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In a scenario where data-storage qubits are kept in isolation as far as possible, with minimal measurements
and controls, noise mitigation can still be done using additional noise probes, with corrections applied only
when needed. Motivated by the case of solid-state qubits, we consider dephasing noise arising from a two-
state fluctuator, described by random telegraph process, and a noise probe which is also a qubit, a so-called
spectator qubit (SQ). We construct the theoretical model assuming projective measurements on the SQ, and
derive the performance of different measurement and control strategies in the regime where the noise mitigation
works well. We start with the Greedy algorithm; that is, the strategy that always maximizes the data qubit
coherence in the immediate future. We show numerically that this algorithm works very well, and find that its
adaptive strategy can be well approximated by a simpler algorithm with just a few parameters. Based on this,
and an analytical construction using Bayesian maps, we design a one-parameter (�) family of algorithms. In
the asymptotic regime of high noise sensitivity of the SQ, we show analytically that this � family of algorithms
reduces the data qubit decoherence rate by a divisor scaling as the square of this sensitivity. Setting � equal to its
optimal value, ��, yields the Map-based Optimized Adaptive Algorithm for Asymptotic Regime (MOAAAR).
We show, analytically and numerically, that MOAAAR outperforms the Greedy algorithm, especially in the
regime of high noise sensitivity of SQ.
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I. INTRODUCTION

Qubit decoherence from environmental noises is one of
the major obstacles to building useful large-scale quantum
computers [1–4]. In the past years, a wide range of noise-
mitigation techniques have been proposed to prolong the
coherence time of computational qubits. Some of the tech-
niques, such as the dynamical decoupling (DD), aim at
removing average effects of noise continuously in time, via
applying carefully designed controls onto qubits [5–12]. Other
techniques, such as those that fit in the category of quantum
error correction (QEC), are designed to monitor effects of
noise and correct errors via information-redundancy encoding
[13–15].

However, both DD and QEC approaches require direct con-
trols or measurements on the qubits of interest, which could in
turn create more sources of noise. Therefore, in the particular
case where it is possible to keep the computing (data) qubits
well isolated from their environment, new techniques, that can
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both correct noise effects while minimizing direct contact to
the data qubits, are required. Such techniques would demand
an additional entity, e.g., a sensor or a probe, in proximity of
the data qubits, that can sense the problematic noise and any
correction to the data qubits can be applied only when needed.

In this paper, we are interested in the recently proposed
idea of spectator qubits (SQs) [16–18], which are qubit-type
probes that are assumed to be much more sensitive to target
noise than data qubits and can be easily measured. This could
be applicable in solid-state quantum computing, where differ-
ent types of qubits with very different properties can co-exist.
For example, the data qubits could be the spin qubits with low
sensitivity to noise [19–21] and SQs could be quantum dots
nearby with an ability of high-efficiency readout [22–24]. As-
suming a well-isolated spin-donor qubit in silicon substrate,
there will still be lingering effect from low-frequency noise,
such as charge noise, which can affect qubits at different
locations simultaneously [25,26] and is considered difficult to
remove [27]. Therefore, we are interested in constructing a
theoretical model using the data-spectator setup to investigate
a plausible optimal regime for the noise mitigation. It turns
out that the solution is not trivial, even with a simple regime
with single data and spectator qubits.

We have presented our most important findings on this
problem in a companion letter (CL) [28]. Specifically, we
showed that by performing projective measurements on the
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FIG. 1. Schema for the adaptive measurement strategy on SQ.
The orange line shows the dynamics of RTP, which jumps between
two values indicated with pale dashed orange lines. The blue line
represents the SQ, which is reset (triangle) after each measurement
(purple semicircle). Stored measurement results are represented by
purple arrows toward the measurement record line Yn (purple). These
measurement records are used via the adaptive strategy (black ar-
rows) to decide the next measurement time tn and next measurement
angle θn. Last, at final time T , the data qubit (pink) is corrected using
information YN (downward teal arrow).

SQ at certain times and in certain bases, that are chosen
adaptively in an optimized manner, the decoherence of the
data qubit can be suppressed by an amount which is quadratic
in the SQ sensitivity. This result holds under ideal conditions,
and the optimal suppression is quite nontrivial, as it is better
than that can be achieved by simply maximizing the data
qubit coherence in each, arbitrarily small, time step (Greedy
algorithm). In this paper, we give the detailed derivations of
the results in the CL [28], and explore in much more depth the
comparison between the Greedy algorithm and the optimized
algorithm. But to explain more precisely the contents of this
paper, it is necessary first to give some more theoretical back-
ground.

We model the decoherence of the data qubit as being
caused by low-frequency phase noise arising from the random
motion of a trapped charge caused by impurities, as is com-
mon in the experimental solid-state qubit setting [27,29–32].
Specifically, we model the noise z(t ) as a two-state fluctuator
[33–36], with values ±1 as shown in Fig. 1. This can be
mathematically described by the random telegraph process
(RTP), with two flip rates: γ↑ and γ↓ [37,38]. To monitor the
noise, a SQ is placed nearby, experiencing the same phase
noise, but with the higher sensitivity. This is described by a
total Hamiltonian of both qubits,

Ĥtot = κ

2
σ̂ d

z z(t ) + K

2
σ̂ s

z z(t ). (1)

Here κ and K are the data qubit’s and SQ’s noise sensitivities
and σ̂ d,s

z are their respective z-Pauli matrices. Also, we are
working in a rotating frame for both qubits (their frequencies
need not be the same or even similar) and with units where
h̄ = 1.

We assume that, in order to obtain information about the
noise z(t ), the SQ can be measured after arbitrary wait-
ing times {τ1, τ2, . . .}, with arbitrary angles {θ1, θ2, . . .}, and
reprepared in an arbitrary state |θ〉s. Here θ always indicates
an angle on the equator of the Bloch sphere, defining either

a Pauli observable, σ̂ s
θ ≡ cos θ σ̂ s

x + sin θ σ̂ s
y , or a state |θ〉s

which is the +1 eigenstate of σ̂ s
θ . The resulting string of

measurement readouts can then be used in estimating the data
qubit phase correction at some final time T , which is when
the data qubit is required. The goal is to maximize the resul-
tant coherence of the data qubit, averaging over all possible
realizations of the noise.

Given this model and goal, the question is how one should
choose the τn’s, the θn’s, and the final phase correction. In
this work, we apply the separation principle from control
theory, and the structure of the reward function (which defines
the goal), to greatly simplify the problem. We show that the
information necessary for all future controls can be stored in
a complex 2-vector and propagated from one measurement to
the next by a Bayesian map, a complex 2×2 matrix. We then
use the maps to numerically find the locally optimal—also
known as Greedy—algorithm.

Locally optimal algorithms, in general, are not always
globally optimal, and we find that to be the case for the
problem here. We are interested in the regime where the SQ
approach is most useful, to wit,

T −1, κ � γ↑,↓ � K. (2)

We analyze how the Greedy algorithm works in this regime,
and this suggests a simple, single parameter (�) family of
models where τn = �/K and θn = ±�. Here the sign of θn

is determined adaptively, and reflects the algorithm’s best
estimate of z(tn), the current state of RTP. In the asymptotic
regime (2), we can solve analytically for the performance of
this family of algorithms. Choosing the optimal parameter
value �� yields a measurement and control strategy that is
plausibly optimal, and which we call MOAAAR (Map-based
Optimized Adaptive Algorithm in the Asymptotic Regime).
This can reduce the decoherence rate of the data qubit, relative
to the no control rate, by the multiplicative factor

H � (γ̄ /K )2, where H � ≈ 1.254, (3)

where γ̄ := (γ↑ + γ↓)/2. That is, as mentioned above, the
data qubit lifetime enhancement offered by the MOAAAR
algorithm scales like the square of the sensitivity of the SQ.
While the same quadratic scaling is observed for the Greedy
algorithm, we find that the prefactor H� for the decoherence
rate with MOAAAR is smaller than that from Greedy.

The structure of this paper is as follows. First, in Sec. II,
we briefly discuss the physics and mathematical description
of the RTP. We then, in Sec. III, calculate the dephasing of
the data qubit in the absence of any control, and formulate it
as a matrix product, which will be useful later. We end this
section by looking at how, in general, additional information
can be used to improve the coherence in the data qubit. In
Sec. IV we construct the setup and measurement on the SQ
and discuss the notion of adaptive measurement strategy in
the context of the SQ. Then, in Sec. V, we use Bayesian
statistics and formulate the expected coherence using the gath-
ered information via the SQ. We write the Bayesian map as a
matrix product which updates a coherence vector after each
measurement on the SQ. We also introduce a phase space
formalism which includes all the sufficient information. We
then optimize our measurement strategy using the locally
optimization algorithm (Greedy) in Sec. VI and the global
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optimization approach (MOAAAR) in Sec. VII. In Sec. VIII
we compare these two optimization strategies by constructing
a closed-form formula for each that applies even outside the
asymptotic regime. We conclude our work with a discussion
of future research directions in Sec. IX.

II. CHARGE NOISE AND RANDOM TELEGRAPH
PROCESS (RTP)

Charge noise is one of the causes of decoherence in a
wide range of physical systems including superconducting
qubits [39], quantum dots [40], Nitrogen vacancy centers [41],
trapped ions [42], and semiconductors [27,31,33,35,43,44].
The noise is often described by stochastic motion of elec-
trons or holes trapped at impurities in the devices, which can
be mathematically modeled as a random telegraph process
(RTP), whose value jumps between two values [37,38]. Con-
sider the RTP noise parameter zt := z(t ), which can be either
+1 or −1. It makes a jump from z = −1 to z = +1 with rate
γ↑, and z = +1 → −1 with rate γ↓. Define the probability
vector

Pt :=
(
℘(zt = +1)
℘(zt = −1)

)
, (4)

where ℘(zt = ±1) is the probability of zt = ±1 at time t .
Then, with the jump rates defined above, one may write a
(classical) master equation for vector Pt as

Ṗt = JPt , (5)

where J is the jump rate matrix,

J =
(−γ↓ +γ↑

+γ↓ −γ↑

)
. (6)

If the RTP evolves for a duration of τ , between times t ′ and
t ′′ = t ′ + τ , the master equation (5) has a solution of the form
Pt ′′ = eJτ Pt ′ . One may rearrange the matrix exponential and
write the solution as

Pt ′′ =
(

I + 1 − e−2γ̄ τ

2γ̄
J
)

Pt ′ . (7)

where γ̄ = (γ↑ + γ↓)/2 as before, and I is the identity matrix.
It is worth mentioning that when τ → ∞, the probability
vector Pt ′′ converges to its steady state given by

Pss = 1

2γ̄

(
γ↑
γ↓

)
. (8)

This will be used throughout the paper as the state of RTP
when no information about the noise is available, such as at
the initial time.

We model the effect of the charge noise on the data and
spectator qubits by the Hamiltonian in Eq. (1). From this,
it is apparent that, under free evolution in some time inter-
val (t ′, t ′′), the qubits’ accumulated phase (angle of rotation
around the σ̂z axis) will be proportional to the integral of the
noise in that interval,

x :=
∫ t ′′

t ′
z(s) ds. (9)

To determine the dephasing caused by this random accu-
mulated phase (more on this in the next section) it is useful to
calculate the average,

∫
℘(x)eikx dx, of the exponential factor,

eikx, for arbitrary k. Actually, it is even more useful to calculate
the integral

∫
eikx℘(x, zt ′′ |zt ′ ) dx for arbitrary k, zt ′′ , and zt ′ .

This is, of course, just the Fourier transform of ℘(x, zt ′′ |zt ′ ),
and can be calculated using Eqs. (7) and (9) as

∫
eikx℘(x, zt ′′ |zt ′ ) dx = exp(−γ̄ τ )

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cosh
(

λ
2 τ
)− s η

λ
sinh

(
λ
2 τ
)
, for zt ′ = zt ′′ = s

2γ↑
λ

sinh
(

λ
2 τ
)
, for zt ′′ = −zt ′ = +1

2γ↓
λ

sinh
(

λ
2 τ
)
, for zt ′′ = −zt ′ = −1

, (10)

where s ∈ {−1,+1} and

λ(k) =
√

(γ↓ + γ↑)2 − 4ik(γ↓ − γ↑) − 4k2, (11a)

η(k) = (γ↓ − γ↑) − 2ik (11b)

are functions of the Fourier variable k (see Appendix A and
Refs. [35,45] for the details of its derivation). In the following
sections, we will use these results to derive the statistics of
data and spectator phases, conditioned on measurement re-
sults and/or qubit controls.

III. DATA QUBIT DEPHASING

In this section, we define the data qubit’s coherence and
analyze its dephasing due to the RTP noise, both for the cases
with no control and with the control phase correction. For the
no-control case, we show that the qubit’s coherence can be

written as a matrix equation involving a complex two-by-two
matrix, H. The matrix representation for the no-control coher-
ence will be extended to the version including measurement
strategies and readouts of the spectator qubit in Sec. V.

A. Formulation of data qubit coherence

From the total Hamiltonian in Eq. (1), if we include the
control (phase correction) applied at the final time, t = T , we
can write the Hamiltonian of the data qubit as

Ĥd(t ) = κ

2
σ̂ d

z z(t ) + Ĥctrlδ(t − T ). (12)

The first term of the Hamiltonian describes a stochastic phase
rotation around the z axis of the data qubit’s Bloch sphere.
To evaluate the data qubit’s decoherence due to this term, we
consider a qubit’s density matrix in the z basis affected by a
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random noise,

ρd(�) = ρ++|+1〉d
z 〈+1| + ρ+−e−iφ(�)|+1〉d

z 〈−1|
+ ρ−+e+iφ(�)|−1〉d

z 〈+1| + ρ−−|−1〉d
z 〈−1|, (13)

where |+1〉d
z and |−1〉d

z are the two σ̂ d
z eigenstates, σ̂ d

z |±1〉d
z =

±|±1〉d
z . The terms ρ++, ρ−−, ρ+−, ρ−+ are density matrix

elements of the data qubit’s state at the initial time (t = 0),
before affected by the noise. The Hamiltonian (12) thus in-
troduces an additional phase, denoted by φ = φ(�), which is
a function of a set of variables, �, which can include both
the noise that affects the data qubit’s phase, and the control
applied to it.

Since the value of � varies from run to run, we are inter-
ested in the average final state of the qubit, 〈ρd(�)〉�, where
the subscript � indicates that this is the random variable
with respect to which the average is taken. The data qubit’s
final purity is completely determined by the magnitude of the
off-diagonal elements of Eq. (13), which gives |ρ+−〈eiφ(�)〉�|.
Since the element ρ+− is not affected by the noise, we can
thus define the quantity to be maximized, which we call the
coherence, as

C := |〈eiφ(�)〉�|. (14)

The expected average of random phases typically leads to the
value of coherence being less than one (its maximum value)
and can be as low as zero for the case of uniformly distributed
phases in [0, 2π ). The reduction of coherence from random
phases is called qubit dephasing. It is also convenient later to
define a complex coherence,

A := 〈eiφ(�)〉�, (15)

without the absolute value, where C = |A|. The information
of the argument of A will be useful later, in estimating the
phase information of the data qubit.

Let us define capital-letter variables for a total accumulated
noise, from time t = 0 to any time t ,

X :=
∫ t

0
z(s) ds, (16)

and for a total information,

Y := all acquired information about X, (17)

which is from any measurements up to the time t . In the
following subsections, we simplify the representation of a data
qubit’s state in Eq. (13) to showing only its phase. Let us
define a state of the data’s qubit phase as

|φ〉d := 1√
2

(|+1〉d
z + eiφ |−1〉d

z

)
. (18)

Then the initial phase of the data qubit is |φ = 0〉d (a zero
noisy phase), and we consider two cases: the no-control
case and the case with the noise correction. For the former,
Ĥctrl = 0, the total data noisy phase will be a function of
noise, φ(�) = φ(X ). For the latter, we introduce a phase-
correction control, Ĥctrl = −ic(Y )σ̂ d

z /2, which describes an
instantaneous rotation of the data qubit’s state around the z
axis with an angle −c(Y ) that depends on the information, Y .
In this case, the data qubit’s phase will be a function of both
the noise and the control, φ(�) = φ(X,Y ). We will show how

to compute the data qubit’s coherence for both cases in the
following subsections.

