrence is displayed in Fig. 3.

We note that for s > 1/2 the variation of the evolution
speed is divided into two parts: the first part displays the evo-
lution speed increase of the two spin-s system until it reaches
its maximum value Vmax = 2Js2/

√
4s − 1 that matches

the entanglement degree C = C ′ = 2sCmax/(4s − 1)ξ̃ . This
means that the quantum correlations, in this first part, acceler-
ate the evolution of the system over the quantum state space
(60). The second part concerns the interval C ∈ [C ′, Cmax]
where the speed has reversed its variation, it decreases contin-
uously until it reaches its local minimum V (C = Cmax). This
signifies that the quantum correlations, in this second part,
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FIG. 3. The evolution speed (66) versus the I-concurrence (59)
for some spin values with ξ̃ = 1 and J = 1.

decelerate the evolution of the system. Hence, the dynamics
of the system undergoes a phase change at the critical point
C = C ′. The special case s = 1/2 includes only the first part
because C ′ = Cmax. The speed (66) is also affected by the
spin value. Indeed, we notice that the larger the spin value,
the faster the two spin-s system evolves. Accordingly, we
conclude that the entanglement and the spin value are two es-
sential physical parameters for controlling the evolution speed
of two interacting spins under the Ising model. Employing
equation (39), we derive the geodesic distance covered by the
two spin-s system in terms of the I-concurrence, it is given by

S = s

√
ξ ′

maxξ
C

Cmax

(
4s − (4s − 1)ξ̃

C
Cmax

)
. (67)

Therefore, we were able to relate the distance measured by
the Fubini-Study metric (60) with the entanglement. This pro-
vides the possibility to measure experimentally the distance
between the entangled states (or the evolution speed) on the
quantum state manifold (60).

Comparing the Figs. 3 and 4, we conclude that the geodesic
distance (67) has, with respect to the entanglement, the same
behavior as the evolution speed (66) and therefore the same
conclusions can be obtained. Let us now resolve the quan-

FIG. 4. The geodesic distance (67) versus the I-concurrence (59)
for some spin values with ξ̃ = 1, J = 1, and ξ ′

max = 10−3.

FIG. 5. The optimal time (68) versus the I-concurrence (59) for
some spin values with ξ̃ = 1, J = 1, and ξ ′

max = 10−3.

tum brachistochrone problem, which is related to finding the
optimal-time evolution for the two spin-s system. For this pur-
pose, using the equations (66) and (67), the smallest possible
duration needed to realize the time-optimal evolution is given
in relation with the I-concurrence by

τC = S
Vmax

= 1

2Js

√
ξ ′

maxξ
C

Cmax
(4s − 1)

(
4s − (4s − 1)ξ̃

C
Cmax

)
.

(68)

From this last expression (67), we see that for C = 0 the
optimal time vanishes (τ = 0), this is because the evolved
state (49) coincides with the separable initial state |	i〉 =
(1 + ZZ∗)−2s‖Z1, Z2〉 (i.e., no evolution). For the critical
entanglement degree C = C ′ the optimal time reaches its max-
imum value (τ = t ), meaning that the optimal evolution of
two spin-s system coincides with the ordinary evolution,
while for C ∈]0, C ′[ ∪ ]C ′, Cmax[ the optimal time is strictly
inferior to the optimal time (τC < t ).

The behavior of the optimal time (68) with respect to the
entanglement is depicted in Fig. 5, we note that the smaller
the entanglement degree (or the spin value s) of the two
spins (C → 0), the smaller the optimal time (τC → 0). As
a result, we conclude that entanglement and spin value are
two intriguing physical quantities in the realization of the
optimal-time evolution for two interacting spins under the
Ising model. These evolutions are extremely important in the
field of quantum computation, particularly in the construction
of quantum circuits required to implement quantum gates
[11,27,28].

