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Synchronization of persistent oscillations in spin systems with nonlocal dissipation

Xingli Li J* Yan Li, and Jiasen Jin

School of Physics, Dalian University of Technology, 116024 Dalian, China

® (Received 3 December 2022; revised 19 March 2023; accepted 21 March 2023; published 30 March 2023)

We explore the synchronization phenomenon in the quantum few-body system of spins with the nonlocal
dissipation. Without the external driving, we find that the system can exhibit stable oscillatory behaviors in the
long-time dynamics accompanied by the appearance of the purely imaginary eigenvalues of the Liouvillian.
Moreover, the oscillations of the next-nearest-neighboring spins are completely synchronized, which is revealed
by the quantum trajectory analysis within the stochastic Schrodinger equation. The possibility of the appearance
of the long-time oscillations in an infinite-size lattice by means of cluster mean-field approximation is also

discussed.
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I. INTRODUCTION

Classical synchronization is a multidisciplinary and fasci-
nating topic that is found in abundance in both the natural and
social sciences, e.g., applause, traffic lights, heart cells, etc.
[1-3]. The phenomenon of synchronization was first noticed
by Huygens in the 17th century [4] and classical synchro-
nization has been extensively studied in various fields such
as physics, chemistry, and biology over the past decades
[5-8]. In general, the synchronization can be classified into
two different types according to its generation mechanism:
forced synchronization [9—12] and spontaneous synchroniza-
tion [13,14]. In contrast to the forced case, the spontaneous
synchronization is not driven by any external driving force,
but only as a consequence of the interaction between the sub-
systems that sharing the similar time-dependent properties.

Quantum synchronization, as the extension of classical
synchronization in the quantum regime, has also received
considerable attention in the past few decades. The studies of
quantum synchronization, on the one hand, focus on quan-
tifying the degree of quantum synchronization. Unlike those
technologies that have been well established and widely used
in the quantification of classical synchronization, the absence
of the clear notion of the phase-space trajectories prevents the
straightforward extension of classical synchronization mea-
sures into the quantum regime [15,16]. Additionally, one of
the most significant difference between quantum and classical
systems is that there may be nonlocal correlations between
subsystems in quantum systems. Such correlations may play a
significant role in the time evolution of the subsystems which,
in turn, is a key factor for the quantum synchronization. Thus
it is necessary to take into account the quantum correlations in
defining the measures of quantum synchronization [15]. For
this purpose, measures of quantum synchronization through
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either quantum correlations between local operators, e.g., syn-
chronization error [16] and correlations of observables [17],
or information-based quantum correlations, e.g., mutual in-
formation [18] and entanglement [19], are proposed. Certain
desirable methods have already been designed and developed
for different systems and conditions to quantify the quantum
synchronization [14-25].

The search for the quantum systems which may exhibit
the phenomenon of synchronization is another fascinating
investigation direction of quantum synchronization. Prior to
this, quantum synchronization had already been explored in
many different open quantum systems [15,26,27], such as the
van der Pol oscillators [13,28,29], atomic ensembles [30],
superconducting circuit systems [31,32] and optomechanical
systems [33,34]. Many theoretical and experimental explo-
rations have already been carried out [35-37]. Moreover,
relevant studies have even been explored in the so-called
collision model, which is another microscopic description of
an open quantum system. In the collision model framework,
Karpat et al. proposed a scheme with particle free evolution-
ary processes to study the environment-induced spontaneous
synchronization [38]. Based on the setting of stroboscopic
collisions, the mutual synchronization between two spin-1/2
particles, characterized by the Person correlation coefficient,
is established. The work also provides a different path to
explore the continuous oscillations in open quantum systems.

Usually the dynamics of the open quantum system gov-
erned by the quantum master equation in Lindblad form will
always point to a time-independent steady state. This charac-
terization, as stated by Evans’s theorem [39], is determined
by the structure of the corresponding Liouvillian [40—43]. It
is worthwhile to notice that apart from the asymptotic steady
states, the nonstationary state can appear in some specific
dissipative quantum systems, such as the driven-dissipative
spin systems [44,45] and periodically driven systems [46].

In particular, BuCa et al. argued that if there exists an
eigenoperator of the Hamiltonian that commutes with all the
jump operators, the long-time oscillation will be established
in quantum many-body systems [47-49]. Such oscillations
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are directly induced by the dark states of the so-called dark
Hamiltonian. Therefore, under this condition, the dissipation
splits the whole state space into decaying and nondecaying
state spaces. The latter can also be considered as the dynami-
cal decoherence-free space. Due to the dissipation induced by
the external environment, the states in the decaying state space
will eventually disappear, such as being erased during the
evolution. However, the dark states can be preserved during
the dissipative process and they construct the different disjoint
sectors of dynamical decoherence-free space. In this case, the
system can oscillate between disjoint sectors driven by the
dark Hamiltonian [47-49].

In this paper, we introduce the nonlocal dissipations into
a four-body spin-1/2 system on a square lattice. The next-
nearest-neighboring spins do not couple to each other via
direct interactions, but through sharing the same environment.
With the help of the environment-induced driving, we find
that the present system evolves to a nonstationarity oscillator
in the long-time limit (f — 00). Moreover we show that the
oscillations for each subsystem are synchronized.

We start our discussions by considering two types of
Hamiltonian: the spin-1/2 XXZ and XYZ models. After show-
ing the spectrum of the Liouvillian in the complex plane, we
confirm the existence of the purely imaginary eigenvalues in
the XXZ model, which implies that the sustaining oscillations
may be found in this system. We perform the fast Fourier
transform (FFT) to numerically determine the dominant fre-
quency of the oscillation; then we study the synchronization
properties via the stochastic quantum trajectories. In order to
investigate the robustness of the oscillations to small pertur-
bations, we calculate the largest Lyapunov exponent [50-53]
through the single quantum trajectory and check the stability
of the oscillation. We discuss the possibility of the existence
of oscillations in the infinite-size system with the help of the
cluster mean-field approximation [54] in the last part of the
paper.