B. Decay of no-control (nc) coherence

For the “no-control” (nc) case, Ĥctrl = 0, the data qubit
only evolves stochastically due to the RTP noise. Given the
Hamiltonian, Eq. (12), the data qubit’s state (represented by
its noisy phase) at any time t , becomes

|φ(�)〉d = exp

(
−i κ

2 σ̂ d
z

∫ t

0
ds z(s)

)
|φ = 0〉d = |κX 〉d,

(19)

which means that the data noisy phase, φ(�) = φ(X ) = κX ,
is simply proportional to the total accumulated noise. Fol-
lowing Eq. (14), replacing � with X , we can calculate the
no-control coherence as

Cnc := |〈eiφ(X )〉X | =
∣∣∣∣
∫

eiκX℘(X ) dX

∣∣∣∣ , (20)

and its no-control complex coherence

Anc :=
∫

eiκX℘(X ) dX, (21)

where℘(X ) is the probability density function of the accumu-
lated noise.

Since the variable X is an accumulated RTP noise, it is con-
venient to write the probability function℘(X ) as marginalized
over the initial z0 = z(t = 0) and the end point zt = z(t ) of
RTP,

℘ (X ) =
∑

zt

∑
z0

℘ (X, zt |z0)℘ (z0). (22)

Substituting the above equation into Eq. (20), we find that the
no-control coherence is

Cnc =
∣∣∣∣∑

zt

∑
z0

[∫
eiκX℘ (X, zt |z0) dX

]
℘ (z0)

∣∣∣∣, (23)

where the term inside the square brackets is the Fourier form
as we defined in Eq. (10). Now, we see that Eq. (23) can be
written as a map-based equation by defining a vector

A0 := Pt=0 =
(
℘ (z0 = +1)
℘ (z0 = −1)

)
, (24)

using the definition in Eq. (4) and defining matrix elements,

Hzt
z0

(t, κ ) :=
∫

eiκX℘ (X, zt |z0) dX. (25)

Since z0, zt ∈ {−1,+1}, this defines a two-by-two matrix,

H(t, κ ) :=
(

H+1
+1 (t, κ ) H+1

−1 (t, κ )

H−1
+1 (t, κ ) H−1

−1 (t, κ )

)
. (26)

Thus, the coherence in Eq. (23) is then written as

Cnc = |I�H(t, κ )A0|, (27)

where I� = (1, 1). We can calculate the coherence Eq. (27)
for the no-control case analytically (see details in Ap-
pendix A). As we will see later, reformulating the coherence
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as matrix equations simplifies analytical and numerical calcu-
lations for optimal controls, particularly when measurements
on the spectator qubit are involved.

To simplify the discussion later, let us also define a com-
plex two-dimensional coherence vector for the no-control
case,

Anc = H(t, κ )A0 =
(
℘ (zt = +1)A|zt =+1

℘ (zt = −1)A|zt =−1

)
. (28)

Here we have introduced a complex conditional coherence,

A|zt :=
∫

eiκX℘ (X |zt ) dX = 〈eiκX 〉X |zt , (29)

of the data qubit. This quantity is conditioned on (hypotheti-
cally) finding out the value of the RTP zt at time t ; later we will
condition on other data, that may be hypothetical or actual or a
combination of both. We can get back the no-control complex
coherence in Eq. (21) by

Anc = I�Anc = I�H(t, κ )A0 =
∑

zt

℘ (zt )A|zt , (30)

where the sum is over zt ∈ {−1, 1}, showing the connection
among matrix equations and the complex coherence. The
absolute value of this complex coherence is the no-control
coherence as shown in Eq. (27).

C. Decay of coherence in asymptotic regime

Here, we show that, in the long-time limit, t → ∞, and
the asymptotic regime, where κ is much smaller than the RTP
jump rate, κ � γ̄ , the no-control coherence Cnc decays ex-
ponentially. We start with the no-control complex coherence,
Anc in Eq. (21), and calculate the ratio of the change over an
infinitesimal time and its value. That is, the ratio is defined as

�t := dAnc/dt

Anc
, (31)

which in general can be a time-dependent function denoted
by the subscript t . We use the RTP steady state as the initial
vector A0 = Pt=0 = Pss in (8), and expand the right-hand side
of Eq. (31) to second order in κ and find

�t = i(γ↑ − γ↓)
κ

2γ̄
+ (e−2t γ̄ − 1)

κ2γ̆

2γ̄ 2
+ O(κ3), (32)

where γ̆ ≡ 2γ↑γ↓/(γ↑ + γ↓) is the harmonic mean of γ↑ and
γ↓. Taking the long-time limit, i.e., t → ∞, of above the
expansion, we find that the factor �t approaches a constant
complex value,

� = lim
t→∞ �t = −�nc + i�nc, (33)

where, in the last line, we have defined the average no-control
frequency (phase drift rate) and decay rate (phase diffusion
rate) as

�nc := κ2γ̆

2γ̄ 2
and �nc := κ (γ↑ − γ↓)

2γ̄
. (34)

As a result, we substitute �t in Eq. (31) with the constant �
and solve the differential equation for the no-control complex

coherence to get

Anc(t ) = Anc(0) exp (−�nct + i�nc t ) , (35)

which has the initial condition Anc(0) = I�Pss = 1. We note
that the complex coherence has its imaginary contribution
only when the RTP has asymmetric jump rates. That is, for
the symmetric case, γ↑ = γ↓, we have �nc = 0. Finally, since
Cnc = |Anc|, we obtain the no-control coherence in the asymp-
totic regime,

Cnc(t ) = exp(−�nct ). (36)

In the CL [28] (Fig. 1), we show the comparison between
Eq. (36) and the exact coherence in (27). They differ signif-
icantly at short times, this is expected since Eq. (33) is valid
only in the limit t � 1/γ̄ . Moreover, even by t = 1/γ̄ one can
see that their decay is almost identical.

D. Noise correction and optimal choice of control

The data qubit’s coherence can be improved, from the no-
control case, by utilizing additional information gathered by a
SQ. Before discussing how to obtain this information (in the
following section), we will show how additional information,
in general, helps increase the coherence of the data qubit.

Let us assume that we have access to an additional infor-
mation Y about the unknown accumulated noise X . We can
use the information to compute an appropriate phase correc-
tion, −c(Y ), and apply it to the data qubit as described in
Sec. III A, so that φ(�) = φ(X,Y ) = κX − c(Y ). Given the
general form of coherence in Eq. (14), and a control function
c(•), we write a phase-corrected coherence as

Cc(•) := |〈ei[κX−c(Y )]〉X,Y |, (37)

which is similar to Eq. (20), but now the expected average is
over all possible values of X and Y .

If X were known, we could trivially find that c(Y ) = κX is
a perfect correction that completely removes the phase error
from the noise and the data qubit’s coherence is maximized
at one. However, the noise is actually unknown and we only
have its indirect information from Y . Therefore, the main
task is to find the control function, c(•), that maximizes the
coherence, Cc(•) in Eq. (37). To accomplish this, we first write
the expected average in Eq. (37) as an explicit summation
over values for Y (assumed discrete) and an integral over the
continuous value of X with appropriate probability weights as

Cc(•) =
∣∣∣∣∑

Y

∫
eiκX e−ic(Y )℘ (Y )℘ (X |Y ) dX

∣∣∣∣
=
∣∣∣∣∑

Y

e−ic(Y )℘ (Y )〈eiκX 〉X |Y

∣∣∣∣
�
∑

Y

℘ (Y )|〈eiκX 〉X |Y |, (38)

where, in the second line, we have rearranged terms into a
conditional expected average,

〈
eiκX

〉
X |Y . In the last line, the in-

equality is, in general, a strict inequality. However, it becomes
an equality when

c(•) = arg〈eiκX 〉X |•, (39)
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which thus maximizes the phase-corrected coherence Cc(•).
Given the formula of the coherence in Eq. (37), we can regard
Eq. (39) as defining the optimal estimator of the real phase,
φ = κX , for the purpose of the final phase correction. Indeed,
it is just the mean under circular statistics [46]. We indicate
the maximized control coherence defined as

Cc := Cc(•)=argA|• =
∑

Y

℘ (Y ) |A|Y | . (40)

Here we are again considering the conditional complex coher-
ence,

A|Y := 〈eiκX 〉X |Y =
∫

eiκX℘ (X |Y ) dX, (41)

this time conditioned on the information Y .

IV. SPECTATOR QUBIT (SQ) FOR NOISE SENSING

In our model, the information Y used in the phase correc-
tion can be obtained by measuring the SQ which senses the
same RTP noise affecting the data qubit. The Hamiltonian of
the SQ,

Ĥs(t ) = K

2
σ̂ s

z z(t ), (42)

is identical to that of the data qubit, but with K as the SQ’s
noise sensitivity in place of the much smaller κ for the data
qubit. Thus the SQ’s Bloch vector also rotates around the z
axis. We assume that we have complete control over the SQ.
To maximize its usefulness as a noise probe, we take it be
reset to an equatorial state after each measurement. Thus its
state can always be written as

|�〉s = 1√
2

(|+1〉s
z + ei�|−1〉s

z

)
, (43)

given the eigenstates |±1〉s
z of the σ̂ s

z observable, σ̂ s
z |±1〉s

z =
±|±1〉s

z. The definition in Eq. (43) should be compared to
Eq. (18) for the data qubit.

A. SQ’s measurement and likelihood function

To acquire information about the RTP noise, we probe the
SQ at various times throughout the process. Let us denote the
measurement times by

t1, t2, . . . , tn, . . . , tN−1, tN = T, (44)

where T is the final time that the phase correction is applied on
the data qubit. Given the SQ’s Hamiltonian (42), the integrated
noise over time intervals of duration

τn := tn − tn−1 (45)

can be independently probed. Without loss of generality,
we initialize the SQ at the zero-phase state, |� = 0〉s, at
the initial time, t0 = 0, and after the nth measurement, for
n ∈ {1, N − 1}.

Just before the nth measurement, at time tn, the SQ’s state
is given by |�(tn)〉s, where

�(tn) = K
∫ tn

tn−1

dt z(t ) = K (Xn − Xn−1) := Kxn. (46)

Here we have defined the integrated noise up to time tn,

Xn :=
∫ tn

0
z(s) ds, (47)

similar to Eq. (16), and defined xn := Xn − Xn−1, similar to
Eq. (9). We also define zn := z(tn) for the RTP at the measure-
ment time tn.

We assume that the measurement of the SQ at time tn is
projective. Given the parameter of interest, �(tn), the optimal
observable to measure will be of the form

θ̂n := 1 − |θn〉s〈θn|. (48)

Here θn is the chosen measurement angle and |θn〉s =
(1/

√
2)(|+1〉s

z + eiθn |−1〉s
z ), and 1 = |+1〉s

z〈+1| + |−1〉s
z〈−1|

is the identity operator. The outcomes of the projective mea-
surement,

yn ∈ {0, 1}, (49)

are associated with projecting the SQ’s state to the two eigen-
states, {|θn〉s, |θn + π〉s}, respectively. We define θ̂n, Eq. (48),
in this way so that the outcomes have a significance as null
and nonnull outcomes, respectively, for a natural choice of θn,
as we will see in Sec. VI C.

Given the SQ’s state, |�(tn)〉s = |Kxn〉s, Born’s rule gives
the probability of outcome yn as

℘ (yn|θn, xn) := | s〈θn + π yn|Kxn〉s |2

= yn + (−1)yn cos2
[

1
2 (θn − Kxn)

]
. (50)

In the context of Bayesian estimation (see next section), this
is the likelihood function, expressed slightly differently as
Eq. (9) of the CL [28].

B. Adaptive strategies and the separation principle

Say that one has just measured and reprepared the SQ
at time tn−1. There are two real parameters that define the
next measurement on it: the measurement angle, θn, and the
waiting time, τn. Let us combine them and define—for any
n—a measurement setting

μn := {θn, τn}, (51)

and define a measurement strategy as

S = {μn : n ∈ {1, . . . , N}}. (52)

The aim of our work is to search for measurement strategies,
S, that maximizes the data qubit’s coherence.

In particular, to be general, we must include adap-
tive strategies, where, at a local measurement time tn−1 ∈
{t1, . . . , tN−1}, one can use the information

Yn−1 := {y1, y2, . . . , yn−1}, (53)

obtained in the past up to tn−1, to find the optimal choice for
the next measurement at tn. That is, we can explicitly write a
measurement setting, μn(Yn−1), as a function,

μn : {0, 1}(n−1) �→ U (1) × R+, (54)

that maps measurement results, Yn−1 ∈ {0, 1}(n−1) (in a set of
(n − 1)-string of binary numbers), to a measurement angle,

032401-6



GREEDY VERSUS MAP-BASED OPTIMIZED ADAPTIVE … PHYSICAL REVIEW A 107, 032401 (2023)

θn ∈ U (1) (in a set of the 1D-circular group), and a waiting
time, τn ∈ R+ (in a set of positive real numbers).

From the above, it is apparent that the space of possible
strategies {S} is very large for N large. However, we can
simplify the problem of trying to find an optimal strategy by
applying the separation principle [47,48], as mentioned in the
introduction. First, let us formally define the expected reward
function:

Cc(T ) =
∑
YN

℘ (YN )
∣∣A|YN

∣∣, (55)

which is the control coherence, Eq. (40), for the informa-
tion, Y = YN , at the final time T = tN . It is implicit that
the complex conditional coherence A|YN , as in Eq. (41), is
defined with X = XN , i.e., at the same time (T = tN ) as YN .
We also note that the summation,

∑
YN

, is over YN ∈ {0, 1}(N )

and that ℘ (YN ) = ℘ (y1, y2, . . . , yN ) is a joint probability of
the string of readouts. Now, the separation principle says
that if the reward function is additive in time—which ours,
Eq. (55), is trivially since it is evaluated at the final time
T only—then the optimization problem separates into two
parts.

The first part is optimal estimation of the system. This
means finding, at any time tn, the Bayesian probability for
the relevant parameters conditioned on the results obtained
so far. That is, one can construct a conditional distribution
℘ n ≡ ℘ (Xn, zn|Yn) for the RTP noise (zn) and its accumulated
one (Xn) at time tn conditioned on the current informa-
tion Yn. The second part is determining the optimal control
based on this information. That is, instead of considering
μn+1(Yn), we can consider μn+1(℘ n). Moreover, the goal of
the control in the future of tn (e.g., at the final time T ) is
to maximize the expected reward function given Yn, which
is

Cc
|Yn

(T ) :=
∑
YN |Yn

℘ (yn+1, . . . , yN |Yn)
∣∣A|YN

∣∣, (56)

where the summation is defined as over possible future mea-
surement outcomes, YN |Yn := (yn+1, . . . , yN ).

Now, given that ℘ n is a function of a real variable Xn

and a binary variable zn, it is not immediately obvious that
replacing μn+1(Yn) by μn+1(℘ n) is progress. However, as we
will see in the next section (after considerable calculation),
for the case of our particular conditional expected reward
function Eq. (56), only a couple of statistics derived from the
distribution ℘ (Xn, zn|Yn) are relevant (see Sec. V D), which
greatly simplifies the problem.

Before turning to the details of that calculation, we here
also introduce a more general definition of the conditional
control coherence:

Cc
|Dn

(tm) :=
∑
Ym

℘ (Ym|Dn)
∣∣〈eiκXm〉Xm|Ym

∣∣, (57)

which will be of use in later sections. Here the generalizations
beyond (57) are twofold. First, we allow conditioning on an
arbitrary set of data, Dn, which is available at measurement
time tn, not necessarily equal to the full record Yn up to that
time. Second, the time at which we imagine implementing
the control on the data qubit is any measurement time tm,

with m � n, rather than necessarily the final time tN = T as
in Eq. (56).