VI. CONCLUSION AND OUTLOOK

To summarize, we studied a physical system of N inter-
acting spin-s under long-range Ising model. We presumed
that the departure state is the tensor product of N SU(2)
coherent states. After applying the unitary evolution operator,
the resulting evolved state is defined by three degrees of
freedom, namely, the spherical angles (�,�) and the time
t . We give analytically the Fubini-Study metric and found
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that the state space is a curved two-dimensional manifold.
Additionally, using the Gauss-Bonnet theorem we proved that
this space is of spherical topology. We computed the geomet-
rical phase accumulated by the N spin-s system for arbitrary
and cyclic evolution processes. This result is obtained by
assessing the difference between the global and dynamical
phase. We concluded that, in the arbitrary evolution case, the
geometrical phase evolves nonlinearly with time. Geometri-
cally, we discovered that it depends on both the evolutionary
path followed by the system as well as the geometry taken
by the corresponding quantum phase space. In the cyclic
evolution case, the integral of the global phase accumulated
by the system along the evolutionary process vanishes, and
therefore, the geometrical phase coincides with the dynamical
phase which evolves linearly with time, hence, the possibility
to measure the geometrical phase experimentally. The same
result can be obtained in the thermodynamic limit (N →
∞). In addition, we examined the evolution speed, geodesic
distance between the quantum states, and we resolved the
quantum brachistochrone problem for the N spin-s system.
We demonstrated the optimal time in terms of ordinary time.
As a result, we inferred that, for N = 2 and s = 1/2 (i.e., the
two spin-1/2 system), the optimal and arbitrary time coincide,
whereas for N > 2 and s > 1/2, the optimal time is strictly
inferior to the ordinary time. Thus, the number of particles
and the spin value are two essential parameters to realize the
optimal-time evolution. Moreover, it is important to see that
in the thermodynamic limit (N → ∞), the optimal time is
close to zero. The same results can be achieved for large spin
values.

On the other hand, by narrowing the system to a two
interacting spin-s under the Ising model, we analyzed the
entanglement from two perspectives: the first perspective is of
geometrical type, in which we established the Fubini-Study
metric in relation with the I-concurrence as a quantifier of the
quantum correlations. Moreover, we showed that the existence
of quantum correlations between the two interacting spins
decreases the curvature of the relevant state space. In addition,

the entanglement amount identifies the physical states on the
state space, for instance, the states of maximum entanglement
are located in the minimum curvature regions, while the disen-
tangled states are located in the maximum curvature regions.
We also demonstrated that the existence of quantum corre-
lations disfavors the accumulation of the geometrical phase.
Thus, we managed to illustrate the interplay between the as-
sociated geometrical structures and the quantum entanglement
phenomenon. The second perspective is of dynamical type, in
which we related the evolution speed with the entanglement,
we found that the speed has two different behaviors with
respect to the critical entanglement degree C ′ [V (C ′) = Vmax]:
the first one is in the interval [0, C ′], where the existence
of the quantum correlations accelerates the evolution of the
system, while the second one is in the interval [C ′, Cmax],
where the existence of the quantum correlations decelerates
the evolution of the system. The same behavior is observed
for the geodesic distance between the quantum states. Finally,
we solved the quantum barchistochrone problem using the
degree of entanglement between the two spins. We concluded
that the entanglement and the spin value are two essential
parameters to realize the optimal-time evolution for two in-
teracting spin-s under Ising model. Thus, we were able to
highlight, to a large extent, the relation between the quantum
entanglement and the geometrical and dynamical structures
identifying the state space of the two spin-s system under
consideration.

As an extension of these results, it is extremely important
to generalize our study by examining the connection between
these structures and the quantum entanglement when the sys-
tem consists of more than two qudits (N > 2). Thereby, it is
interesting to examine the connection between these structures
and other quantum resources, such as quantum coherence
and correlations beyond quantum entanglement using various
measures. Some such quantifiers provide analytical expres-
sions for multiqudit systems and thus we can find their links
with the relevant features. We hope to address these issues in
upcoming work.
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