The paper is organized as follows. In Sec. II, we start with
a brief introduction of the considered models and review the
mechanism that induces the nonstationarity state. We present
the definitions of the quantum synchronization measures as
the preparation for further discussions. In Sec. III, we dis-
cuss the dynamical properties of the systems in details. The
Liouvillian spectra are first investigated to provide a general
idea of the dynamical properties of the systems. We then dis-
cuss the sublattice symmetry of the (oscillating) steady state
and uncover the dark-state subspace in which the oscillation
lies. We focus on the dissipative XXZ model to verify the
existence of the persistent oscillation of the observable in the
realistic time evolution. We also investigate the time depen-
dence of two quantities, i.e., Loschmidt echo and the purity,
which are those of concern in experimental detection. The
stability of the oscillations in the spin dynamics is discussed
via the largest Lyapunov exponent. The synchronization be-
tween the spins is discussed by means of the single quantum
trajectories in the stochastic Schrodinger equation (SSE).
We also investigate the sublattice symmetry of the (oscil-
lating) steady state. The possibility of the appearance of
the oscillatory phase in the infinite-size system is also dis-
cussed with the cluster mean-field method. We summarize in
Sec. IV.
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FIG. 1. Schematic illustration of the considered spin model.
Each spin directly interacts with its nearest neighbor via the XYZ or
XXZ interactions. In addition, each spin together with its next-nearest
neighbor simultaneously couples to the same bath, resulting in a
nonlocal dissipation.

II. MODELS AND METHODS

We consider a dissipative system with four spin-1/2 sub-
systems on a square lattice and their interaction is the general
XYZ exchange Hamiltonian (hereinafter, 7 = 1),

A= Z (16767 +1,676] + J.6767), (1)
(D)

where 67 (e = x, y, z) are the Pauli matrices for the jth spin
and (J, [) indicates the summation of the interaction runs over
the nearest-neighboring sites. The XYZ exchange Hamiltonian
is generic in the spin systems and can be reduced to the XXZ
model Hamiltonian for the case with J, = J, # J..

As shown in Fig. 1, the composite system interacts with
the environments and is consequently driven away from equi-
librium. Moreover, the next-nearest-neighboring spins are
considered to couple with the same bath. Thus the dynamics
of the system in the presence of the nonlocal dissipations can
be described by the following Lindblad master equation:

ap(1)
ot

where £[-] is the Liouvillian superoperator and the nonlocal
dissipator D[ -] is given by

DH = Y Oup)O] — O[0up(1)/2 = p(1)O[Ok/2.
k=1,2
(3)

The nonlocal dissipations are generated by the joint jump op-
erators O; = ﬁ(&f + 65 ) and 0, = \/F(ﬁz_ + 6, ), with
I" being the decay rate. The operator ;" = (67 — i&;)/2 is
the local lowering operator for the jth spin and describes the
incoherent spin-flip process that tends to align the spin down
to the z direction. We will work in units of I" in the rest of this
paper.

The nonlocal dissipation discussed here is an intermediate
case of the commonly considered scenarios: the independent
decay and collective decay. The nonlocal dissipation has re-
cently been discussed for the correlation engineering [55,56],
phase transitions [57], and time crystals in dissipative systems
[58,59]. It can be realized by coupling the two involved spins

= LIp0)] = —ilH, p)] + DIp(®)], 2
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to a common lossy cavity mode. The detection of a leaked
photon does not allow one to distinguish which spin emitted
the photon [55]. In addition, an external plane wave illuminat-
ing on the two spins can also induce the nonlocal dissipations
and is tunable via the spacing of the spins [57]. The schemes
are feasible with the state-of-the-art platform of an atomic
quantum simulator [60-62].

The eigensystem of the Liouvillian superoperator in Eq. (2)
reads

Lipjl=2;p;, “)

L= TS (5)

where A; (j=0,1,2,...) are the complex eigenvalues of
L. The right and left eigenoperators, p; and #;, satisfy the
following biorthogonal relation:

((Rjloy)) = 8;4, (6)

where ((7;|p;)) = tr(f;; pj) is the Hilbert-Schmidt inner
product. Note that the superoperator £ generates a completely
positive and trace-preserving dynamical map that describes a
physical time evolution; thus the real parts of these eigenval-
ues are always seminegative definite, i.e., Re[A;] < 0, V. We
sort the eigenvalues by the real parts in descending order as
0 > Re[Ag] = Re[A] = Re[A;] > - -. There exists at least
one eigenvalue whose real part is zero.

Combine Egs. (2) and (4), the time evolution of the state of
the system can be formally obtained as [63,64]

p(t)=e"p0) ~ pu+ Y cie'p;, (7
J#0

where ¢ is the probability amplitude of the initial state p(0) in
the basis of the eigenstates of the Liouvillian. In the long-time
limit, the system will eventually reach an asymptotic steady
state, pgs = limy_ o0 €2 H(0). Actually, the steady state corre-
sponds to the eigenstate Py associated to the eigenvalue A that
satisfies Re[Aqg] = 0, namely, ps, = po/Tr[po]. In addition, the
largest nonzero real part of the eigenvalues is also defined
as the asymptotic decay rate which determines the slowest
relaxation in the dynamics [63,64].