V. BAYESIAN MAPS FOR PHASE ESTIMATION

In this section, we formulate a Bayesian map, which is
central to our results, especially the MOAAAR algorithm of
Sec. VII. We start with the expected reward function, Eq. (55),
and show that it can be written as a matrix equation, similar
to that of the no-control case, with the map H in Eq. (27).
In contrast to the no-control case, where there is only one
map for the entire process, the coherence must be updated
whenever new information from the SQ measurements at
t ∈ {t1, t2, . . . , tN } are obtained. We will see that the new map,
denoted by F(μn = {θn, τn}, yn), is an explicit function of the
measurement setting, μn, and the readout, yn, and can be
derived analytically using Bayes’ theorem.

A. Bayes’ theorem for the expected reward function

The expected reward function, defined in Eq. (55), can be
explicitly written as

Cc(T ) =
∑
YN

℘ (YN )
∣∣A|YN

∣∣,
=
∑
YN

℘ (YN )

∣∣∣∣
∫

dXN ℘ (XN |YN )eiκXN

∣∣∣∣ ,
=
∑
YN

∣∣∣∣
∫

dXN ℘ (YN , XN )eiκXN

∣∣∣∣ , (58)

where XN is the final accumulated noise,

XN = x1 + x2 + · · · + xN , (59)

and YN is a string of measurement results from the SQ,

YN = (y1, y2, . . . , yN ), (60)

up until the final time.
The integral in Eq. (58) is not trivial since we do not know

an explicit form of the joint probability function ℘ (YN , XN ).
However, we have the likelihood functions ℘ (yn|θn, xn) and
℘ (xn, zn|zn′ ), via Eqs. (50) and (10). respectively. Thus, we
write Eq. (58) in terms of these likelihood functions, by first
defining a noise vector, �x := {x1, . . . , xN }, and its 1-norm
||�x||1 = ∑

n xn. Using Eq. (59) allows us to write

℘ (YN , XN ) =
∫

℘ (YN , �x)δ(XN − ||�x||1) dN �x,

=
∫

℘ (YN |�x)℘ (�x)δ(XN − ||�x||1) dN �x. (61)

The integral measure is dN �x ≡ dx1 · · · dxN . Substituting the
above joint distribution back into Eq. (58) and integrating over
XN , we obtain

Cc(T ) =
∑
YN

∣∣∣∣
∫

℘ (YN |�x)℘ (�x)eiκ||�x||1 dN �x
∣∣∣∣ . (62)

For the joint distribution, ℘ (YN |�x), since we reset the SQ
after every measurement, each result yn depends only on the
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accumulated noise xn during the waiting time τn. Thus, we can
write

℘ (YN |�x) ≡ ℘ (y1, . . . , yN |x1, . . . , xN ),

=
N∏

n=1

℘ μn (yn|xn), (63)

where we have added the measurement setting μn = {θn, τn}
as a subscript of the likelihood function (50). Furthermore,
we construct a joint probability of the accumulated noises,
x1, . . . , xN , with the help of RTP variables and Eq. (10), and

write

℘ (�x) ≡ ℘ (x1, . . . , xN ),

=
∑

z0,...,zN

(
N∏

n=1

℘ (xn, zn|zn−1)

)
℘ (z0), (64)

as a marginalized probability function over the RTP noises,
z0, . . . , zN , at all times. Here the sum

∑
z0,...,zN

is over all
possible values of the RTP. We then substitute Eqs. (63) and
(64) into the reward function in Eq. (62) and get

Cc(T ) =
∑
YN

℘ (YN )
∣∣A|YN

∣∣ =
∑
YN

∣∣∣∣∣∣
∑

z0,...,zN

(
N∏

n=1

∫
dxn℘ μn (yn|xn)℘ (xn, zn|zn−1)eiκxn

)
℘ (z0)

∣∣∣∣∣∣ ,

=
∑
YN

∣∣∣∣∣∣
∑

z0,...,zN

(
N∏

n=1

F zn
zn−1

(μn, yn)

)
℘ (z0)

∣∣∣∣∣∣ , (65)

where in the second line we have defined

F zn
zn−1

(μn, yn) :=
∫

dxn℘ μn (yn|xn)℘ (xn, zn|zn−1)eiκxn . (66)

These are the linear maps that are the core elements of our
Bayesian-map formalism. In the next subsection, we will de-
rive an analytic expression for F zn

zn−1
(μn, yn), and rewrite it

explicitly as a matrix.

B. Analytical expression for F map

In the similar manner as in the construction of the matrix H
in Eq. (26), we see that the sums and products in Eq. (65) can
be rewritten as matrix multiplication. Specifically, defining the
two-by-two matrix

F (μn, yn) :=
(

F+1
+1 (μn, yn) F+1

−1 (μn, yn)

F−1
+1 (μn, yn) F−1

−1 (μn, yn)

)
, (67)

we can write the expected reward function Eq. (65) as

Cc(T ) =
∑
YN

|I� F(μN , yN ) · · · F(μ2, y2)F(μ1, y1)A0|

=
∑
YN

|I� AN |, (68)

where A0 and I are defined in Eqs. (24) and (27). Also, in the
second line of Eq. (68), we defined a new coherence vector

AN ≡ F(μN , yN ) · · · F(μ2, y2)F(μ1, y1)A0. (69)

Moreover, we can use convolutions and Fourier transform (see
details in the Appendix B) to find that the matrices, F and H,
are related via

F(μn={θn, τn}, yn)

= 1
4 [2 H(τn, κ ) + (−1)yn e−iθn H(τn, κ + K )

+ (−1)yn e+iθn H(τn, κ − K )]. (70)

One can easily confirm from Eq. (70) that∑
yn

F(μn, yn) = H(τn, κ ), (71)

which can be understood that the no-control map H (no mea-
surement information) is equivalent to ignoring the gained
information from the conditional map F(μn, yn).

C. Interpretation of complex 2-vector An

Following the definition of AN in Eq. (69), we define a
coherence vector An = (Az=+1

n , Az=−1
n )� for an intermediate

time tn. This can be computed from the vector at the previous
time step using the measurement result yn via

An = F(μn, yn)An−1. (72)

We can interpret the two elements of An, similar to Eq. (28),
as

An =
(

A+1
n

A−1
n

)
=
(
℘ (Yn, zn = +1)A|Yn,zn=+1

℘ (Yn, zn = −1)A|Yn,zn=−1

)
. (73)

That is, the coherence vector An contains information about
the measurement results Yn = (y1, . . . , yn) and the complex
conditional coherence defined as

A|Yn,zn := 〈eiκXn〉Xn|Yn,zn , (74)

conditioned on both the results and the hypothetically know-
able zn, at time tn. With this, we can see a relationship between
two types of complex conditional coherences, in Eq. (41) and
Eq. (74), via

℘ (Yn)A|Yn = I�An =
∑

zn

℘ (Yn, zn)A|Yn,zn , (75)

where the summation is over the RTP state zn ∈ {−1,+1}.
The vector An does not let one calculate exactly the prob-

ability of the measurement results, ℘ (Yn). However, if one
considers κ (the sensitivity of the data qubit to noise) to be
a variable rather than a fixed number, then one can take the
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limit κ → 0 in Eq. (74). This gives limκ→0 A|Yn,zn = 1 and,
from Eq. (73), we see that

℘ (Yn) = lim
κ→0

I�An. (76)

This motivates defining a probability vector,

Ǎn = lim
κ→0

An =
(
℘ (Yn, zn = +1)
℘ (Yn, zn = −1)

)
, (77)

which should not be confused with the unconditioned RTP
probability vector Pt .

Similar to the coherence vector An in Eq. (72), the proba-
bility vector can be updated after every SQ measurement via

Ǎn = F̌(μn, yn)Ǎn−1, (78)

where we have defined a new probability map with κ → 0,

F̌(μn, yn) := lim
κ→0

F(μn, yn). (79)

This F̌ matrix contains only real numbers and thus can map
between two real-number vectors containing only probability
functions. Interestingly, the initial state of the probability
vector is the same as A0 and the RTP initial state, P0,

Ǎ0 = A0 = P0 = Pss. (80)

Here we have also set them to be equal to the RTP steady state
as per Eq. (8). We will see later that Ǎn and ℘ (Yn) are useful
to both understanding dynamics of the SQ and simulating the
data qubit’s coherence numerically.

D. Two real sufficient statistics: (α, ζ)

As mentioned in Sec. IV B, the separation principle allows
us to separate the problem at any time tn into the estima-
tion part, using the information Yn obtained up to that time,
and the control part, which uses that estimate to maximize
the expected future cost function, conditioned on the present
Yn. Here we show that, for our cost function, the estimation
problem reduces to calculating the complex 2-vector An. Fur-
thermore, except at the final time T , just two real numbers
derived from An are sufficient for the control problem.

We start with the expected reward function conditioned on
Yn given in Eq. (56), which we rewrite here for convenience:

Cc
|Yn

(T ) :=
∑
YN |Yn

℘ (yn+1, . . . , yN |Yn)
∣∣A|YN

∣∣. (81)

We then use Bayes’ rule to write ℘ (yn+1, . . . , yN |Yn) =
℘ (YN )/℘ (Yn) and use the relationship ℘ (YN )|A|YN | = |I� AN |
from Eq. (75) to obtain

Cc
|Yn

(T ) = [℘ (Yn)]−1
∑
YN |Yn

|I� AN |, (82a)

= [℘ (Yn)]−1
∑
YN |Yn

|I� F(μN , yN ) · · ·

F(μn+2, yn+2)F(μn+1, yn+1)An|, (82b)

where in the second line we used Eq (69), only expanding out
the F maps for the future outcomes yn+1, . . . , yN .

Now, to maximize this reward function, the only things we
have the ability to control, in the future of tn, in Eq. (82b)

is the SQ measurement strategy, μn+1, . . . , μN . What cur-
rent information is relevant to this strategy? First, since Yn

is already known, ℘ (Yn) is a fixed scalar multiple, and so is
not relevant. That leaves only the vector An. In other words,
if we know An, we know everything relevant for choosing
the SQ measurement strategy to maximize the final objective
Cc

|Yn
(T ). From Eq. (40), it also contains all the relevant present

information for calculating, at the final time, the optimal con-
trol to apply to arrive at Eq. (82b). Here we are concerned
with the question “what parts of An are relevant for the SQ
measurement strategy?” The complex-2 vector An defines four
real parameters. It turns out that only two of them are relevant
as we now show.

Since the two (complex) elements of An are associated with
two plausible values of the unknown RTP, zn ∈ {−1,+1} as
in Eq. (73), one might guess that these elements should tell us
something relevant about the data qubit’s phase and coherence
if one could, hypothetically, find out which state zn the RTP is
actually in. One such quantity is the scaled ratio of the two
elements of An,

αn := K

κ
arg

Az=+1
n

Az=−1
n

, (83a)

= K

κ

(
argA|Yn,+1 − argA|Yn,−1

)
, (83b)

using the definition in Eq. (73). This quantity αn is the first
of the two sufficient statistics and can be interpreted as the
maximum difference of an optimal control phase from finding
out if the RTP state was zn = +1 or zn = −1, scaled so as to
be of order unity.

To understand Eq. (83a), we recall that the optimal control
(phase correction) is given by c(Y ) = argA|Y from Eq. (39).
If, at a current time tn, a phase correction, c(Yn), were to be
applied to the data qubit, by further assuming the hypothetical
zn, one could consider refining the control to

c′(Yn, zn) = argA|Yn,zn = arg〈eiκXn〉Xn|Yn,zn , (84)

where zn is included in the condition of the expected average.
The bracketed term in Eq. (83b) is therefore the difference of
the control phases for the two hypothetical zn. To understand
the scaling factor that makes this phase difference of order
unity, O(1), it is necessary to consider the dynamics of the
RTP and the measurements, as we do in the following para-
graph.

The value of zn is relevant to the data qubit phase only for
the recent period of evolution, of order 1/γ̆ . For any time ear-
lier than that, the RTP state is pretty much uncorrelated with
its current state. Thus the maximum difference that finding
out zn could make on the data qubit’s phase estimate is the
difference in the cumulative phase, κXn, over that time scale,
for zn = +1 versus zn = −1. That is, of order κ/γ̆ , which is
small. In actuality, when we are gathering information about
z through a good adaptive protocol (see later sections) the
difference is even smaller, because from the preceding mea-
surement result we have a very good idea of the value of z.
Hence if z is unknown that is substantially because it may have
changed its value since the last measurement. In other words,
the preceding time scale for which finding out the value of z
is relevant is of order τ , not of order 1/γ̆ . As we will see later,

032401-9



BEHNAM TONEKABONI et al. PHYSICAL REVIEW A 107, 032401 (2023)

the optimal value for τ is of order 1/K . Thus, the difference
that finding out zn could make for the phase estimate is of
order κ/K . Hence, to scale the phase difference to the order
unity, we divide it by the factor κ/K and get αn as in Eq. (83a).

The second of the two sufficient statistics is related to the
modulus of the two elements of An, defined as

ζn :=
∣∣Az=+1

n

∣∣− ∣∣Az=−1
n

∣∣∣∣Az=+1
n

∣∣+ ∣∣Az=−1
n

∣∣ . (85)

This can be interpreted as an approximated mean of zn condi-
tioned on Yn. To see this, we consider the conditional complex
coherence, A|Yn,±1. As we have already seen above, their
arguments are very close, differing by only O(κ/K ) as per
Eq. (83b). But this implies that their moduli must also be very
close. In fact, the relative difference in their moduli is quadrat-
ically smaller than the difference in their arguments. That is
because the relative change in the data qubit coherence |A|
over some short time interval is quadratic in the uncertainty in
the data qubit’s phase. (One can see this by Taylor expanding
the decoherence to the second order of the phase.) But the
difference in the uncertainty in the data qubit’s phase, for the
different values of zn, will not be larger than the corresponding
difference in their mean, because the difference between the
two RTP values is the maximum uncertainty the RTP value
can have.

Therefore, in the relevant time for the refined best-estimate
phase shift, τ = O(1/K ), the difference in the relative deco-
herence resulting from refining one’s knowledge to z = +1
versus z = −1 would be at most of order O((κ/K )2). That is,
for a good measurement protocol, we can be confident that
|A|Yn,+1|/|A|Yn,−1| = 1 + O((κ/K )2). With relative errors of
the same magnitude, we can thus replace |A|Yn,zn | by |A|Yn | in
Eq. (73), to get ∣∣Azn

n

∣∣ ≈ ∣∣A|Yn

∣∣℘ (Yn, zn). (86)

Hence, ζn in Eq. (85) can be approximated as

ζn ≈
∑

zn
zn℘ (Yn, zn)∑

zn
℘ (Yn, zn)

, (87)

which is exactly the mean of zn conditioned on the current
measurement record, Yn.

There are two more (third and fourth) parameters from
the vector An that are not relevant to finding the optimal SQ
control. The third parameter is the argument of the sum of
elements,

ϕn := argA|Yn = arg
(
Az=+1

n + Az=−1
n

)
. (88)

This would be relevant as the final control on the data qubit,
c(Yn), if tn = T were the final time. However, because tn is
not the end of the protocol, the quantity simply expresses how
far the mean phase has drifted so far. Since the random phase
driven by the RTP is a true U (1) process, having an estimate
of the phase at any particular time is not relevant to future
decoherence. One can see this from Eq. (82b) that a global
phase change to the vector An, i.e., changing the value of ϕn,
does not affect the coherence on the left of the equation.

Fourth, we can define the final real parameter from the sum
of moduli of the elements as

rn := ∣∣Az=+1
n

∣∣+ ∣∣Az=−1
n

∣∣ ≈ ℘ (Yn)
∣∣A|Yn

∣∣, (89)

TABLE I. Four (real) statistics parameters along with their phys-
ical explanations. The vector An is described by these parameters.

