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We investigate the optimal charging processes for several models of quantum batteries, finding how to
maximize the energy stored in a given battery with a finite-time modulation of a set of external fields. We
approach the problem using advanced tools of optimal control theory, highlighting the universality of some
features of the optimal solutions, for instance the emergence of the well-known bang-bang behavior of time-
dependent external fields. The technique presented here is general, and we apply it to specific cases in which
the energy is either pumped into the battery by external forces (direct charging) or transferred into it from an
external charger (mediated charging). In this paper we focus on particular systems that consist of coupled qubits
and harmonic oscillators, for which the optimal charging problem can be explicitly solved using a combined
analytical-numerical approach based on our optimal control techniques. However, our approach can be applied
to more complex setups, thus fostering the study of many-body effects in the charging process.
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I. INTRODUCTION

In recent years, with the rapid development of new quan-
tum technologies [1,2], there has been a worldwide interest
in exploiting quantum phenomena that arise at a microscopic
level. Here, we will focus on studying the so-called quantum
batteries [3—10], i.e., quantum-mechanical systems employed
for energy storage, where quantum effects can be used to ob-
tain more efficient and faster charging processes than classical
systems.

This blossoming research field has to address many dif-
ferent questions, such as the stabilization of stored energy
[11,12], the practical implementation of quantum batter-
ies [13,14], and the study of optimal charging processes
[7,8,15], offering a vast research panorama on both theoret-
ical [11-13,16-24] and experimental ends [14,25]. Within
this framework, we will derive optimal charging strategies
for quantum batteries using techniques from quantum control
theory [26-30], a powerful mathematical tool that has many
applications in different fields of physics such as quantum op-
tics [31,32] and physical chemistry [33—35]. Quantum control
theory has contributed to understanding interesting aspects of
quantum mechanics such as the quantum speed limit [36—39]
and to generate efficient quantum gates in open quantum
systems [40,41]. In this paper, we study how a qubit or a
quantum harmonic oscillator can be optimally charged with
a modulation of an external Hamiltonian. In order to find
the best charging protocol we will use Pontryagin’s minimum
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principle (PMP) [42,43], a very useful theorem of classical op-
timal control theory, which is frequently used also in quantum
control theory [44-48]. We show that, in most cases that we
consider, quantum batteries can be optimally charged through
different variants of a so-called bang-bang modulation of the
intensity of an external Hamiltonian.

Our paper is organized as follows. In Sec. II we introduce
two general charging protocols to inject energy in a quan-
tum battery. In Sec. IIIl we present a brief introduction to
Pontryagin’s minimum principle, highlighting the main tools
that we shall use throughout the paper. In Sec. IV we focus
on the first charging protocol, consisting of a closed system
charged by the modulation of an external Hamiltonian. Sec-
tion V provides a more detailed analysis of the charging of
specific examples, such as the single qubit or the harmonic
oscillator. Section VI is devoted to analyzing a second charg-
ing process, where we make use of the coupling between a
quantum battery and an auxiliary quantum system. Finally, a
brief summary of our main conclusions is reported in Sec. VII,
while useful technical details can be found in the Appendices.

II. CHARGING OF A QUANTUM BATTERY

We start by defining two general protocols for the charging
process of a quantum battery (see Fig. 1 for a pictorial repre-
sentation).

A. Direct charging process

The first charging model consists of a single closed quan-
tum system initialized in a state p(0) that evolves in time

©2023 American Physical Society


https://orcid.org/0000-0002-4219-7177
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.032218&domain=pdf&date_stamp=2023-03-30
https://doi.org/10.1103/PhysRevA.107.032218

FRANCESCO MAZZONCINI et al.

PHYSICAL REVIEW A 107, 032218 (2023)

FIG. 1. (a) Direct charging process: charging model for a closed
system through the modulation of an external control for a finite
amount of time 7. (b) Mediated charging process: it consists in letting
two systems A and B interact through a Hamiltonian H;.

under the action of a time-dependent Hamiltonian of the form

H(t) = Ho+A(t) - H:= Hy+ > Mi(0H;. (1)
i=1

In this expression Hj is the intrinsic Hamiltonian contribution
which defines the energy content of the system before and
after the charging process and H := (Hy, ..., H,) is a collec-
tion of charging Hamiltonian terms which are modulated by
control functions A(¢) := (A(¢), ..., A,(t)) that we assume
to be active (i.e., different from zero) only over a limited time
interval [0, t]. They can take values that are determined by
some assigned constraint, i.e., A(¢) € D[0, ], where T > 0
is the total duration of the charging process and D[0, 7] is a
proper subset of the real functions [F [0, t] mapping [0, t] into
R™. Our goal is hence to find an optimal A*(¢) € D[0, 7] that,
given an assigned 7, maximizes the mean energy of the system
at the end of the process. Introducing

U, .= Tepr:—i/T dt H(t)i|, 2)
0

the time-ordered unitary evolution operator associated with
the time-dependent Hamiltonian (1), and

p(t) = U p(OU] 3)

the evolved state of the system at time 7, we aim to determine
the quantity

Enax(T) := E(T)h‘(z) = E(T)’ (4)

max
A(1)eDI0,7]
where using (- ) as a short-hand notation to indicate the trace
operator we set