Generally, there is always a stationary steady-state solution
to the master equation (2) which satisfies the formula L[pg] =
0. However, according to the specific form of Eq. (7), we
can find that when there are purely imaginary eigenvalues
of the Liouvillian, the system has a nonstationary steady
state manifested by an oscillation in the long-time limit. In
the viewpoint of the Liouvillian, Eq. (4) can be rewritten
as L[p;] = —iH[p;]1 = A;pj, where H is the superoperator
associated to the dark Hamiltonian. When there exists a subset
of states {[v1), [¥2) ..., [¥;)} where |;), Vj are the eigen-
states of the system Hamlltoman but are the dark states of any
of the jump operators Oy, ie., 0k|1pj> = 0, we call all the [v;)
the dark states of . The set of dark states can span a subspace
in which one can define the so-called pseudodensity matri-
ces satisfying L[|v;) (Y]] = i(w; — w;)|¥;) (¥]. It is easy to
find that such pseudodensity matrices exhibit the oscillatory
behaviors during the time evolution.

In fact, the pseudodensity matrices can be used to construct
a valid density matrix whose diagonal elements are time inde-

pendent, while the off-diagonal elements are time dependent.
Thus, governed by the dark Hamiltonian, the dynamics can
be considered as a state-erasing process because only the dark
states survive at the end of the evolution. Then the subspace
is decomposed into different disjoint sectors depending on
the eigenvalues. The state of the system varies in different
sectors, resulting in a time-dependent steady state. Note that
the properties of the oscillatory state are determined by the
initial state and structures of the subspaces [47-49].

As the long-time oscillations are established, it is interest-
ing to investigate the degree of synchronization among the
spins. Following the proposal in Ref. [65], we employ the
following temporal complex-valued correlator as a measure
of the synchronization:

b
Gt = Cplet = — 20N
(6

6,°6; )(alol)

The phase ¢;; € [—m, 7] characterizes the phase difference
between the jth and /th spins and (0); = Tr[0p(¢)] denotes
the expectation value of a given operator 0 at the time 7. The
correlator Cj;(t) was originally proposed to measure the phase
locking and synchronization of two quantum harmonic oscil-
lators. When the oscillators are restricted to their lowest Fock
states, the annihilation operator can be mapped to the lowering
operator of spin 1/2, thus yielding Eq. (8) that is suitable for
our model [66]. The modulus of Cj;(¢) indicates the degree
of correlation between two systems. In particular, |Cj;| =1
implies that the two systems are completely correlated and
the time evolution of the observables are phase locking, while
|Cji1] = 0 means those two operators are completely uncorre-
lated.

As the counterpart of the classical synchronization, we
put the investigation of the quantum synchronization in the
framework of a stochastic quantum trajectory. The idea of the
quantum trajectory method is that under the diffusion limit,
the time evolution of the state of the system is represented by a
set of individual quantum trajectories and the Lindblad master
equation is shown to be equivalent to the following stochastic
Schrodinger equation [67]:

dly () = D'y e)dt + Y DY) dWi(t),  (9)
k

Sk(”)}w(t»

(10)

with the drift term

D[y ()] = [—iﬁeff + ; S";” (

and the diffusion term

si (1)

DY ()] = ( )h/f(t)) (11)
where Heyy = H — izk é}l(jk /2 is the effective Hamiltonian
and the scalar quantity s; (1) = (¥ (t)|(Ox + OD)|¥(¢)) is the
expectation value of a linear combination of the dissipators.
The random variable dW,(¢) with the standard normal distri-

bution is the stochastic Wiener increment obeying the Ito rule
dw? = dt.
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FIG. 2. The Liouvillian spectra in the complex plane for the
dissipative (a) XYZ and (b) XXZ models. The parameters are given as
(@ {Jx, Jy,J;}/T ={0.8,1,0.9} and (b) {J;, J,,J.}/T = {1,1,0.9}.
Each inset is a detailed display of the eigenvalues near the zero value
of the real part in the complex plane. In (a), the degeneracy of the zero
eigenvalue is D, = 10, while in (b), the inset shows the existence
of the degenerated zero eigenvalue and a pair of conjugated purely
imaginary eigenvalues within the machine error.

III. RESULTS

A. The Liouvillian spectrum

As a preliminary exploration, we investigate the Liouvil-
lian spectra of the XYZ and XXZ models. The eigenvalues of
the different Liouvillians on the complex plane are shown in
Fig. 2. In Fig. 2(a), one can find that the Liouvillian spectrum
of the dissipative XYZ model is degenerated. More details are
shown in the insets of Fig. 2(a) in which the spectra near the
origin are zoomed in. The degeneracy of the zero eigenvalue
is D, = 10 (not all the zero eigenvalues are visible in the inset
due to the overlap) and the algebraic multiplicity is identical
to the geometric one. The degenerate zero eigenvalues remind
us that the system has multiple steady states, although the
final steady state of the system depends on the initial state
in a realistic evolution [64]. As shown in the right inset of
Fig. 2(a), a pair of conjugate complex eigenvalues A+, which
have the largest (negative) real parts, is present. As mentioned
in Sec. II, the real parts of A, are the so-called asymptotic
decay rate, meaning that the system will evolve asymptoti-
cally into a time-independent steady state with the asymptotic
decay rate y = —0.0645.

Despite sharing the identical dissipators with the XYZ
model, the Liouvillian spectrum of the XXZ model shows
relatively nontrivial results. Based on the fact that the number
of eigenvalues is much less than dim(£) = 28 in Fig. 2(b), the
XXZ Liouvillian spectra are highly degenerated. Again we are

interested in the eigenvalues with the real parts close to zero,
which are highlighted in the inset of Fig. 2(b). One can find
that in addition to the (degenerated) zero eigenvalues, there
exist purely imaginary eigenvalues which can be regarded as
the steady-state local phases in Eq. (7). Such local phases do
not vanish in the long-time limit so that the system will reach
a nonstationary state in terms of persistent oscillation. Recall
the steady state in Eq. (7); we can obtain the time-dependent
expectation value of a local observable 0 as follows:

tl_iglo(é), = Z c;e™" Tr[p;0] + const. (12)

)L*;:—)Lj

Apparently, the period of the time-dependent (o), is related
to the purely imaginary eigenvalues. For instance, as will be
seen in the next section, the highlighted purely imaginary
eigenvalues Ay = 3.6 in the zoom-in of Fig. 2(b) result
in a long-time oscillation with frequency f = | + 3.6|/2n ~
0.5730.