Parameter Description

rn, Eq. (89) ≈ Yn probability×conditional coherence.
ϕn, Eq. (88) = optimal control phase, not knowing zn.
ζn, Eq. (85) ≈ mean of zn conditioned on Yn.
αn, Eq. (83a) = maximum difference that zn

could make to optimal control phase, scaled.

where we have used Eq. (86) with the same degree of approx-
imation as discussed around that equation. As already argued,
℘ (Yn) is irrelevant to optimizing the future control, and so is
any loss of coherence already suffered such that |A|Yn | < 1, by
a similar argument used for ϕn above.

We summarize the meaning of the four real parameters that
make up the vector An in Table I. Another way to summarize
them is to note that in the regime of interest it is possible to
approximate An by a simple expression using the above four
parameters,

Az=±1
n ≈ rn exp(iϕn) × 1 ± ζn

2
exp

(
±i

1 ∓ ζn

2

αnκ

K

)
. (90)

Here the approximation sign allows for a relative error in
rn of O((κ/K )2) and an absolute error in ϕn of O((κ/K )3).
This expression is for interest only; we do not use it in the
remainder of the paper.

Returning to the two sufficient statistics, αn ∈ R in
Eq. (83a) and ζn ∈ [−1, 1] in Eq. (85), these can thus be re-
garded as the only two moments of ℘ (Xn, zn|Yn) (the solution
to the estimation part of the problem) that are relevant to
the SQ measurement part of the problem. Thus, as mooted
in Sec. IV B, we can vastly reduce in size the set of control
protocols S Eq. (52) that we consider by simplifying the
functional form of μn+1 from that in Eq. (54) to

μn+1 : R × [−1, 1] �→ U (1) × R+. (91)

That is, μn+1 is now a function of (αn, ζn) rather than
of Yn directly. Finding the exactly optimal control strategy
{μn : n ∈ {1, . . . , N}} is still a difficult task, especially as, in
general, N will not, in fact, be fixed for a fixed T . However, if
we seek a close-to-optimal, rather than exactly optimal, con-
trol strategy S, then this difficulty can be avoided. Because we
are interested in the long-time limit, we will have N � 1, and
for the vast majority of the control choices we can ignore the
edge effects (where n is small or n is close to N), and choose
the μn+1 to all be the same function of their two arguments.
That is, we have only to optimize a single function,

μ : R × [−1, 1] �→ U (1) × R+. (92)

In the future sections, we will make further assumptions to
restrict the function μ, and we will see how the stochastic
behavior of αn and ζn is greatly useful in developing the
intuition to do this.

VI. LOCAL OPTIMIZATION ALGORITHM (GREEDY)

The first strategy we explore is a “greedy” one [49]. That is,
it based on the natural idea of maximizing the expected reward
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function Cc locally in time. This is easier than maximizing the
actual reward function, which is Cc at the final time T . Greedy
algorithms are not optimal for typical hard problems, but even
if they are not, they may be relatively close to optimal. That
appears to be the situation for our problem, as we will find. We
call this strategy the Greedy algorithm, or simply “Greedy”
for short.

We conceptualize the Greedy algorithm as follows. Say
that we are at some time t such that tn < t � tn+1. By this
we mean that exactly n measurements on the SQ have already
happened and their measurement results, Yn, are known, and it
is still possible to decide to make the (n + 1)th measurement
at time t . Imagine now that the final time is the immediate
future,

T = t + dt . (93)

Then the Greedy algorithm aims to maximize the conditional
expected reward function Cc

|Yn
(T) as in Eq. (82a) where we

have replaced T with T.
We emphasize that any—even random—measurement on

the SQ provides some information that can be used to in-
crease the coherence of the data qubit. Thus to maximize
Cc

|Yn
(T) at least one measurement on the SQ at time T = t + dt

should be performed. Greedy maximizes the expected reward
function at the immediate future time, by deciding whether
or not to measure at time t and optimizing the measurement
angles at both times. In the following subsections, we present
the details of Greedy in Sec. VI A and then demonstrate its
numerical implementation in Sec. VI B. Studying the patterns
in the numerically found Greedy algorithm in Sec. VI C then
motivate us to propose and analyze various “experimentally”
simpler greedy algorithms in Secs. VI D and VI F, where in
Sec.VI E we analyze the phase space dynamics of the simpler
greedy algorithms.

A. The Greedy algorithm to maximize Cc
|Yn

(T)

Let the current time be denoted t = tn + τ , with τ > 0.
The goal is to determine the next measurement setting, μn+1,
based on the current information, Yn. To do that, the Greedy
algorithm compares the reward Cc

|Yn
(T) from two prospective

scenarios:
(i) The SQ is measured only at time T = (tn + τ ) + dt ,
(ii) The SQ is measured now, at t = tn + τ , and again at

T = (tn + τ ) + dt .
We then calculate the coherence vectors associated with the

two scenarios at time T using Eq. (72):

A(i) := F(μ(i), yn+1)An, (94a)

A(ii) := F(μ′
(ii), yn+2)F(μ(ii), yn+1)An, (94b)

where yn+1 and yn+2 are measurement results at time t and
T = t + dt respectively. Scenario (i) consists of only one
measurement with a setting μ(i) := {θ(i), τ + dt} whereas sce-
nario (ii) consists of two consecutive measurements with
settings μ(ii) := {θ(ii), τ } and μ′

(ii) := {θ ′
(ii), dt} for the first and

second measurements, respectively. Note that these angles
should be thought of not as numbers but as functions of An
and, for θ ′

(ii), also of yn+1.

Despite the fact that scenario (ii) has one more mea-
surement than scenario (i), the coherence vectors are both
calculated at the hypothetical final time T = t + dt . Thus, the
reward functions—as it is defined in Eq. (82a)—for the two
cases at time T are

Cc
(i)(θ(i) ) := Cc

|Yn
(T)
∣∣
(i) = [℘ (Yn)]−1

∑
yn+1

|I�A(i)|, (95a)

Cc
(ii)(θ(ii), θ

′
(ii) ) := Cc

|Yn
(T)
∣∣
(ii) = [℘ (Yn)]−1

∑
yn+2,yn+1

|I�A(ii)|,

(95b)

where on the left-hand sides of the above equations, we de-
fined Cc

(i) and Cc
(ii) as functions of the prospective angles. We

then find the optimal angles by maximizing both Cc
(i) and

Cc
(ii) over all possible angles. Formally, the maximized reward

functions are given by

Cop
(i) := max

θ(i)

Cc
(i)(θ(i) ), (96a)

Cop
(ii) := max

θ(ii),θ
′
(ii)

Cc
(ii)(θ(ii), θ

′
(ii) ). (96b)

We compare the optimum values in Eqs. (96) to decide
whether or not to measure at time t . The decision-making
procedure is as follows: if Cop

(i) > Cop
(ii), it means that no mea-

surement at time t is required to maximize the reward function
at T. Thus, Greedy decides to wait and moves to the next
infinitesimal time to repeat the procedure again. If, on the
other hand, Cop

(i) � Cop
(ii), Greedy chooses to measure the SQ at

t , so that τ is the actual waiting time τn+1 from tn to tn+1 = t
and the measurement angle θ(ii) is the actual θn+1. Thus, we
write

μn+1 = {θ(ii), τ }, (97)

as the next measurement setting chosen by the Greedy. We
note that, the prefactor [℘ (Yn)]−1 in Eq. (95) does not in-
fluence the Greedy decision-making procedure and knowing
only An suffices. Indeed, following the argument of Sec. V D,
knowing only the two real parameters αn and ζn suffices.

Now that we have identified μn+1, we repeat the procedure,
starting at time tn+1, to find the measurement settings for the
next step, μn+2, using An+1. Repeating in this fashion till
tN = T (where we always measure), equips us with a single
realization of YN that corresponds to a specific sequence of
settings, {μ1, . . . , μN } and a trajectory of the reward function,
Cc

|Yn
(tn) for n ∈ {1, . . . , N}. Then, to calculate the expected

reward function, similar to what we defined in Eq. (58), we
average over the information Yn as

Cc(tn) = 〈
Cc

|Yn
(tn)
〉
Yn

=
∑

Yn

℘ (Yn) Cc
|Yn

(tn). (98)

The hope, then, is that by locally maximizing Cc in time, that
the final Cc(T ) will be much larger than the unconditioned
coherence, Cnc, and perhaps even close to optimal.

In the following subsection, we will implement the “full-
Greedy” algorithm as presented here and evaluate Eq. (98)
numerically. However, instead of numerically generating all
possible trajectories associated with all possible measurement
results YN , we will perform a stochastic simulation where the
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measurement output at each step, yn, is generated randomly
according to its probability. Then, by generating enough
stochastic trajectories, we can evaluate the expected reward,
Cc(tn) in Eq. (98) as an average. But in later subsections we
will see how it can be possible to simplify the algorithm so as
to perform the exact sum.

B. Numerical implementation of Greedy

For our numerical calculations, we choose γ↑=γ↓=γ̄ = 1
for simplicity and the other dynamical parameters (κ and K)
are in the units of γ̄ . Equating RTP up and down jump rates
yields symmetric dynamics that are easier to analyze. Also,
we assume that, at t = 0, the RTP is in the steady state, A0 =
Pss, where Pss is defined in Eq. (8). We choose κ = 0.2 and a
range of K values from 2 to 100. At the higher end of ranges
for K , condition (2) will be satisfied. For the (theoretically
infinitesimal) time step dt , it is most critical that it is small
compared to 1/K . We choose dt = 0.001/K .

The Greedy algorithm requires optimization over the three
measurement angles as in Eqs. (96). Fortunately, our locally
optimal strategy has the same structure as that introduced in
Ref. [50]. This means we can use analytical solutions de-
scribed in [51] to reduce the range of each possible angle from
a real interval [−π/2, π/2] to only three discrete choices.
This is described in Appendix C.

As we discussed above, after finding an optimal μn+1, we
need to simulate the measurement outcome yn+1 in order to
calculate An+1. For our stochastic simulation we randomly
generate yn+1 using a probability function ℘ (yn+1|Yn), where
Yn is the measurement record assumed known up to that time.
This function is encoded in vector Ǎn+1, following Eq. (76),
where we write

℘ (yn+1|Yn) = ℘ (Yn+1)

℘ (Yn)
= I�Ǎn+1

I�Ǎn

. (99)

To be able to use the above equation, we update the vector
Ǎn after each measurement using Eq. (78), with the initial
probability vector Ǎ0 = Pss, same as A0 as in Eq. (80).

We show the conditional coherence Cc
|Yn

(tn) in Fig. 2 from
numerical implementation of the Greedy algorithm using
aforementioned parameters and K = 20. The light green lines
are 100 trajectories of Cc

|Yn
(tn) where three of them are ex-

aggerated (bold-dashed lines) as examples. To calculate the
expected reward function Cc(tn), we average over these 100
trajectories. It should be noted that the waiting times, τn, in
different trajectories do not match, so we could not simply
calculate the average decoherence at each tn. Instead, for
each trajectory we interpolated a line between consecutive
(tn, Cc

|Yn
(tn)) points, giving rise to the broken lines shown in

Fig. 2. Then we took the average of the broken lines, which
is shown in dark green. Comparing the average with the no-
control coherence Cnc(t ), we see that the Greedy algorithm
can massively improve the data qubit’s coherence.

C. Greedy choices of measurement settings

We would like to understand how the greedy algorithm
chooses the measurement settings μn+1 = {θn+1, τn+1}, based
on the measurement result yn and relevant statistics αn and

0.0 0.2 0.4 0.6 0.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

FIG. 2. Decoherence in data qubit for κ = 0.2 and K = 20. The
thick brown curve represents no-control decoherence (1 − Cnc) in the
asymptotic regime as in Eq. (36), whereas the green lines represent
100 trajectories from numerical simulations of the Greedy algorithm.
We plotted the trajectories in light green so that the saturation in the
color shows the relative probability of a particular decoherence value
at a particular time. Note that Greedy selects a different waiting time
at each step, but the difference between them in this case is of order
10−3/γ̄ , which is too small to see here, giving the appearance that
all branches occur at the same time. Three typical trajectories are
bolded with thick dashed lines, and one atypical trajectory, which
happened only once, is shown in dotted red. The thick dark green
line is the average of the 100 trajectories, while the black dashed line
represents the exact mean of Greedy4, introduced in Sec. VI D.

ζn. To do that, we look at individual trajectories of the Greedy
chosen settings. A typical one is presented in Fig. 3. For ζn and
θn+1, their values can change sign, so we plotted the absolute
values of them in order to see the pattern better, while the sign
of them are depicted by filled and hollow markers for positive
and negative respectively.

We observe in Fig. 3 that, after an initial transient, the sta-
tistical parameters, αn and |ζn|, jump between only two values
each, and these jumps are correlated with the measurement
result yn. We also observe that whenever a nonnull measure-
ment (yn = 1) occurs, the sign of ζn changes, that is depicted
by the filled markers switched to hollow markers. Moreover,
from Fig. 3(d), we see that the Greedy choices for the waiting
time τn+1 and the absolute value of measurement angle |θn+1|
are, apart from transients, again confined to two values and
their jumps are correlated with jumps in {αn, ζn}. Finally, the
sign of θn+1 is the same as the sign of ζn. These observations
lead us to proposing a new approach to implement a simpler
version of Greedy algorithm that we explain next.

D. “Greedy4” with four parameters

We can capture the Greedy choices of measurement param-
eters as just explored by setting

θn+1 := sn�G(αn, |ζn|), (100a)

τn+1 := �G(αn, |ζn|)
K

. (100b)
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FIG. 3. Greedy chosen values of next measurement parameters,
{θn+1, τn+1}, together with the information gained via nth measure-
ment, ζn, αn, and yn, in a single trajectory of the Greedy algorithm
for κ = 0.2 and K = 20. For θn+1 and ζn, their absolute values are
shown in the vertical axes, while their signs are depicted via filled
and hollow markers for positive and negative signs, respectively.

Here the function �G sets the absolute value of the Greedy
choice of measurement angle, while

sn := sgn(ζn), (101)

determines its sign, and the function �G sets the waiting time
τn+1. This �G is dimensionless and of order unity, since, as
we have discussed, the waiting time scales with 1/K .

Although, in general, �G and �G may be functions of both
αn and ζn, we see from Fig. 3 that knowing αn is sufficient. In
fact, since (after some transient steps) αn jumps between two
values, denoted by {α>, α<}, it is sufficient to know the binary
variable an ∈ {>,<}, defined as

an =
{
> if αn > ᾱ,

< if αn < ᾱ,
(102)

where ᾱ := (α> + α<)/2. Note that, most of the time,
an = >. Thus, we simplify �G and �G as binary functions,
each with two values as

�G(an) =
{
�>

G if an = >,

�<
G if an = <,

(103a)

and

�G(an) =
{
�>

G if an = >,

�<
G if an = < .

(103b)

0 20 40 60 80 100

1.56

1.57

1.58

1.59

1.60

1.61

FIG. 4. Calculated values of the Greedy4 parameters, from top to
bottom, �<

G, �<
G, �>

G, and �>
G, for a range of K . See text for details

of calculation. The horizontal dashed line shows the value of π/2;
see Eq. (112).

It should be noted that the above equations could have been
defined in terms of |ζn| rather than αn. However, because
the difference between α> and α< is more pronounced, it is
more natural to use this as the variable on which �G and �G

depend.
We calculate numerical values of {�>

G,�<
G,�>

G,�<
G} as

follows. Each Greedy trajectory provides us with a sequence
of Greedy chosen measurement angles {θn}, a sequence of
waiting times {τn}, and an associated sequence of {αn}. First,
we discard the transient data (the first few time steps) and then
separate the chosen angles into two groups by checking if the
associated αn is larger or smaller than the threshold ᾱ. That is,
we have two sets of angles defined as

ϑ> = {|θn| : an = >}, (104a)

ϑ< = {|θn| : an = <}. (104b)

Similarly for the waiting times, scaled by K , we define two
sets as

ϒ> = {τn/K : an = >}, (105a)

ϒ< = {τn/K : an = <}. (105b)

The above procedure is repeated for all 100 trajectories. Then
we take all members of ϑ>s and average them to be the
numerical value of �>

G. The numerical values of �<
G, �>

G, and
�<

G are calculated similarly, following the conditions of an in
Eqs. (103). Figure 4 shows the values of �>

G,�<
G,�>

G,�<
G for

a range of the sensitivity K from 2 to 100. All four of these
parameters are within 2.5% of π/2 across the whole range.