We finish the discussion on the Liouvillian spectrum by
noticing that if there are multiple purely imaginary eigenval-
ues, they should be commensurate (that is, they are integer
multiples of some fixed value) to guarantee the long-time
periodic oscillation. Otherwise, the time evolution of the ob-
servable will either approach an asymptotic stationary value
or enter into a chaotic region in the long-time limit [43].

B. The symmetry of the steady state

We notice that our system has a Z, symmetry along the z
axis, meaning that the collective operator S, = ) j 6]? has the
following relations:

[A,8.1=0, [0 8.]=8B:O, (13)

where By is a real constant and the symmetry superoperator
yields

S[] =% . ¢35, (14)
We further investigate the relationship between the states
of (next-nearest-neighboring) spins 1 and 3, i.e., p;(t) and
p3(t), during the time evolution. Here, p;(t) = Tr#[pft)] is
the reduced density matrix of the jth spin which is obtained
by taking the partial trace of the density matrix of the to-
tal system. We implement the S[-] transformation on spin 1
and show the trace distance between the transformed state
S[p1(¢)] and p3(¢) in Fig. 3(a). The trace distance character-
izes the similarity between two density matrices, say #j; and
12, and is given by

T (A1, f2) = STrly/ (i — M2)T (i — )], 15)

where 0 < T(7)1,72) < 1 and T (7, 2) = 0 for two indis-
tinguishable states. One can see that starting with random
initial state, the trace distance T (S;[p1], p3) evolves to zero
after I'r > 8 for all the trajectories. Since the transformation
S represents a 7 rotation along the z axis, i.e., {o*, 0¥, 0%} —
{—0*, —07, 0}, the vanishing T (S;[p], p3) means the mag-
netizations of spins 1 and 3 are always aligned oppositely in
the x-y plane during the long-time evolution. The magnetiza-
tions of spins 2 and 4 evolve in the same manner. Moreover,
one concludes that the system does not have spontaneous total
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FIG. 3. (a) The time dependence of the trace distance
T(S1[p11, p3) and (b) jump coefficient M, ,, for each single trajec-
tory. The parameters are chosen as {J,, J,, J.}/T" = {1, 1, 0.9} and the
time interval is set to dt = 1073,

magnetization in the x-y plane. The scalar quantity s () =
(v (|(Or + OZ)W(t)) in Eq. (9) will be zero and thus will
not make any contribution to the stochastic fluctuations in
quantum trajectories.

We further discuss the reasons for the suppression of the
stochastic fluctuation in the long-time evolution of each sin-
gle trajectory. In principle, as described in Eq. (9), it is the
coupling to the environment that leads to such stochastic fluc-
tuation during the time evolution. Thus the disappearance of
the fluctuation implies the decoupling of the environment. To
corroborate, we define the following jump coefficient My ,,:

My = 0¥, (16)

which is the modulus of the vector obtained by the jump
operator O acting on the state vector. The coefficient My,
captures the effects of the action of the kth jump operator
on the mth quantum trajectory. When the coefficient My
vanishes, it means that the action of the jump operator on the
wave function produces a null vector, namely, the coupling
between the system and environment is switched off.

We show the time dependence of M, in Fig. 3(b) for
more details. One can see that for any nonlocal jump operator,
after a short-time interval (I't < 6), the jump coefficients My,
rapidly approach zero for all the trajectories. So the terms
of (jk|1pm) as well as the scalar quantity s (1) = (W(t)l((jk +
(5}:)“{/(1‘)) become zero and will not contribute in the SSE (9).
The evolution of the trajectory is governed by the Hamilto-
nian.

Here we emphasize that not all the initial states will lead to
stable oscillation in the long-time dynamics. For instance, we
can define an invariant as follows:

H,G61=1[0:,61=1[0],61=0, j=1,2, (17)

where G = /™ X4 5701 /6 + H.c. (@ =x,y,z) is Hermitian
(the choice of G may not be unique). So there is at least
one eigenstate of G that is a simultaneous dark state of the
Hamiltonian and jump operator and remains unchanged dur-
ing the evolution. More generally, Eq. (17) defines a “strong
symmetry” identified by G which allows the simultaneous
block decomposition of the Hamiltonian and the jump op-
erators [68]. Therefore, if the initial state is a superposition
of the states belonging to different symmetry subspaces,
i.e., the state space spanned by the degenerated eigenvec-
tors, the state of each individual trajectory will evolve into
one of the superposed subspaces at random and then be
frozen there.

C. The oscillations in long-time dynamics

The dynamics of the XYZ and XXZ model also differ due to
the different Liouvillian spectra. In Fig. 4, we show the time
evolution of the expectation values of spin magnetizations for
both models. The initial states of each spin are chosen as
the normalized states on the equatorial plane of the Bloch
sphere, i.e., [Yi") = (| 1) + €] 1)/+/2, with ¢; = (2] —
Dr/4 (j =1, 2,3, 4) for concreteness. Therefore, the initial
states for the joint system are given by ['™) = ®j:1 1Y),

For the XYZ model, one can see that at the early stage,
the (U}') oscillates with time, as shown in Fig. 4(a). How-
ever, such early-stage oscillations are damping towards an
asymptotic steady state for sufficiently long time. This is con-
sistent with the property of the Liouvillian spectrum shown
in Fig. 2(a), where the asymptotic decay rate y is nonzero
(although small).

In Fig. 4(b), we show the time evolution of the same ob-
servables for the XXZ model. In contrast to the XYZ model,
the magnetizations exhibit irregular evolution at the initial
moment and soon enter into stable oscillations with a well-
defined period. These behaviors are again consistent with the
Liouvillian spectrum shown in Fig. 2(b), where the purely
imaginary eigenvalues appear.

In Figs. 4(a) and 4(b), the time dependence of the magne-
tizations of the spins sharing the common reservoir already
shows negative correlation, indicating that the spins 1 and
3 (or spins 2 and 4) are antisynchronized. This can be wit-
nessed by the so-called Pearson correlator, as discussed in the
Appendix. We will come back to the discussion of the syn-
chronization in Sec. III E in the sense of quantum trajectories.

Now we are going to investigate behaviors of the so-called
Loschmidt echo L(¢) and the purity which are relevant in
the experimental detection of the oscillatory dynamics. The
Loschmidt echo incorporates the simple idea for indicating the
sensitive changes in the system state after being affected by
the perturbation. It has been used to probe for quantum chaos
[69], quantum time crystal [70], dynamical phase transition
[71], and information scrambling [72]. The Loschmidt echo is
defined as

L(t) = Tr[p" (1)p(0)], (18)

and quantifies the overlap between the initial state p(0) and
the state p(¢) at time 7. As a signal for the periodic oscil-
lation, the Loschmidt echo should be a persistent oscillation
[70]. In Figs. 4(c) and 4(d), we show the time dependence
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FIG. 4. The expectation values of the local observables (67) (j = 1, 2, 3, and 4) as a function of time for the (a) XYZ and (b) XXZ models.
(c),(d) The time dependence of the Loschmidt echo (red dashed lines) and purity (blue solid lines) in accordance with (a) and (b), respectively.
The initial states of both models are p™ = wj‘“' w;‘“l. (e) The Fourier spectra of the time-dependent (& 67) presented in (b). The vertical dashed

line in the inset denotes the frequency corresponding to the imaginary part of A.. (f) The time evolution of (&
different initial states. The inset displays the corresponding Fourier spectra. The parameters are chosen as {J,, J;, J.}/T" =

XYZ model and {J,, J,, J;}/T = {1, 1, 0.9} for the XXZ model.

of the Loschmidt echo L(¢) for the XYZ and XXZ models,
respectively. One can see that the amplitude of the oscillating
Loschmidt echo shrinks as the time passes in the XYZ model,
implying the absence of oscillations in the long-time limit,
while for the XXZ model, the Loschmidt echo oscillates with
constant amplitude and a well-defined period signaling the
stable oscillation of the magnetization.

The purity of the system state during the evolution is
shown in Figs. 4(c) and 4(d). The purity is defined by P(¢) =
Tr[5%(¢)]. One can see that different from the dynamical be-
haviors of the Loschmidt echo, the purity does not oscillate
during the time evolution for both models. It is interesting
that as shown in Fig. 4(d) for the XXZ model, the purity
remains unchanged as soon as the stable oscillation of the
magnetization is established.

In order to extract the frequency of the oscillation, we
perform the fast Fourier transformation to convert the time-
dependent magnetizations shown in Fig. 4(b) in the frequency
domain. As shown in Fig. 4(e), each curve exhibits the peak
around an identical dominant frequency f; &~ 0.57 which is
consistent with the Liouvillian spectrum analysis, i.e., 2 f; ~
Im[A.], with AL = £3.6i being the purely imaginary eigen-
values in Fig. 2(b).

Furthermore, we focus on the dynamical results of the XXZ
model with different initial states in Fig. 4(f). The random
product and correlated states are set as follows:

The product random state p'°R. Each spin is initialized as
a normalized random state |1//R) with (j = 1, 2, 3, 4); then we

can generate the initial state ,bloc R — |yloeRy (yrloeR | by the

locRy _ x4 R
product state |v'°R) = ®j=1 V7).
The correlated random state p2R. This initial state can

be directly generated by the global (normalized) random state
glo R _ hﬁglo R) (wglo,RL

1) for the XXZ model with
{0.8, 1, 0.9} for the

As shown in Fig. 4(f), despite the speed of reaching stable
oscillations and the amplitudes of oscillations being different,
all three cases show similar periodic behaviors. We also per-
form the FFT analysis on these data and present the results in
a zoomed-in inset of Fig. 4(f). The numerics indicate that the
three initial states produce the oscillations with identical fre-
quency. This once again confirms that the oscillatory behavior
of the system originates from the particular structure of the
master equation.

D. The largest Lyapunov exponent

Here we unravel the quantum master equation (2) into
the stochastic Schrodinger equation (9) and primarily focus
on the time evolution of a single quantum trajectory of the
system. These trajectories can be considered as the quantum
analogy of the classical trajectories in the phase space. The
initial states of all the trajectories |,,) are random states. We
find that the long-time oscillation can be observed in each
individual trajectory. The stability of the oscillation can be
verified by the so-called largest Lyapunov exponent during the
time evolution as follows [50-53].

In analogy to the classical definition, the quantum largest
Lyapunov exponent A characterizes the average growth rate
of the “distance” between two initial states which are close
to each other. The distance is determined through the expec-
tation value of an observable, for instance, as will be seen
when we use the magnetization of one of the spins &7. It
has been shown that the values of the Lyapunov exponent
do not depend much on a particular choice of the observable
[53]. In a practice realization, it is convenient to extract the
quantum Lyapunov exponent by monitoring the evolution of
the distance between a single trajectory, also notated as the
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fiducial trajectory, and an auxiliary trajectory. We denote the
initial state of the fiducial trajectory by [vyr/(0)), while the
state of the auxiliary trajectory is initialized by |¥,(0)) =
(£ (0)) + 81 )/1l1¥£(0)) + [8%)Il, where [§v) is the per-
turbation.