Now that we know the binary values of �G and �G, we no
longer need the full optimization part of the Greedy algorithm.
As a result, we obtain a new adaptive algorithm in which
an experimenter can simply use (103) with the knowledge
of αn to decide measurement settings for the next step. We
call this new adaptive algorithm “Greedy4” (Greedy with
subindex 4), since it is defined by four parameters, namely
�>

G, �<
G, �>

G, and �<
G. We emphasize again that in order to

determine these four parameters, the full Greedy algorithm,
including the optimization part, must be run. Once the four
parameters are found, the experimenter could use them for
future experiments.
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FIG. 5. Dynamics of the Greedy4 algorithm in phase space (top row) and probability of α (bottom row). We used κ = 0.2 in all plots, while
K = 2, 20, and 100, from left to right. The value of ᾱ is indicated by a dashed line in each plot. The blue arrows represent maps due to null
results (y = 0), while the red arrows represent nonnull outcomes (y = 1). Less frequent transitions are shown by red dashed arrows. We have
shown only half of the arrows in the instance of K = 2; the reader can visualize the other half by mirroring the image around the ζ = 0 axis.

To calculate the expected reward Cc(tn) as in Eq. (98) for
Greedy4, we numerically generate all possible YN and average
the associated reward functions with the probability weight
℘ (YN ) from Eq. (76). Each realization of YN , like full-Greedy,
is associated with a different sequence of waiting times τn,
which take two values. However, as shown in Fig. 4, the differ-
ence between �>

G and �<
G is not great. Moreover, as we have

already seen in Fig. 3, most of the time the value �>
G is chosen.

The other value is chosen only when the system detects that a
jump has occurred, which happens at approximately the same
rate as the jumps, γ̆ . Thus it is not a bad approximation to take
the average as if every τn were the same, an effective waiting
time is given by

τeff = �>

K
(1 − γ̆ τeff ) + �<

K
γ̆ τeff . (106)

Here τeff appears on the right-hand side because γ̆ τeff is the
probability, in one waiting time, that the RTP jumps. Solving
for τeff we obtain

τeff = �>

K − γ̆ (�< − �>)
. (107)

Using this τeff , we find the expected reward function for
Greedy4, which is shown with a black dashed line in Fig. 2.
This line is an exact average in the sense that it is not stochas-
tic. Moreover, this line agrees with the stochastic average
using the full Greedy, within the stochastic error, and confirms
that the expected reward function calculated from the full
Greedy is in agreement with Greedy4.

E. Dynamics of Greedy4 in (α, ζ) phase space

In this subsection, we use the sufficient statistics (α, ζ ) as
a way to visualize the dynamics of the Greedy4 algorithm in
“phase space.” The plots in Fig. 5 show phase space dynamics
of 100 trajectories for K = 2, 20, and 100. We use light green
dots to represent all (α, ζ ) states, and thus the green color
saturation indicates the relative probability of being in that
state. Blue arrows in the figure show the state transition due
to the null result, y = 0, while the red arrows show that of
the nonnull result, i.e., y = 1. The maps used for the tran-

sitions are shown as labels. Since Greedy4 chooses between
the binary values of the measurement angle and the waiting
time, we can simplify the notation for the F map introduced
in Sec. V B as

Fy
s,a := F (s�G(a),�G(a)/K, y) , (108)

where �G(a) and �G(a) are the functions defined in
Eqs. (103). Note that, as a consequence of taking γ↑ = γ↓, the
phase diagrams for (α, ζ ) are symmetric in reflection around
the ζ = 0 line. Furthermore, the bottom panel of each subfig-
ure depicts the normalized histograms for different values of
α, which can be interpreted as the probability of the system
being on that specific α.

In these phase diagrams, we see that the statistical states
(α, ζ ) have a tendency to be in only a few states, instead of
spreading over the entire phase space. This was already noted
in the discussion of Fig. 3 for K = 20, but here we visualize
the correlated changes in α, ζ more easily, as well as the
transition from K of order 1 to K � 1. In all cases, the two
most occupied states turn out to correspond to the eigenstates
with the largest absolute eigenvalues of F0

+,> and F0
−,> (Recall

that these are 2×2 complex linear maps acting on A, and it
turns out that they each have two eigenstates). We denote these
stable eigenstates (the ones with largest absolute eigenvalues)
by E0

+,> and E0
−,>, respectively. The (α, ζ ) values for these

eigenstates are depicted as the dashed circles in the phase
space plot.

To understand the state dynamics, let us first consider a
state being in E0

+,>, the stable eigenstate of F0
+,>. In this case,

any null-result (y = 0) measurement will map the state to
itself and no effect on the system’s phase space configuration.
On the other hand, a nonnull measurement (y = 1) will map
the state to a point on the left side, with α < ᾱ while switch-
ing the sign of ζ from positive to negative. Any subsequent
nonnull result, which is less common, will cause the sign of ζ

to switch again, while α remains in the same region α < ᾱ.
However, since the probability of two consecutive nonnull
results is low, the subsequent measurement most likely yields
a null result, mapping the system state to a point on the right
side with α > ᾱ, while keeping the sign of ζ unchanged. The
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following null results, as they are more likely, will move the
state towards the other stable eigenstate, E0

−,>.
The above description holds for any value of K > γ̄ . But

there are differences as K changes. First consider the case for
a relatively low sensitivity, K = 2, i.e., of the same order as
γ̄ = 1. In this case we observe in Fig. 5(a) that the dynamics
in the phase space can be grouped into eight locations. We
understand the dynamics as follows. For small K , we find that
the likelihood of consecutive nonnull measurement results is
higher compared to that of the larger K . So, if the system
configuration has moved to the left side of the phase space, as
a consequence of a measurement result, any further nonnull
measurements yield maps that changes the sign of ζ but keeps
the α on the left side. These maps as we showed them with
red dashed arrows, reveals four main locations on the left side
of the phase space. Furthermore, we observe that a map due
to a null result, (y = 0), brings the system from the left to the
right side of the phase space, but the resulting configuration is
distanced from the eigenstates. Then, further null results bring
the system to the eigenstate. As a result, there are four main
locations on the right side. Note that we have not shown all the
transitions in the K = 2 case to avoid messiness (see caption).

As K increases, the first thing that happens is that the
rightmost points on the phase diagram all converge to the
eigenstates E0

±,>. That is, for α > ᾱ we have only these two
eigenstates to consider. This is seen already in Fig. 5(b). As K
increases even further, reaching the asymptotic regime K �
γ̄ , the chance of two consecutive nonnull results is negligible.
This leads to there also being only two points on the left side,
as seen in Fig. 5(c). Thus, the dynamics are simplified and
can be grasped by concentrating on just four points: E0

±,>,
and F1

±,>E0
±,>. Moreover, the system spends the majority of

its time in one of the eigenstates and occasionally, with a
nonnull (y = 1) measurement result, goes to the a =< state
while altering s = sgn(ζ ). The next measurement almost al-
ways yields y = 0, causing a jump back to an eigenstate while
keeping s the same.

F. Greedy2 in the asymptotic regime

In the asymptotic regime K � γ̄ , we show that the
Greedy4 algorithm in Eqs.(103) can be simplified even further.
By inspecting Fig. 4 carefully, we observe that in this regime
the four parameters converge to only two, because we have
the identities �>

G = �>
G and �<

G = �<
G. From the original

definitions in Eq. (100), it means that the Greedy-chosen
measurement angles and waiting times are related via a simple
relation:

θn+1 = snKτn+1. (109)

As a result, we have a simpler algorithm with just two param-
eters: �>

G and �<
G. We refer to this algorithm as “Greedy2,”

which is valid only for large K or the asymptotic regime. The
algorithm can be summarized as

θn+1 = sn�G(an), (110a)

τn+1 = �G(an)/K, (110b)

where �G(an) is given by Eq. (103a).

This choice has an intuitive explanation, as follows. The
term Kτn+1 is simply a SQ’s phase evolved (after the SQ’s
phase reset to zero) during the time interval (tn, tn+1), where
τn+1 = tn+1 − tn, given that the RTP stays unchanged with a
value of sn during that time. That is, under the approximation
that z(t ) stays equal to our best estimate of its value, sn at the
start of the interval, the evolved SQ’s phase is given by

�(tn+1) = K
∫ tn+1

tn

z(t )dt ≈ snKτn+1. (111)

This approximation can be justified in the asymptotic regime,
as our confidence in the value of zn is high (|ζn| ≈ 1) and
the probability of a jump in the interval is low, O(γ̆ /K ).
Therefore, Eq. (109) simply says that the measurement angle
should be chosen to be exactly the most likely SQ phase at
the time of measurement, θn+1 = �(tn+1). In other words, the
measurement probes whether the SQ is in the most likely state.
A null result (yn+1 = 0) is the answer “yes,” while the other
result (yn+1 = 1) is the answer “no.” That is, in this aspect,
Greedy2 performs an optimal choice for minimum-error bi-
nary state discrimination [52,53], where one state (which is
pure) arises if and only if z(t ) = sn for the entire interval, and
the other state (which is mixed) arises if and only if z(t ) = −sn

for some of the interval.
Note that the above simple intuition does not explain the

value chosen by Greedy2 for its two parameters, �>
G and �<

G.
However, inspecting Fig. 4 again, we see that one of these
values does have a simple interpretation in the asymptotic
limit:

lim
K/γ̄→∞

�>
G = π/2. (112)

Note that this is the more important of the two parameters, as
in the asymptotic regime, the measurement result is almost
always a null result, the system state is almost always in
the region αn > ᾱ, and the measurement choice is almost
always �G(an) = �>

G. The choice of π/2 for snθn+1 and
Kτn+1 implies that the most likely pure state [from z(t ) = sn

for the entire interval] and the secondmost likely pure state
[from z(t ) = −sn for the entire interval] are orthogonal at the
measurement time, and can be perfectly distinguished by the
measurement.

VII. MAP-BASED OPTIMIZED ADAPTIVE
ALGORITHM FOR ASYMPTOTIC REGIME (MOAAAR)

While using the Greedy algorithm for the SQ offers a great
reduction in the decoherence of the data qubit, it is only
locally optimal. There is no reason to expect it to be globally
optimal. In this section we introduce and analytically study
a new algorithm that is plausibly optimal in the asymptotic
regime, K � γ↑,↓ � κ . However, to design the algorithm we
use the knowledge and intuitions gained from the numerical
investigation of Greedy in this regime.

First, recall from Sec. VI F that in asymptotic regime,
Greedy chooses measurement settings that are perfectly
matched according to Eqs. (110). Second, recall from
Sec. VI E that out of the two values of �G(an), the choice
is almost always �G(>), which we called �>

G. Considering
just the single parameter, �>

G, one could use it to define

032401-15



BEHNAM TONEKABONI et al. PHYSICAL REVIEW A 107, 032401 (2023)

what one might call a Greedylike1 algorithm, in which �G(a)
in Greedy2 is replaced by the constant �>

G. This would re-
produce the performance of the Greedy algorithm in the
asymptotic regime, although it would not actually approx-
imate the Greedy algorithm itself, which always uses two
distinctly different angles, even in the asymptotic regime, as
per Greedy2.

Like the Greedy algorithm, this Greedylike1 algorithm
would still be adaptive, in general, because of the sn in
Eq. (110a). However, we already know the value of �>

G in
the asymptotic regime, Eq. (112). While this choice is intu-
itive, it in fact corresponds to a nonadaptive measurement,
as θ = sπ/2 is measuring in the same basis for s = ±1. It
would be surprising if the globally optimal performance in
the asymptotic regime could be attained by a nonadaptive
algorithm, and indeed we find that this is not the case. We do
this by cleaving to the well-motivated relations between the
measurement angles and the waiting times in Eqs. (110), and
to the understanding that the asymptotic performance can be
expected to be reproduced with � fixed, but without cleaving
to the particular choice of � made by the Greedy algorithm.
That is, as expected, we can do better by choosing � in a
globally optimal manner rather than a locally optimal (greedy)
manner.

To be precise, we here propose an adaptive (in general)
algorithm for measurement angles and waiting times,

θn+1 = sn�, (113a)

τn+1 = �/K, (113b)

as in Eqs. (110), but with the function �G replaced by a fixed
parameter �. This simplifies the calculation of the expected
reward function in the asymptotic regime, as we need consider
only the following set of four single-parameter maps:

Fy
s (�) := F(s�,�/K, y), (114)

where s ∈ {+1,−1} and y ∈ {0, 1}. Similar to the preceding
section, we denote the stable eigenstates of these maps by Ey

s.
In this section, we first show how the problem of maximiz-

ing the expected reward function is, in the regime of interest
(2), equivalent to minimizing an expected decoherence rate.
We then apply the adaptive strategy, Eqs. (113), and derive an
analytical expression for the decoherence rate as a function
of � in the asymptotic regime. This can be used to search
for a globally optimal parameter value, ��, which defines
our Map-based Optimized Adaptive Algorithm for Asymp-
totic Regime (MOAAAR). We call it Map-based because of
the central role of the Bayesian maps, as mentioned in the
preceding paragraph. We emphasize that it is adaptive because
we will find �� �= π/2, which means that, via sn, previous
measurement results do alter the basis in which the SQ is
measured. (Recall that this is in contrast with the �>

G = π/2
choice of the Greedylike1 algorithm in this regime.)

A. Expected reward and decoherence rate

Recall the original expected reward function Eq. (55) de-
fined for the final time T , when the phase-correction control
is to be applied. This is a sum over exponentially many
terms, which makes it infeasible to do an analytic maximiza-

tion. However, from the numerical results in the previous
section (Greedy), we know that the system’s state (α, ζ ) ef-
fectively jumps between only a finite number of states, and
explores all of them over time. As we will see, this is also true
for the globally optimized MOAAAR strategy. This means
that the stochastic evolution of our state of knowledge is
ergodic [37], so the average decay of the coherence over a typ-
ical trajectory over many steps (T � K−1) is the same as an
ensemble average over one step. There will be deviations from
this due to initial [t = O(1/γ̆ )] and final [T − t = O(1/γ̆ )]
transients, but these can be ignored for long times as we are
interested in. Thus we can then safely use an expected reward
function at an intermediate time tn, Cc(tn) as a proxy of the
expected reward at the actual final time, Cc(T ).

We also saw in the preceding section that in the regime
K � γ̄ , the Greedy algorithm makes the system spend almost
all of the time close to the two stable eigenstates Ey=0

± . We find
this to be even more true with MOAAAR; we will quantify
deviations from this assumption in Sec. VII C. Thus we can
approximate the coherence (the reward function) at time tn as

Cc(tn) =
∑

Yn

℘ (Yn)
∣∣A|Yn

∣∣ =
∑

Yn

|I� An|

=
∑
Yn|

sn=+1

|β+(Yn) I� E0
+| +

∑
Yn|

sn=−1

|β−(Yn) I� E0
−|.

(115)

The first line follows from the definitions of the reward func-
tion in Eq. (98) or Eq. (55). In the second line, we have
separated the summation,

∑
Yn

∣∣I� An

∣∣, into two contributions
associated with sn = +1 and sn = −1, and used the fact that
the state An is almost always proportional to one of the two
eigenstates (E0

+ and E0
−). Which of the two states pertains at

time tn is determined solely by sn (which is a function of Yn),
while β+(Yn) and β−(Yn) are the appropriate proportionality
scalars.

Let us now consider the expected reward at the next SQ’s
measurement at tn+1 = tn + τ , which can be computed by ap-
plying one additional map, Fy

±(�), to Eq. (115) and summing
over its measurement results, yn+1 ∈ {0, 1}, for which we use
the dummy variable y. This gives

Cc(tn+1) =
∑

y

∑
Yn|

sn=+1

|β+(Yn) I� Fy
+(�) E0

+|

+
∑

y

∑
Yn|

sn=−1

|β−(Yn) I� Fy
−(�) E0

−|. (116)

Note that the signs sn determine which F map is applied, and
matches the subscript of the eigenstates.

Next, we rearrange the formula Eq. (116) such that it is
written in terms of the coherence at time tn in Eq. (115),
with one (justified) approximation. We can interpret the two
terms in Eq. (115) as two weighted conditional coherence con-
tributions, namely, Pss(sn = +1) Cc

|sn=+1(tn) and Pss(sn = −1)
Cc

|sn=−1(tn), respectively. [Recall that we defined a general
conditioned coherence in Eq. (57).] Since sn is our best guess
for the RTP zn, and since we are not in a transient regime, we
can take these probabilities to be the same as the steady-state
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probabilities for the RTP. Also, in this long-time steady-state
regime, we can safely say that the value that sn happens to
have at this particular time has almost no bearing on the
coherence at this time, which is determined by a long history
of stochastic events, only the most recent of which is relevant
to sn. That is, we can make the approximation Cc

|sn=+1(tn) ≈
Cc

|sn=−1(tn) ≈ Cc(tn). Rewriting the terms involving β±(Yn) in
Eq. (115) in terms of conditional coherences, we can simplify
the expected reward at time tn+1 to

Cc(tn+1) =
∑

y

{
Pss(sn = +1)|I� Fy

+(�)E0
+|

|I� E0
+| Cc

|sn=+1(tn)

+ Pss(sn = −1)|I� Fy
−(�)E0

−|
|I� E0

−| Cc
|sn=−1(tn)

}

≈ [1 − �̄(�)τ ] Cc(tn). (117)

This describes an exponential decay with an expected deco-
herence rate defined as

�̄(�) :=
∑
s=±

Pss(s)

∣∣I�E0
s

∣∣−∑
y

∣∣I� Fy
s (�) E0

s

∣∣
τ
∣∣I�E0

s

∣∣ . (118)

Here we have dropped the n subscript entirely as it is no longer
necessary.

The �̄(�)τ in Eq. (117) can also be thought of as a
steady-state average of the relative change of the conditional
coherence, as the system’s state evolves from An (conditioned
on Yn) at time tn to the next time tn+1 = tn + τ with an un-
known yn+1. This relative change was called δ(An) in CL [28]
(where the vector An is its argument, not the scalar quantity
which is changing). In terms of this, we have a conditional
rate,

�(�, An) = δ(An)

τ
,

= 1

τ

∣∣A|Yn

∣∣−∑
yn+1

℘ (yn+1|Yn)
∣∣A|Yn+1

∣∣∣∣A|Yn

∣∣ , (119)

and the average rate in Eq. (118) is obtained by averaging over
Yn. This average exponential-decay rate well approximates
the coherence decay rate for a typical trajectory, as argued
above. Therefore we can use �̄(�) as a proxy for the global
reward function (55). That is, we reformulate the problem of
maximizing the expected final coherence as the problem of
minimizing the average decoherence rate. This can be done
essentially analytically, as we see in the following subsection.

B. Analytical expression for decoherence

We wish to find the minimum of the function �̄(�) in
Eq. (118). Recall that � is the single parameter that de-
fines our adaptive algorithm as per Eqs. (113). This in term
defines the four maps in Eq. (114) (from two choices of
s ∈ {+1,−1} and two choices of y ∈ {0, 1}), as a function of
�, via the original definition in Eq. (66). We are interested
in the stable eigenstates E0

± of the map F0
±(�). With the

help of Mathematica, we analytically solve for these eigen-
vectors and their expansions in the asymptotic regime, taking
γ↑, γ↓ � K . Ignoring an irrelevant complex scalar multiple,
these eigenvectors can be represented by the two sufficient
statistics introduced in Sec. V D. These are the parameters α0

s

and ζ 0
s found by substituting An = E0

s into αn(An) (83a) and
ζn(An) (85), respectively. Keeping terms up to O(1/K ), we get

α0
s = 1

12(2� + sin 2�)2

(
N� + s

γ↓ − γ↑
K

M�

)
, (120a)

ζ 0
s = s ×

{
1 − γs

K
[csc �(cos � + � csc �)]

}
, (120b)

where we have used γs with the meaning γ+ = γ↓, γ− = γ↑.
The terms N� and M� are lengthy functions of � alone, and
are shown in Appendix. D.

By substituting α0
s and ζ 0

s in Eqs. (120) for the eigenstates
E0

s in Eq. (118) and expanding terms to the lowest order of
(κ/K ), we obtain, to lowest order,

�̄(�) ≈ H�γ̆ κ2/(2K2), (121)

where

H� = 3�2 csc4 � − [2�(� − cot �) + 1]csc2� + 1
3�2 − 1.

(122)

This is our most important result, also shown in the CL [28],
where we plot H�. We find that this function has an absolute
minimum of H� ≈ 1.254 at � = �� ≈ 1.50055. This mea-
surement angle �� defines our MOAAAR, and is plausibly
the lowest possible decoherence rate using projective mea-
surements on a SQ within the regime of Eq. (2). We show
in Fig. 6 the phase space plots for K = 2, 20, 100 using the
MOAAAR algorithm. This confirms that, even more so than
for the Greedy algorithm in Fig. 5, as K/γ̄ grows, the system
spends more and more time in the two stable eigenstates.

C. Approximation errors and approaching rates

With the analytical expressions for MOAAAR, we can
analyze any errors that could occur from the approxima-
tions we have made. First, let us revisit the approximation,
zn ≈ sn = sgn(ζn), used prior to Eq. (117) to justify using
the steady-state probability of zn in place of those for sn.
From the analytical expression in Eqs. (120), we can see that
ζ 0

s = s[1 − O(γs/K )], for any value of �. Using the result
(correct to even higher order) for ζn in Eq. (87), we can thus
say that

ζn ≈ ℘ (Yn, zn = +1) −℘ (Yn, zn = −1)

℘ (Yn)

= ℘ (zn = +1|Yn) −℘ (zn = −1|Yn). (123)

Combining the above, we have that, in the stable eigenstates,

℘ (zn �= sn) = O(γs/K ). (124)

Therefore, not only do the probabilities of sn and zn match on
average, but the variables themselves are almost always iden-
tical when the system is in the stable eigenstates. However,
this raises the question of the probability that the system is in
one of these eigenstates, to which we now turn.

Because the phase space variables, α and ζ , are continuous,
we cannot strictly talk about the probability of the system
being in a stable eigenstate. However, we can calculate the
probability that it is arbitrarily close to such an eigenstate. For
a given s, if null results (y = 0) keep occurring, the system’s
state moves towards the eigenstate E0

s exponentially fast. This
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FIG. 6. The (α, ζ ) phase-space plots for MOAAAR using optimal measurement angle � = �� for different values of K . Similar to the
Greedy case, we chose γ̄ = 1 and κ = 0.2. It is clear that when K is large (K = 100), the system’s states are almost always in only two stable
states (corresponding to the stable eigenstates of the two maps F0

±(��).

is shown in Fig. 7 (blue dots), which takes an arbitrary value
� = 1.0 as an example, as well as the optimal value ��.
(We do this because we want the results in this subsection,
used to justify the arguments of the preceding subsection,
to hold for any �, not just the optimal value �� found via
those arguments.) The sign of ζ stays fixed, while the value
of α moves towards α0

s exponentially fast for both s = ±1.
Moreover, we see that the transient values of |ζ | are even
closer to 1 than the values in the stable eigenstates. Thus, it
is very safe to assume Eq. (124) for the whole evolution.

The approximation that the system state is almost always in
a stable eigenstate E0

± was also used in the first step, Eq. (115),
towards finding the decoherence rate in Eq. (118). Think-
ing about the alternate expression for the decoherence rate,

2 4 6 8

10�14

10�10

10�6

10�2

(a) (b)

(c)

FIG. 7. Plots showing the exponential approach to the two stable
eigenstates on the right side of the phase space. (a), (b) Phase-space
(α, ζ ) plots under the adaptive algorithm using � = 1.0 (blue dots)
and � = �� (MOAAAR, maroon dots), respectively. To generate
these points, we use F1

s E 0
s for both s ∈ {+1, −1} as a starting point

and let the state evolve for the number of time steps n = 9. In each
case, the eigenstates are shown as dashed circles. (c) A log-scale plot
of distances from the eienstate’s values, |αn − α0

s |, using the same
data in (a) and (b). The last maroon data point (at n = 9) has reached
the numerical machine precision in Mathematica. Here K = 20, and
κ = 0.2 as usual.

Eq. (119), we have to ask how much difference arises, when
averaging over all records, as a result of the system state’s
deviation from the stable eigenstates. After a nonnull result,
α jumps a finite distance from α0

s . After n time steps, the dis-
tance (in α) between the system’s state and the fixed point is an
exponentially decreasing function, |αn − α0

s | ∼ e−kn, where k
is some dimensionless approaching constant, the slope of the
curves in Fig. 7(c). We can thus approximate the number of
steps after a jump that the system is still more than ε-distanced
away from the eigenstates as nε = O[log(1/ε)/k]. Now, the
proportion of its evolution that the system spends this far from
the eigenstates is nε times the probability per time step of a
jump away from the eigenstates. But the latter is just equal to
the probability of a nonnull result. This is the same order as
Eq. (124), the probability that the best estimate of zn is wrong,
which is O(γ̆ /K ). Since a jump takes a system a finite distance
away in the α direction, we make the pessimistic assumption
that if the system is more than ε-distanced away from the
eigenstates then the relative error in the quantity of interest
(the decoherence rate) could be of order unity. If, on the
other hand, the system is less than ε-distanced away from the
eigenstates (which is almost all the time), then if we are again
pessimistic, we will say that the relative error in the quantity
of interest is O(ε). Adding these two contributions together,
we get the relative error to be O[log(1/ε) γ̆ /Kk] + O(ε). The
minimum value of this relative error is achieved when we
choose ε to scale as γ̆ /Kk � 1, which gives a relative error
that is small in the asymptotic regime. Thus the errors in the
approximations leading to Eq. (121) are insignificant in the
regime (2).

D. Numerical comparison of performance of Greedy
and MOAAAR and other algorithms

Having completed the analytical analyses of MOAAAR,
we turn to numerics to compare it with the Greedy algorithm.
We also compare it to some other, nonoptimized, algorithms.
In Fig. 8 we plot the data qubit’s decoherence as a function
of time. Although the time is not long compared to γ̄ = 1,
the decoherence for the optimized algorithms are very close
to linear in time, which is a consequence of the very simple
phase-space dynamics of those algorithms. All of the numeri-
cal results were calculated exactly using the coherence (or the
expected reward) definition in Eq. (98), where all possible tra-
jectories were generated using the F maps that correspond to
the algorithm-chosen measurement angles and waiting times,
for all possible realizations of Yn. For the adaptive schemes
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FIG. 8. Plots of data qubit’s decoherence using different SQ’s
measurement and control strategies. Analytical results are shown
with solid curves, while numerical results are shown with points
connected via dashed lines. From top to bottom: the no-control
case (solid brown), a nonadaptive algorithm with θn+1 = π/2 and
τn+1 = 1/K (red squares), an adaptive algorithm with θn+1 = sn and
τn+1 = 1/K (blue squares), the analytical MOAAAR from Eq. (121)
(solid black), the Greedy4 algorithm (green dots), and the MOAAAR
with �� = 1.50055 (maroon square). In all calculation, we used
γ↑ = γ↓ = 1, κ = 0.2, and K = 20.

we took the first measurement angle to be π/2, since in the
absence of any initial information about z1, there is no reason
to choose one sign for θ rather than the other. This is the
automatic choice of the full Greedy algorithm, but not of
Greedy4. We also do this for later plots.

From worst to best, the curves in Fig. 8 are as follows:
(i) The no-control case, Eq. (36).
(ii) A nonadaptive algorithm with θn+1 = π/2 and τn+1 =

1/K . Even this completely unoptimized algorithm already
does much better.

(iii) The adaptive algorithm of Eqs. (113) with the choice
� = 1, giving θn+1 = sn and τn+1 = 1/K , this being the same
waiting times as in (ii). Here we see that making the measure-
ment angle adaptive significantly improves the performance.

(iv) The Greedy4 algorithm of Eqs. (103), which does
much better again.

(v) MOAAAR, which like (iii) uses Eqs. (113), but this
time with the optimized �� = 1.50055. This is better than
Greedy, but only by a small amount.

Finally in Fig. 8, we also plot the analytical result for
MOAAAR from Eq. (121). This agrees quite well with the
numerics, but not perfectly. Indeed, the predicted decoherence
is worse than what is achieved from the exact simulations,
and in fact is worse even than the decoherence achieved by
Greedy. This may surprise the reader, since we claimed in
the preceding section that all the approximations leading to
Eq. (121) were justified in the asymptotic regime, Eq. (2). The
issue is that K/γ̄ = 20 is not far enough into the asymptotic
regime to see the accuracy of the asymptotic analytical result.

We address this in Fig. 9, which compares the decay rates
of the two algorithms for various values of K . These rates
are obtained as the slopes of straight lines fitted to data

0 20 40 60 80 100
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FIG. 9. The decoherence rates of the data qubit for the two com-
peting strategies: the MOAAAR (maroon) and the Greedy4 algorithm
(green), for different values of K , setting γ↑ = γ↓ = 1.0 and κ = 0.2.
Numerical results for the rates, shown as maroon disks and the green
circles, are calculated from the slopes of curves in Fig. 8 (throw-
ing away the first two points with transient effects). Here the solid
maroon and dashed green curves are not simply lines connecting
data points, but rather the closed-form approximation of the rates
in Eq. (131) for MOAAAR and Eq. (130) for Greedy4, respectively.
The fainter maroon horizontal dashed line near the top shows the
analytical result of the MOAAAR decoherence rate in the asymptotic
regime Eq. (121) with ��, while the fainter green solid line above it
shows the same for Greedy, with � = π/2 as in Eq. (112).

such as those shown in Fig. 8, throwing away the first two
data points to avoid transient effects. We see that, using the
rate in Eq. (121) and H� in Eq. (122), the MOAAAR and
Greedy decoherence rates, scaled by 2K2/(γ̆ κ2), do appear
to approach the analytic asymptotic values of H� ≈ 1.254 and
Hπ/2 ≈ 1.290, respectively, for large K . This plot better shows
that the decoherence rates for MOAAAR are always smaller
than those for Greedy, even for relatively small K , where both
algorithms give almost the same decoherence rates, which can
be seen in the inset of Fig. 9.

In Fig. 9 we also plot the decoherence rates calculated with
an analytical closed-form expressions, which is derived in
Sec. VIII. This closed-form expression agrees very well with
the numerical results, especially for MOAAAR, over almost
two orders of magnitude of variation in K . Moreover, the
closed form expression can be shown to approach the asymp-
totic values as K → ∞, with a relative deviation scaling as
γ̄ /K .

E. Further numerical evidence for optimality of MOAAAR

In the previous section, we showed that MOAAAR per-
forms better than other discussed algorithms. Of course, there
are infinitely many possible algorithms that one could com-
pare to, even restricting to the form of strategy in Eq. (91),
derived from the separation principle (Sec. IV B) applied
to the sufficient statistics of Sec. V D. It is because we
do not know any way to make such a comparison that we
have claimed MOAAAR only to be plausibly optimal, in
the asymptotic regime. The claim of plausibility is, naturally,
subjective, but is based on our detailed study of the problem.
Nevertheless, the reader may ask whether more evidence for
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the optimality of MOAAAR can be given. To address this, in
this subsection we consider a more general algorithm.

As the reader will recall, MOAAAR’s best measurement
angle � = �� ≈ 1.50055 was found under the constraint in
Eqs. (113), which assumed the relationship τ = �/K between
the magnitude of the measurement angle and the waiting time.
This was chosen based on an analysis of Greedy2 in the
asymptotic regime, and has an intuitive interpretation in terms
of optimal state discrimination; see Sec. VI F. In this subsec-
tion, we relax this constraint and numerically calculate the
decoherence rate over a wide range of parameters: � ∈ [0, π ]
and τ ∈ [1/K, 6/K]. We keep the natural adaptive strategy for
the measurement angle, θn+1 = sn�, where sn = sgn(ζn), as
any other choice would break the symmetry between the RTP
states.