When the time evolution is launched, the expectation val-
ues of the magnetizations with respect to the states of the
auxiliary and fiducial trajectories, (67 (t)), and (G{(¢)) s, start
to deviate. We denote the “distance” of these two trajec-
tories by the difference A(t) = (6{(¢))s — (67(t))s and the
initial distance as Ag = A(0). As the time passes, the dis-
tance may diverge in an exponential way, A(t) ~ Age* . Here
we empirically set a threshold A, of the distance. If the
distance between the two trajectories evolves beyond such
threshold |A(fy)| > Amax, signaling a possible chaotic behav-
ior for the first time, at some point of time 7y, the growth
factor d(ty) = |A(ty)|/Ao is recorded. Since the quantum
Lyapunov exponent is determined by the averaged growth
factor within a single trajectory (the fiducial trajectory), the
monitoring starts over by resetting the state of the auxiliary
trajectory to be a perturbed state of the fiducial trajectory,
[V (t0))a = ¥ (o)) s + |8%), and records the growth factor
dty) = |At)]|/Ap if |A(f)] > Amax at any future time #;
(k > 0). Such process is repeated up to a sufficient long time
t — oo; the largest Lyapunov exponent is thus obtained by
averaging all the growth factors,

1
A _tlggo;ik:lndk(zk). (19)

Although the instantaneous quantum Lyapunov exponent
may be nonzero due to the stochastic fluctuation, A will ap-
proach zero in the limit of + — oo for a stable oscillation.
In Fig. 5(a), one can see that at the early stage of the time
evolution, the distance A(t) between the fiducial and auxiliary
trajectories shows rapid and drastic variation and goes beyond
the threshold Ap,.x (shown as the black dashed lines) multiple
times. After multiple-time resetting of the state of the auxil-
iary trajectory, the distance trends to be stable and stays below
the threshold. The process of updating the largest Lyapunov
exponent over time is shown in Fig. 5(b). Corresponding to
the results in Fig. 5(a), the largest Lyapunov exponent is
updated multiple times iteratively at the initial moment. After
experiencing unstable evolution in a short period, the largest
Lyapunov exponent decreases monotonically. In the long-time
evolution (I't = 50 in the current simulation), the value of A
eventually descends to zero, hinting that the system is robust
to the perturbation and the oscillations are stable.

E. Quantum synchronization

So far, we have confirmed the existence of the persistent
oscillation in the dissipative XXZ model. Now we are in a
position to investigate the synchronization among the oscilla-
tions of the magnetizations of different spins. In practice, we
simulated with a total of Ny,; = 100 quantum trajectories and
randomly selected ny,j = 10 trajectories to show the results in
Fig. 6.

As shown in Fig. 6(a) for the time evolution of (67) of the
10 randomly selected quantum trajectories, one can see that at
the initial stage, i.e., 0 < I't < 6, the time dependence of {(67)

-0.1 1 I L 1 L L L L L /I : ;
0o 1 2 3 4 5 6 7 8 9 48 49 50
I't
4 T T T T T T T T T /1 T T T
(b)
3- &‘ -
g & :
~< 2 E] \EL_
13? - N .
e e e s ey e e '
0 1 2 3 4 5 6 7 8 9 48 49 50
I't

FIG. 5. (a) The difference of observables A(t) varies with time
(red line) and the black dashed lines denote the threshold A« =
0.05. (b) The largest Lyapunov exponent changes in time. When the
absolute value of A(#) exceeds the threshold A ., an update of the
largest Lyapunov exponent takes place.

for all the 10 selected trajectories shows completely stochastic
behaviors. As the evolution continues, the randomness (fluc-
tuations) of the quantum trajectories is gradually suppressed,
and instead the curves of each (67) become smooth.

In the general stochastic evolutions in quantum systems,
the fluctuations in each trajectory can be observed through
the whole time evolution, as reported in Refs. [54,65,73,74].
However, it is interesting that in our system, the stable oscilla-
tion is established in each individual trajectory and the single
quantum trajectory is not affected by stochastic processes in
the long-time evolution. We will explain this phenomenon in
Sec. III B in the context of properties such as the symmetry of
the system.

In Fig. 6(b), we perform the FFT on the time dependence of
(o7) for the selected trajectories and on the averaged (o) over
all the Ny,; = 100 trajectories, respectively. The Fourier spec-
tra show that the peaks for all the single trajectories appear
(almost) at an identical dominant frequency. In the zoom-in of
Fig. 6(b), we compare the Fourier spectrum of the averaged
(o7) and the dominant frequency f; ~ 0.5730 obtained from
the Liouvillian spectra analysis. The result shows good agree-
ment, meaning that each of the single trajectories oscillates
individually with the same frequency f; and differs only in
the amplitudes. We note that the peaks for some of the single
trajectories are not prominent because the stable oscillations
have not been established yet in the present time window (up
to I't = 20).

In order to characterize the synchronization among the
oscillations of the spins, we employ the correlator in Eq. (8)
to quantify the degree of synchronization of the quantum
stochastic trajectories of two spins [65]. In Fig. 6(c), we
show the feature of synchronization between next-nearest-
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T
S-traj

A-traj

FIG. 6. (a) The expectation values of the observable (G{) ob-
tained by SSE vary with time. The lines with different colors indicate
the results of ny,; = 10 randomly chosen quantum trajectories. The
total number of quantum trajectories is Ny,; = 100. (b) The Fourier
spectrum for the set of single quantum trajectories (S-traj) presented
in (a) and for the average quantum trajectory (A-traj). The details
around the peak of the average trajectory are shown in the inset.
(c) The corresponding time evolution of the modulus of |Cj,| for the
set of single quantum trajectories presented in (a). The parameters
are chosen as {J;,J,,J;}/T"={1,1,0.9} and the time interval is
dt =1073r—\.

neighboring spins for a set of 10 selected trajectories.
By substituting the corresponding operators {O'1+ ,05 } and
{02+ ,0, } into Eq. (8), we find that in all the trajectories,
the next-nearest-neighboring spins are completely correlated,
indicated by |Cj3| and |Cy4| approaching unity for I't > 8. This
means that there is always a phase locking between the spins.

F. Infinite-size spin lattice

In recent years, the search for the persistent, rigid, and
periodic oscillation in the steady state of a macroscopic dis-
sipative system (in the thermodynamics limit) has attracted
considerable attention. As such, the oscillation in the long-
time dynamics signals the breaking of the time-translation
symmetry in the system and it is intimately related to the
time-crystalline phase [75-80].

In particular, the existence of the oscillatory phase in
the infinite-size dissipative spin 1/2 with nearest-neighboring
XYZ interaction, i.e., the same as Eq. (1), has been dis-
cussed [44]. It is shown that the long-time oscillations do
not exist in the system with only local jump operators &, ,
Vm, i.e., each site is subjected to an individual decay [81].

However, when the next-nearest-neighboring (nnn) interac-
tions are present, the oscillatory phase emerges due to the
frustration in the system [51]. The frustration introduced by
the coherent interactions between next-nearest-neighboring
sites is responsible for the appearance of the long-time os-
cillations. This motivates us to check the possibility of the
emergence of long-time oscillations in the presence of the nnn
incoherent dissipation, i.e., with the nonlocal jump operators
VT(6;; 4+ 6,), with m and n being nnn sites. To this aim,
we extend our model, described by Egs. (1) and (2), into an
infinite square lattice to have a glance at the effect of nonlocal
dissipation.

However, solving the master equation of the dissipative
quantum many-body system is rather demanding since the
dimension of the state space grows exponentially as the
size of the system increases. In past decades, although sev-
eral methods were developed, such as the cluster mean-field
approximation [54], linked-cluster expansion method [82],
corner-space renormalization [83,84], and machine-learning
techniques [85-88] (a comprehensive review of the numerical
methods can be found in Ref. [89]), it is still challenging
to simulate the dynamics of an open quantum many-body
system.

In this work, we implement the cluster mean-field (CMF)
approximation on the system to explore its steady-state prop-
erties in the thermodynamic limit. The basic idea of the
CMF approximation is to factorize the state of the many-body
system p into the tensor product of the state p¢ of a set of iden-
tical clusters through the factorization ansatz, i.e., p = @ dc
(pc = pc, YC, C'). With the help of the CMF approximation,
the master equation for the state of the infinite-size system can
be decoupled into the following equation:

dp N A A . .
d_tc = —i[Hc + He_c + Hy, pc] + Dclpcl + Dirlpcl,

(20)

where He =Y, mnyec JaOp 6,y describes the on-cluster
interactions between nearest-neighboring sites (m, m’) of

A

cluster C, and HC—C’ZZa meacmesc Ja (G )G is  the
mean-field Hamiltonian induced by the intercluster in-
teractions between the nearest-neighboring sites on the
boundaries dC and dC’ of cluster C and its nearest neigh-
bor, respectively. H; = Y mescmrenc (—i(6,5)6,, +H.e.)
is the effective local Hamiltonian induced by the nonlocal
jump operators associated to the next-nearest-neighboring
pairs (m,m”) belonging to all the nearest-neighboring
clusters C’, and o =x,y,z denote the components of
the Pauli matrices. In addition, the dissipator D¢[pc] =

> immryec Oumm PcOlyy — 3O, O, pc})  describes  the
on-cluster dissipation with the nonlocal jump opera-
tors (jmm/ =T (6,, +6,,), and the dissipator D;[pc] =
D o medC.mr€dC ((jmi)c(jfn — %{(jfn(jm pc)) describes the effec-
tive dissipation induced by the CMF factorization on the
boundary of C with the local jump operators 0, = \/Fé",; .
When considering the single-site cluster, the CMF analysis
is reduced to the standard mean-field treatment as all the
correlations in the lattice are neglected. In principle, as the
size of the cluster increases, the short-range correlations are
gradually included and thus the property of the system in the
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FIG. 7. The cluster mean-field time evolution of the magnetiza-
tion (67) for 1 x 1 (standard), 2 x 2, and 3 x 3 clusters. The initial

state of each state is initialized on the equatorial plane of the Bloch
sphere. The parameters are chosen as {J,, J,, J;}/T" = {1, 1, 0.9}.

thermodynamic limit is obtained. More details about the CMF
approximation can be found in Ref. [54].

In Fig. 7, we show the time evolution of the magnetization
(67) of the dissipative XXZ model for various sizes of clus-
ters. The state of each site in a chosen cluster is initialized
in the equatorial plane of the Bloch sphere. Although the
oscillatory behaviors are observed in the levels of 1 x 1 and
2 x 2 clusters, the system relaxes to an asymptotic steady
state up to the 3 x 3 cluster, which excludes the existence of
the time-translation breaking phase in the steady state of the
infinite system within the chosen parameters.

Although our result rules out the oscillatory phase for the
chosen parameters in the infinite-size XXZ model with nonlo-
cal dissipation, there is still an interesting open problem. For
example, in the all-to-all XXZ model, the oscillatory phase
is shown to appear in the collective decay case, while it
disappears in the local decay case [90]. The former case in-
dicates an infinite long-range correlated dissipation, while the
latter indicates a local dissipation. How the oscillatory phase
emerges as the range of correlated jump operator increases
and whether there is a critical length of the correlated jump
operator would be interesting for future studies. Along this
line, the inclusion of the nnn nonlocal jump operator is an
expedient point with which to start.