We first investigate the phase-space dynamics and find that,
outside the regime where τ ≈ �/K , the very simple dynamics
as shown in Fig. 6 or Fig. 7 are no longer evident. Instead,
these strategies generally result in highly scattered state dy-
namics in the phase space. This means that we can no longer
use eigenstates of the F maps to calculate the decoherence
rate. We therefore need to use the brute-force calculation
following Eq. (98) to compute the exact coherence for a
given strategy from averaging over all possible realizations of
measurement results Yn. From the coherence data over time,
similar to the plots in Fig. 8, we then compute a decoherence
rate by fitting the data with a linear function and extracting its
slope.

We also note that the further the measurement strategies
are from the regime τ ≈ �/K , the longer time it takes for
the coherence process to reach its asymptotic behavior of
exponential decay. (The “long” times we consider are still
much shorter than the reciprocal of the decay rate, which
is why using a linear fit for the long-time decoherence
curve is permissible.) This is expected as, if more points in
phase space are accessible, it may take longer to reach the er-
godic regime. Thus, to avoid the transient effects, we perform
the numerical calculations for more steps than previously (in
this case, T/τ = 15 steps) and use only the last five steps
for the linear-model regression. Also, in order to be confident
about the decoherence rate extracted from the slope, we cal-
culate the coefficient of determination, known as the R2 value
[54], of the linear regression fit. Its value ranges from 0 to 1,
with R2 = 1 representing perfect fitting. We find that we can
have extremely high confidence in our linear fits (R2 > 0.998)
except in a tiny region of the parameter space we explore,
which is very far from the optimal regime; see Fig. 10(a).

We present in Fig. 10 our numerical results for the deco-
herence rate divided by the factor γ̆ κ2/(2K2), the same as
in Fig. 9. In Fig. 10(a) we show this for the full range of
parameters. There is one global minimum and another local
minimum, which correspond to {�, τ } ≈ {1.5, 1.5/K} and
{�, τ } ≈ {1.5, (1.5 + π )/K}, respectively. (The pattern of lo-
cal minima is presumably repeated for τ ≈ (1.5 + nπ )/K for
all integers n.) In order to see clearly the optimal point, we
zoom into the region � ∈ [1.4, 1.6] and τ ∈ [1.4/K, 1.6/K]
in Fig. 10(b), where the decoherence rates are calculated
with finer grid values of � and τ . The results show that the
smallest values of the decoherence rate all occur around the
line � = Kτ (shown as the white dashed line). We also find

FIG. 10. Numerical decoherence rates for different SQ’s adap-
tive measurement strategies defined by measurement angles θn =
sn� and waiting times τn = τ , with γ↑ = γ↓ = 1, κ = 0.2, and K =
100. (a) The decoherence rate as a 3D colored surface plot with a
colored contour plot (projection of the surface plot on the �–Kτ

plane) for � ∈ [0, π ] and τ ∈ [1/K, 6/K]. Different colors (on the
color bar) indicate different values of the decoherence rate divided
by the factor γ̆ κ2/(2K2). Note the log scale for this axis and color
spread. The tiny black area of the plane at � ≈ π , Kτ ≈ 1 shows
where we do not have extreme confidence in the calculated rate. (b) A
zoomed-in region, � ∈ [1.4, 1.6] and τ ∈ [1.4/K, 1.6/K], which in-
cludes a segment of the line τ = �/K (white dashed line), which was
the ansatz adopted to find MOAAAR, including the point {��, τ �} =
{1.50055, 1.50055/K} (red dot) defining MOAAAR itself.

that � = 1.50055 and τ = 1.50055/K (shown as the red dot)
indeed gives the smallest value of �̄/(γ̌ κ2/2K2) = 1.244,
which agrees perfectly with the optimal measurement strategy
chosen by MOAAAR. These numerical results thus do offer
more evidence that MOAAAR is a plausibly optimal adaptive
algorithm for measuring the SQ.

VIII. CLOSED-FORM EXPRESSION FOR DECOHERENCE
RATE IN NON-ASYMPTOTIC REGIME

In Sec. VII D we defined a simple adaptive strategy,
MOAAAR, by finding the optimal value �� that minimizes
the average decoherence rate, Eq. (118), computed from the
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stable eigenstates of the two F maps in the asymptotic limit
K � γ̄ . In this section, we show that we can generalize this
to find a closed-form expression for the average decoherence
rate even in the nonasymptotic regime. Moreover, it will apply
for Greedy4 and Greedy2 as well as MOAAAR.

We do this by taking into account the small probabilities
that the system’s states can be outside of the eigenstates.
In particular, guided by the numerical results in Fig. 5 and
Fig. 6, we assume that as well as the two stable eigenstates
(on the right side of the phase space) the system also spends
time in another two less likely states on the left side of
the phase space. Using all the four states and considering
the probability transfers among them, we can then recalculate
the average decoherence rate in closed form. For simplicity,
we consider a symmetric-jump case, γ↑ = γ↓ (though all of
this can be simply adapted to the asymmetric case), where
there is a symmetry in swapping between s = +1 and s = −1.

We first define the four states, using the maps defined in
Eq. (108), which we reproduce here for convenience:

Fy
s,a := F (s�(a),�(a)/K, y) . (125)

Recall that a = < refers to the left side of phase space and
a = > to the right side. The two right states (with s = ±1)
are the stable (largest absolute eigenvalue) eigenvectors, E0

s ,
of F0

s,>. The left states are the states that these jump to when
a nonnull result occurs, F1

s,>E0
s . Because we are assuming the

symmetry γ↑ = γ↓, we need only one right and one left state,
and we define two normalized complex vectors for these as

r = E0
+ / I�E0

+, (126a)

l = F1
+,> r / I�F1

+,> r. (126b)

Note that l is a state with s = −1 and a = <.
In order to calculate the average decoherence rate, we also

need to know the probability that the system be in each of the
four states. In the symmetric case, we can reduce the problem
to only finding probabilities of the system being either on the
right or left sides of the phase space, of which we denote
the probabilities by p> and p< = 1 − p>, respectively. To
compute the probabilities, we need the real matrices defined
in Eq. (79). Using the same compact notation as in Eq. (125),
we write these as F̌y

s,a. These matrices satisfy

∀s, a,
∑

y

I�F̌y
s,a = I�. (127)

That is, for all four cases s ∈ {+1,−1} and a ∈ {>,<},∑
y F̌y

s,a is a transition matrix, known in stochastic process the-

ory as a column-stochastic matrix, with F̌1
s,a and F̌0

s,a known
as substochastic matrices [55,56]. From these we define nor-
malized probability vectors, ř and ľ similar to Eqs. (126) as

ř = Ě
0
+ / I�Ě

0
+, (128a)

ľ = F̌1
+,>ř / I�F̌1

+,> ř, (128b)

where Ě
0
+ is the eigenvector of F̌0

+,> with the largest absolute
eigenvalue. Note that the divisors here ensure that ř and ľ have
positive elements, which are the conditioned Bayesian proba-
bilities for z = ±1 when the system has normalized coherence
vector r and l , respectively. This is because the sequence of

results, Yn, leading to r or l via the F maps will lead to ř or ľ
via the F̌ maps.

Since a sum of elements (i.e., a 1-norm) of a probability
vector, as defined in Eq. (77), tells us a probability of any
stochastic measurement records leading up to that state, a
norm of the form I�F̌y

+,> ř is the probability that a system in a
right state r will yield the result y. If the result is y = 0 then it
will remain in the same state. If it is y = 1 then it will jump to
the left state l . Similarly, the norm I�F̌y

−,< ľ is the probability
that a system in a left state l will yield the result y. (Note
the change in s and a, reflecting the adaptive measurement.)
Therefore, at any particular time in the steady-state regime,
we can find a probability of the system being in the right states
from the two contributions: (1) the right states in the past step
[Eq. (128a), with the weight p>] were mapped to themselves
via the maps with null results and (2) the left states in the past
step [Eq. (128b), with the weight p< = 1 − p>] were mapped
to the right states via the maps with null results. This can be
translated into an equation for p> as

p> = p> |I�F̌0
+,> ř | + (1 − p>) |I�F̌0

−,< ľ |, (129)

which has a trivial exact solution.
Now that we have the probabilities p> and p<, we can

modify the formula of the average decoherence rate in
Eq. (118) for the left and right states with the probability
weights. The sum over s ∈ {+1,−1} in Eq. (118) (which
would be equally weighted in the symmetric case) can be re-
placed with an unequally weighted sum over the right and left
states, while the sum over y stays unchanged. For the waiting
time in Eq. (118), we replace it with a weighted average time
p>τ> + p<τ<. (Recall that τ a = �a/K .) Thus, we have the
4-state approximation of the decoherence rate,

�̄4 = 1 −∑
y[|p> I�Fy

+,> r | + |p< I�Fy
−,< l |]

p>τ> + p<τ<
. (130)

Here the subscript 4 is used to indicate that this is a four-
state approximation, though only two appear because of the
symmetry assumed for simplicity in this section.

For Greedy4, the measurement angles and the waiting
times to be used in the F maps in Eq. (125) are as defined
in Eqs. (103), namely �(a) = �a

G, and �(a) = �a
G. In the

asymptotic regime, where the two parameters of Greedy2 are
sufficient, we have �(a) = �(a) = �a

G. For MOAAAR, we
have just the single parameter: �(a) = �(a) = ��. In this
last case we can drop the a dependence on the F maps, and
the average decoherence rate can be further reduced to

�̄�
4 = K

��

(
1 −

∑
y

[|p> I�Fy
+ r| + |p< I�Fy

− l|]
)

. (131)

As already discussed, Fig. 9 shows that Eq. (130) gives
an excellent approximation, for both MOAAAR and Greedy,
even far from the asymptotic regime. It is worth noting that we
also used this closed-form approximation in Fig. 3 of CL [28].
In the regime of relatively small K , specifically for K � 5γ̄ ,
the decoherence due to Greedy and MOAAAR are practi-
cally identical according to the closed-form approximation
Eq. (130), and extremely close according to slope fitting to
the exact numerical coherence calculation.
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FIG. 11. Comparison of typical behavior for Greedy4 (left panels) and the MOAAAR (right panels) for K = 3, γ↑ = γ↓ = 1, and κ = 0.2.
The top row shows a typical realization of the RTP, z(t ) (orange solid line), which is the same in both panels, apart from the fact that the total
time on the left is greater because, although 10 measurements are shown in both cases, Greedy chooses longer measurement waiting times. Also
in the top row, sn = sgn(ζ ) (circles at the measurement times) is the maximum likelihood estimate of z(t ) given Yn (all measurement results
up to and including yn). The second row shows the results yn (purple triangles). The left panel also shows an (circles), which is the second
statistic derived from Yn that the Greedy algorithm uses (together with sn) to determine the waiting time τn+1, and angle θn+1 for, the (n + 1)th
measurement. MOAAAR uses only sn for its adaptive choice of θn+1 = sn�

� while keeping τn+1 = ��/K . The third row shows the phase of
the SQ, �(t ), which is reset to 0 after each measurement. The solid horizontal line segments from tn to tn+1 shows the measurement angle
θn+1 chosen by the algorithms [except the first one (red) which is chosen to be π/2 (or, equivalently, −π/2, dashed)]. Having �(tn+1) = θn+1

guarantees a null result, yn+1 = 0. The last row shows the phase of the data qubit, φ(t ) (solid pink line) and the best estimate of it, ϕn (circles),
conditioned on Yn. At the final time the estimated phase is used to correct (teal arrow) the unwanted accumulated phase, taking φ(tN ) to
φ(tN ) − ϕN (teal circle).

We close this section (and the results of this paper) by giv-
ing a comparison of the workings of Greedy and MOAAAR
in the regime of relatively small K , in Fig. 11. In particular,
we choose K = 3γ̄ , to accentuate the differences between
the two algorithms. We plot a typical trajectory, both for
the RTP, z(t ), which is the same in both cases, and for
the measurement results Yn, which are different in the two
cases, because obviously the measurement strategy μn =
(θn, τn) differ. We also plot the Bayesian parameters sn and
an which determine μn in the Greedy case. We omit an in
the MOAAAR case because only sn is used in its adaptive
algorithm.

Note that in the left panel of the second row of Fig. 11,
an is perfectly correlated with yn [except for the very first
measurement where θ1 = ±π/2 and initial coherence vector
A0 = Pss as in Eq. (80)]. Thus Greedy4 does not actually need
to calculate an in order to implement its algorithm. That is, an

equals > whenever there is a null result, yn+1 = 0, and equals
< whenever there is a nonnull result yn+1 = 1. A null result
is guaranteed if �(tn+1) = θn+1. This condition can (and, in
fact, usually does) occur for MOAAAR, but it never occurs for
Greedy because Greedy always chooses Kτn+1 < |θn+1|. This
is as shown in Fig. 4 and can be seen upon close inspection
of Fig. 11: �(t ) never quite reaches the green horizontal-line

segments on the Greedy side, while it often reaches the ma-
roon line segments on the MOAAAR side.

It is also interesting to look at the data qubit phase φ(t ) =
κ
∫ t

0 z(t ), and its best estimate, ϕn at time tn. The absolute
value of the slopes of the line segments for the former equal κ ,
and this is greater than the absolute values of the slopes of the
line segments of the latter. That is, the Bayesian algorithms do
not estimate φ(t ) by simply integrating sn, their most likely es-
timates of z(t ) at time tn; in equation form, ϕn �= ∑n

j=1 s j κτ j .

The plot shows that the optimal Bayesian estimate and final
control of the data qubit phase can be surprisingly effective,
even when the algorithms are quite often wrong about the
RTP, with sn �= z(tn). Though it is not precisely true that
ϕN = κτ

∑N
n=1 sn, this approximation is good enough for a

rough derivation of the power-law scaling, γ̆ κ2/K2, for the
decoherence rate arising for both MOAAAR and Greedy. The
simple argument is as follows.

From Sec. III D, by approximating circular statistics by
linear statistics, one sees that when the decoherence, D :=
1 − Cc, is small, it equals the mean square error (MSE) in the
final phase estimate, i.e.,

D ≈ 〈[ϕN − φ(T )]2〉. (132)
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Now, from Fig. 11, there will be a substantial contribution
to the error in the final estimate ϕN from the cases where
the algorithm’s guess, sn, for zn is wrong. Thus, since we
are interested here only in the scaling of the MSE, we can
approximate the MSE in Eq. (132) as

D ∼ (κτ )2

˝[
N∑

n=1

(sn − zn)

]2̨

, (133)

where the contribution in the sum is nonzero only when the
guess is wrong. The proportion of intervals where sn and zn

differ is just the error probability of Eq. (124), which is of
order γ /K . This scaling of the error probability, O(γ /K ), is
also intuitive to understand, since the probability for a tran-
sition in the RTP between SQ measurements scales like this
when the waiting times scale as 1/K . Note that, for simplicity,
we are not worrying about the distinction between γ↑ and γ↓,
so γ̆ = γ↓ = γ↑ = γ̄ = γ .

Thus the sum in Eq. (133) is just the sum of a large number
(Ñ = O(Nγ /K )) of independent variables eñ of random signs
and magnitude 2:

D ∼ (κτ )2

˝⎡
⎣ Ñ∑

ñ=1

eñ

⎤
⎦

2̨

. (134)

Since 〈eñ〉 = 0 and the variance of a sum of independent
random numbers is the sum of the variances, the mean square
of that sum is 4Ñ . Now N ∼ T/τ , and τ ∼ 1/K so we obtain
finally

D ∼ T γ (κ/K )2, (135)

as expected for a decoherence rate � ∼ γ κ2/K2.