IV. SUMMARY

In summary, we have investigated the phenomenon of syn-
chronization in spin systems with nonlocal dissipation. In the
absence of the external driving, the system with XXZ inter-
action generates the oscillations in the long-time dynamics
due to the nonlocal jump operators. This is manifested by the
existence of the purely imaginary eigenvalues of the Liouvil-
lian superoperator associated to the Lindblad quantum master
equation.

We have unraveled the quantum master equation into quan-
tum trajectories whose time evolution is effectively described
by the SSE. It is interesting that the long-time periodic os-
cillation can be observed even in each single trajectory. The
stability of the single-trajectory oscillation has been verified
by the converging to zero of the largest Lyapunov exponent
during the time evolution. The periodicity of the oscillation

extracted by the FFT is consistent with the one predicted
by the purely imaginary eigenvalues of the Liouvillian. In
particular, in contrast to the results reported by the previous
literature, the random fluctuations during the time evolution
caused by the coupling to the environment is highly sup-
pressed in our considered model. This can be attributed to
the decoupling of the system from the environment by means
of the jump operator becoming zero as soon as the stable
oscillation is established.

We have also investigated the synchronization among the
oscillation of each spin. By adopting the measure of syn-
chronization proposed in Ref. [65], we have found that the
next-nearest-neighboring spins are completely synchronized,
indicating a phase locking between the spins during the time
evolution. We have also revealed the sublattice symmetry in
our model through investigation of the time dependence of
the trace distance between the states of a given spin and its
next-nearest neighbor.

The oscillatory behavior in the long-time dynamics of our
considered few-body model is due to the action of the non-
local jump operators that generate a subspace which is the
eigenspace of the system Hamiltonian but is dark to the jump
operators. Although the CMF analysis on the infinite-size sys-
tem governed by the quantum master equation (20) excludes
the existence of the time-translation symmetry-breaking phase
with the chosen parameter, whether the nonlocal dissipations
in the interacting spin system may induce long-time oscilla-
tion is still open. Finally, we believe that it will be interesting
to look for the oscillatory or time-crystalline phases in an open
quantum many-body system with the appropriately designed
nonlocal dissipations.
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APPENDIX

The Pearson correlation coefficient is a measure of the
strength of a linear association dependence of two variables. It
takes a range of values from —1 to +1. A value of 0 indicates
that the two variables are uncorrelated. A value greater (less)
than zero indicates a positive (negative) association between
the two variables, that is, as the value of one variable in-
creases, the value of the other variable increases (decreases).
In particular, a value of 4+1 or —1 means that the two variables
are in total positive or negative correlation.

Considering two functions in time, the Pearson correlation
coefficient can be used to measure the temporal correlation
between them. Recently, the Pearson correlation coefficient
has been employed to witnessing the synchronization emerg-
ing in the dynamics of both classical and quantum systems
[38,65]. Given two time-dependent expectation values of local
observables 6 and 6>, for example, the magnetizations of two
different spins in the models discussed in the main text, the
Pearson coefficients is defined as [15]

At)2 , A = A =
P 1AD) = i (61— 8162 — &)1
o102 - (+A12 A = EUNY N = ’
JIESE @ =& par [0 60— Bay2di
(A1)
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FIG. 8. The time evolution of the magnetization (6;) in the
(a) XYZ model and (b) XXZ model. The Pearson correlation coef-
ficient between spin 1 and other spins in the (c) XYZ model and
(d) XXZ model. The inset in (d) is a zoom-in for P;, and P 4.
The width of the time window in producing the Pearson corre-
lation coefficient is At = 10I'~!. Other parameters are chosen as
{Je, Jy, J.}/T = {0.8, 1, 0.9} for the XYZ model and {J,, J,, J.}/T" =
{1, 1,0.9} for the XXZ model. Note that the time axis for the XYZ
model is in the logarithmic scale.

where

B 1 t+%
b= / " s, (A2)
-

and At is the length of a sliding window. We apply the Pearson
coefficient to the time-dependent magnetization in Figs. 4(a)
and 4(b) and show the results in Fig. 8. We have prolonged the
time axis to show a full view of the dynamics.

From Fig. 8(a), one can see that the expectation values of
the magnetizations in the XYZ model eventually approach the
asymptotic steady-state values due to the nonzero real parts of
the Liouvillian eigenvalues. As shown in Fig. 8(c), the early-
stage time evolution of the magnetizations of spins 1 and 3,
which share a common reservoir, is negatively correlated with
Py 3 = —1, while the Person coefficients P} » and P; 4 describ-
ing the correlations between the time-dependent (67) with
(65) and (65), respectively, shows nonzero values before the
oscillations are damped. Due to the fact that spins 2 and 4 are
in negative correlation, P; » and P, 4 take different signs. As
the time passes, the system evolves into a time-independent
steady state (I't 2 10%) and the Pearson coefficients become
meaningless because all the magnetizations are constant.

In Fig. 8(b), we show the time evolution of the magne-
tizations of each spin in the XXZ model. The oscillations
survive in the long-time limit because of the existence of
purely imaginary Liouvillian eigenvalues. Again, one can see
that the time-dependent magnetizations of spins 1 and 3 are
always negative correlated, P; 3 = —1, as show in Fig. 8(b).
This is consistent with the conclusion from the analysis with
the complex-valued correlator (8). The Pearson coefficient
Py > and P, 4 oscillate around zero periodically because there
exists a stable phase difference between the time evolutions of
(67 and (65) ({(67)). The details of P; ; and P 4 are shown in
the inset of Fig. 8(d). Again, P; » and P, 4 always take different
signs because the spins 2 and 4 are negatively correlated.
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