IX. CONCLUSION

In this paper, we looked into noise mitigation of a data
qubit using a spectator qubit (SQ). We considered dephasing
in a data qubit caused by a random telegraph process (RTP)
with transition rates γ↑ and γ↓. We assumed that the SQ is
affected by the RTP in the same way as the data qubit, but with
much greater sensitivity, K � κ . We then investigated various
adaptive measurement and control strategies to reduce the
data qubit dephasing. A locally optimal (Greedy) algorithm
greatly reduced the no-control decoherence by a factor of or-
der (γ̄ /K )2 in the asymptotic regime K � γ̄ ≡ (γ↑ + γ↓)/2.
This enables us to develop a globally optimized algorithm
that could reduce the decoherence rate even more, a Bayesian
Map-based Adaptive Algorithm in the Asymptotic Regime
(MOAAAR), with a reduction factor of 1.254(γ̄ /K )2.

Our results show that, in the right regime, the SQ, like
techniques such as Dynamical Decoupling and Quantum Er-
ror Correction, can mitigate noise arbitrarily well. The fact
that we have a data qubit decoherence rate that is, plausibly,
the minimum possible achievable within our model, makes
it a useful benchmark for comparison with other techniques
for optimizing control, such as machine learning. Numerical
and heuristic techniques may be necessary for more complex
scenarios, as discussed below, so knowing how quickly, or
closely, they can approach optimal performance is useful.

In our analysis, we assumed that the controller has full
knowledge of the dynamical parameters κ , γ↑, γ↓, and K .

In practice, one would need to characterize these parameters
prior to applying noise mitigation via the SQ. This character-
ization could be done via a suitable multiqubit quantum noise
spectroscopy protocol such as those described in [57–59].
Interestingly, this can be done using SQ itself [60,61]. It would
also be useful to study how the uncertainty in characterization
would affect our algorithm’s performance, and evaluate what
the error thresholds in characterization are for our method
to work well, and which parameters are most important. We
expect that the least important parameters are γ↑ and γ↓, fol-
lowed by K , and then κ . For practical applications we would
also need to model imperfections including finite SQ’s mea-
surement readout times, imperfect projective measurement of
the SQ, and additional decoherence of the SQ.

Beyond this first tranche of future work, several generaliza-
tions of our work are possible and may be useful. Typically,
qubits are not affected by a single two-level RTP, but by
several. This could be modelled by a multilevel RTP, and the
generalization should be relatively straightforward. Beyond
that, there is the question of general types of classical noise.
Moreover, we assumed that SQ and data qubit feels the same
noise, but this assumption could be relaxed; the SQ is still
potentially useful as long as these noises are correlated. With
regard to this topic, Youssry et al. [60] showed that machine
learning can effectively find the correlation between the noises
on the SQ and on the data qubit. Finally, we could consider
continuous weak measurement of the SQ [62,63] rather than
discrete-time projective measurements.
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APPENDIX A: DERIVATION OF H MATRIX

Here we derive the matrix elements Eq. (26) which are
described by Eq. (25), which we rewrite here:

Hzt
z0

(t, κ ) :=
∫

eiκX℘ (X, zt |z0) dX. (A1)

The above equation is just a Fourier transform of ℘ (X, zt |z0)
evaluated at a conjugate variable κ . We note that the final
result in (10) can be derived via many different techniques.
In what follows, we derive the elements of matrix H using
matrix diagonalization.

It is more convenient to work with discrete times and
we can take the time-continuum limit at the end. We first
divide the time duration of interest, t ∈ [t0, t], into M steps:
{t0, t1, . . . , tm, . . . , t}, where tm = tm−1 + �t and �t is an
infinitesimal time. We note that tm is not the same as the
measurement time t j in Eq. (44). We also assume that the
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RTP value does not change during the infinitesimal time,
i.e., z(t ∈ (tm−1, tm]) = z(tm). Later we will take the limit of
M → ∞ to recover the time-continuous limit.

The conditional probability in Eq. (A1) depends on z0

and zt = zM , as well as the accumulated noise, X . Since

we did break the total duration time into many infinitesimal
steps, we can write the conditional probability, ℘ (X, zt |z0),
in terms of the ones for the infinitesimal step, which we
can solve analytically. We write the conditional probability
as

℘ (X, zt = zM |z0) =
∑

z1,...,zM−1

δ

(
X −

M∑
m=1

zm�t

)
℘ (z1, . . . , zM |z0) =

∑
z1,...,zM−1

δ

(
X −

M∑
m=1

zm�t

)
℘ (zM |zM−1) · · ·℘ (z1|z0),

(A2)

where the first summation is over RTPs at multiple times and we have used δ(· · · ) as the Dirac δ function. We then substitute
the above equation into Eq. (A1) and find

Hzt
z0

=
∫

dXeiκX
∑

z1,...,zM−1

δ

(
X −

M∑
m=1

zm�t

)
℘ (zM |zM−1) · · ·℘ (z1|z0) =

∑
z1,...,zM−1

exp

(
iκ

M∑
m=1

zm�t

)
℘ (zM |zM−1) · · ·℘ (z1|z0),

(A3)

where in the second line we have used the integration property of Dirac δ function. We then distribute the exponential terms to
accompany all the conditional probabilities and obtain

Hzt
z0

=
∑

z1,...,zM−1

eiκzM�t/2[eiκzM�t/2℘ (zM |zM−1)eiκzM−1�t/2] · · · [eiκz1�t/2℘ (z1|z0)eiκz0�t/2]e−iκz0�t/2

= eiκzM�t/2

⎛
⎝ ∑

z1,...,zM−1

MzM ,zM−1 · · · Mz1,z0

⎞
⎠ e−iκz0�t/2, (A4)

where in the second line we have defined

Mz,z′ := eiκz�t/2℘ (z|z′)eiκz′�t/2. (A5)

This Mz,z′ can be thought of as an element of a 2×2 matrix, where z, z′ ∈ {−1,+1}. We can then use the results of Eqs. (6) and
(7) and, and write

℘ (z|z′) =
(

1 + 1 − e−2γ̄ �t

2γ̄
J
)

z,z′
, (A6)

which is simply the matrix term in Eq. (7). Therefore, the matrix M becomes

M = 1

2γ̄

(
(γ↑ + γ↓e−2γ̄ �t )eiκ�t γ↑ − γ↑e−2γ̄ �t

γ↓ − γ↓e−2γ̄ �t (γ↓ + γ↑e−2γ̄ �t )e−iκ�t

)
. (A7)

Using the above matrix, we write the elements Hzt
z0

as

Hzt
z0

= eiκzM�t/2(MM )zM ,z0 e−iκz0�t/2. (A8)

Thus, the matrix H becomes

H = lim
M→∞

(
eiκ�t 0

0 1

)
MM

(
e−iκ�t 0

0 1

)
, (A9)

where we have included the limit of M → ∞ to reach the continuous time limit (since �t = (t − t0)/M, in the limit of M → ∞,
we have �t → 0). We can calculate MM by decomposing M into M = VDV−1, where

D =
(

L+ − S 0

0 L+ + S

)
(A10)

and

V =
(

2γ̄

γ↓
L−−S

1−e−2γ̄ �t
2γ̄

γ↓
L−+S

1−e−2γ̄ �t

1 1

)
, (A11)
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with

L± := 1

4γ̄
[(γ↑ + γ↓e−2γ̄ �t )eiκ�t ± (γ↓ + γ↑e−2γ̄ �t )e−iκ�t ], (A12)

S :=
√

(L−)2 + γ̆

4γ̄
(1 − e−2γ̄ �t )2

. (A13)

Since D is a diagonal matrix, we have MM = VDMV−1, with

DM =
(

(L+ − S)M 0
0 (L+ + S)M

)
. (A14)

We then substitute these results in Eq. (A9), and after taking the limit, we find the final result as

H(t, κ ) = exp[−γ̄ t]

⎛
⎜⎝cosh

[
λ(κ )

2 t
]− η(κ )

λ(κ ) sinh
[

λ(κ )
2 t
] 2γ↑

λ(κ ) sinh
[

λ(κ )
2 t
]

2γ↓
λ(κ ) sinh

[
λ(κ )

2 t
]

cosh
[

λ(κ )
2 t
]+ η(κ )

λ(κ ) sinh
[

λ(κ )
2 t
]
⎞
⎟⎠ (A15)

with

λ(κ ) =
√

(γ↓ + γ↑)2 − 4iκ (γ↓ − γ↑) − 4κ2, (A16a)

η(κ ) = (γ↓ − γ↑) − 2iκ. (A16b)

This result is in agreement with the Fourier transform intro-
duced in Eq. (10).

APPENDIX B: DERIVATION OF F

In this section, we derive the elements of the matrix F. We
start with the definition in Eq. (66), which we rewrite here,

F zn
zn−1

(μn, yn) :=
∫

dxn℘ μn (yn|xn)℘ (xn, zn|zn−1)eiκxn . (B1)

We recognize that the above equation is a Fourier transform
of ℘ μn (yn|xn)℘ (xn, zn|zn−1), where formally we write

F zn
zn−1

=Fxn→κ [℘ μn (yn|xn)℘ (xn, zn|zn−1)], (B2)

where Fx→k[ f ] is defined as

Fx→k[ f ] :=
∫

dx eikx f . (B3)

We then use the convolution theorem, where a Fourier trans-
form of a product of two functions is equal to a product of
their individual Fourier transforms:

Fx→κ [ f · g] =
∫

dk Fx→k[ f ] · Fx→(κ−k)[g]. (B4)

Applying the convolution theorem to Eq. (B2), we obtain

F zn
zn−1

=
∫

dkFxn→k
[
℘ μn (yn|xn)

]
Fxn→(κ−k)[℘ (xn, zn|zn−1)],

(B5)

where each term in the integrand can be computed as the
following. For the first one, we use Eq. (50), which we rewrite
here:

℘ μn (yn|xn) = yn + (−1)yn cos2
[

1
2 (θn − Kxn)

]
, (B6)

where its Fourier transform is

Fxn→k
[
℘ μn (yn|xn)

] = 1
4 [2δk,0 + (−1)yn e−iθnδk,−K

+ (−1)yn e+iθnδk,+K ], (B7)

where δ here is the Kronecker delta function. For the second
Fourier transform, we have

Fxn→(κ−k)[℘ (xn, zn|zn−1)] =
∫

dxn℘ (xn, zn|zn−1)ei(κ−k)xn

= Hzn
zn−1

(τn, κ − k), (B8)

which we have calculated in the previous section. Combining
these two terms and performing the integration over k, we find

F zn
zn−1

= 1
4

[
2Hzn

zn−1
(τn, κ ) + (−1)yn e−iθn Hzn

zn−1
(τn, κ + K )

+ (−1)yn e+iθn Hzn
zn−1

(τn, κ − K )
]
. (B9)

Since, in the above equation, all the indices are the same, we
can write a matrix form of the above equation as

F = 1
4 {2H(τn, κ ) + (−1)yn

× [e−iθn H(τn, κ + K ) + e+iθn H(τn, κ − K )]}. (B10)

APPENDIX C: GREEDY OPTIMAL ANGLES

Here we explain details of the optimization process of the
Greedy algorithm. The task is to find an optimum value for
the measurement angles θ(i), θ(ii) and θ ′

(ii), which maximize
the coherence Cc

(i) and Cc
(ii) as discussed around Eqs. (95) and

(96). In general, this optimization task can be computationally
heavy since it needs to search over all possible values of the
three angles, each in the range of [−π/2, π/2]. However, we
can significantly simplify the task by using analytical results
shown in Berry and Wiseman [51], where our coherence can
be rewritten in their particular form of a cost function which
has only three possible optimal values. Following the method
presented in Ref. [51], we find that the optimum of θn should
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FIG. 12. An example of maximizing the coherence (reward func-
tion), Cc

(i)(θ ), over the three Berry-Wiseman angles in the Greedy
algorithm. We can see that Cc

(i)(θ
0) is always the smallest, while the

other two are competing. The dashed line is the maximum of these
three curves. The parameters for this plot are, K = 20, κ = 0.2 and
γ↑ = γ↓ = 1.

be one of these three values:

θ0(τ ) = arg(ba∗ − c∗a), (C1a)

θ±(τ ) = arg

√√√√c2 ±
√

c2
2 + |c1|2

c1
, (C1b)

where

a = 2 I�H(τ, κ )An, (C2a)

b = I�H(τ, κ + K )An, (C2b)

c = I�H(τ, κ − K )An, (C2c)

and

c1 = (a∗c)2 − (ab∗)2 + 4(|b|2 − |c|2)b∗c, (C3a)

c2 = −2i Im(a2b∗c∗). (C3b)

We note that these angles are functions of the prospect waiting
(to measure) time, τ . To implement the Greedy algorithm, we
only need to check these three values at each time step, which
is a much simpler task computationally. As an example, we
show in Fig. 12 the coherence Cc

(i) for the three different Berry-
Wiseman angles as functions of τ . The starting point is a value
of Cc(tn), right after the nth measurement, choosing n = 2. We
show the optimal value, Cop

(i) = maxθ(i) Cc
(i)(θ(i) ), in the dashed

curve as a function of τ .
In the Greedy algorithm in Eq. (95), we also have to

optimize the coherence with two measurement angles, i.e.,
optimizing the function Cc

(ii)(θ(ii), θ
′
(ii) ) over the total of nine

pairs of θ(ii), θ
′
(ii)(three options for each). We can simplify this

task even further by realizing that the second measurement
has a waiting time equal to dt after the first measurement.
Thus we expect that during that infinitesimal time the abso-
lute value of the accumulated phase by the spectator qubit is
simply Kdt . Then we know the best angle should be θ ′

(ii) =
sign(ζn)Kdt , which we also numerically checked that this
angle does maximize the reward for the second measurement.
So the optimization task only needs to search over the three
possible angles of θ(ii). We note here that we do not show
plots for the two measurement case here, because it is very

0.00 0.02 0.04 0.06 0.08 0.10
�5

�4

�3

�2

�1

0

1

FIG. 13. An example of the process of choosing the next mea-
surement (waiting) time τn+1 in the Greedy algorithm. The plot
shows the difference between Cop

(i) and Cop
(ii) as a function of τ . The

waiting time is chosen when this function crossed the zero line. We
used the same parameters as in Fig. 12.

similar to the one measurement case, with the difference of the
order 10−8.

The maximization of the coherence (reward function) at
time tn can then be used in choosing the next waiting time τn+1

and angle θn+1. From the results above, we find the optimum
angles for the one and two measurement scenarios as

θ
op
(i) (τ ) := arg max

θ(i)

Cc
(i)(θ(i) ), (C4)

θ
op
(ii)(τ ) := arg max

θ(ii)

Cc
(ii)(θ(ii) ), (C5)

which are still functions of arbitrary τ . To choose the next
measurement setting, we first need to calculate to compare
the reward between the two scenarios. That is, we compute
the difference, D(τ ) := Cop

(i) − Cop
(ii), which is a function of τ ,

shown in Fig. 13. So long as D(τ ) is positive (i.e., Cop
(i) > Cop

(ii))
no measurement is required. On the other hand if D(τ ) < 0,
we conclude that a measurement should have been done to
increase the coherence. Thus, the next waiting time, τn+1 is
chosen when D(τ ) crosses the zero line,

D(τn+1) = 0. (C6)

Now that we found τn+1, we can use it to identify the choice
of the next measurement angle,

θn+1 = θ
op
(ii)(τn+1), (C7)

using the maximized angles in Eq. (C4).

APPENDIX D: EXPRESSIONS FOR N� AND M�

Here we present the lengthy expressions of N� and M� that
we used in Eq. (120),

N� = 24
[
� − 2�3 + 3� cos 2� + 1

4 sin 4� − 1
2 sin 2�

+ �2(8 cot � + 4� csc2 � − sin 2�)
]
, (D1)

M� = − 15 + 8�2(�2 − 15)

− 12(2�2 − 1) cos 2� + 3 cos 4�

+ 192�3 cot3 � − 96�2(�2 − 1) csc2 �

+ 96�4 csc4 � + 16�3 sin 2�. (D2)
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