E(7) := (p(1)Hy) ®)

(notice that hereafter we have set i = 1). It is worth point-
ing out that since the direct charging process (DCP) models
considered here rely on closed dynamical evolutions (no in-
teractions with external degrees of freedom being allowed)
the DCP optimization we are targeting corresponds also to
maximizing the amount of extractable work we can store in
the system as measured by the ergotropy, the total ergotropy,

or the thermal free energy [49]. To see this explicitly we recall
that given a quantum system with Hamiltonian H (¢) and state
p(t) all these quantities can be computed as

Wlp(®), H()] := (p(0)H (1)) — F(spa), Sry)  (6)

where F(sy¢), SH()) is a functional that only depends
upon the collections s,q) = {n1(t), n2(¢), ...} and sp() =
{e1(t), ex(2), ...} of the eigenvalues of p and H, respectively
(see Appendix A for details). Since the unitary evolution (3)
preserves Sy, and sg(ry = sy, in the DCP, F(sy(1), Su(r)) =
F(Sp0), SH, ) so that this quantity plays no role in the optimiza-
tion procedure.

B. Mediated charging process

Although the DCP is of undoubted theoretical interest, a
closed evolution of a unique system is not genuinely realistic
from the physical implementation point of view. Such a uni-
tary evolution regime occurs only when the dynamics of the
energy source are very slow compared to the quantum battery
dynamics (i.e., in the Born-Oppenheimer limit). Therefore,
we also consider a second charging model, called the medi-
ated charging process (MCP) [4,5], that involves instead two
separate elements: an auxiliary quantum system A, called the
charger, and a quantum battery B. In the MCP we aim at
maximizing the energy stored in B by suitably modulating its
interaction with A in finite time t. For this reason we replace
the DCP Hamiltonian (1) with

H(t) := Hy + Hp +A(t) - H, )

where Hy and Hp are local operators of A and B, respectively,
and H is now free to act on both the battery and the auxiliary
system. The quantity to optimize is now given by

Ep(t) := (op(t)Hp), ®)

where pp(7) is the reduced density matrix of the battery at
time 7. Since pp(t) does not follow a unitary trajectory in the
MCP scenario, s, () is typically different from s, (), which
implies that W[pp(t), Hg] is considerably more challenging
to optimize. We shall see however that by choosing wisely
the global initial state p45(0) we can reduce our analysis to
simpler DCPs, as shown in Sec. VI.

III. PONTRYAGIN’S MINIMUM PRINCIPLE

PMP [43] is the main tool we will use in the optimization
of DCPs and MCPs and will allow us to formally identify
necessary conditions for the optimality of A*(¢). Here we
introduce the approach to optimal control problems provided
by PMP using a general formalism, that will be adapted to
both DCP and MCP problems afterwards. Consider a set of
state variables at a given time ¢, represented by the elements
of a vector v(t) := (v1(¢), ..., v,(¢t)) which evolves via a
dynamical equation represented by n first-order differential
equations of the form

V() = f@), A1), 1), ©))

with f a vectorial function. The quantity to optimize, also
called the performance criterion, is evaluated in terms of a
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cost function written as
J= / g(v(®), A(r), t)dt, (10)
0

with g a scalar function. Defining the pseudo-Hamiltonian

H as
H = g(t), M), 1)+ p() - f((@), A(?), 1), (11)

with p(¢) the n-dimensional row vector of Lagrange multipli-
ers, called costates, the PMP states that necessary conditions
for an optimal control A*(¢) € D[0, 7] to minimize J are that
forallt € [0, T]:

, OH )
o) = Z2 00X 0. p0).1),

OH
p(t) = _E(”m’ (@), p(t), 1),

H(@(@), (@), p(t), 1) < H(w(@0), A1), p(t). 1),
VA(t) € D[O, ).  (12)

Moreover, the PMP gives additional constraints based on the
boundary conditions of our problem, i.e., whether the final
state and the final time are fixed or free. In particular, (1) if
the final time 7 is fixed and no constraint is posed on the final
state v(7), then

p(t) =(0,0,---,0); 13)

(2) if the final time 7 is free while the final state v(t) is fixed,
then

H(r), M (t), p(r), ) =0. (14)

We finally highlight that the PMP is not the only possi-
ble optimization method to analyze charging processes for
quantum batteries. For instance, Ref. [15] deploys an iterative
approach to minimize the distance between the target state and
the final state, considering a variant of our charger-mediated
process where a modulated field is acting only on the charger,
considered in this case as an open dissipative system. How-
ever, since PMP gives necessary conditions for optimality,
any other optimization method must eventually satisfy those
conditions.

IV. DCP OPTIMAL SOLUTIONS

In this section we will derive the optimal solutions for
DCPs considering two different settings: first in Sec. IV A
we fix the total duration of the charging event t and try to
identify the optimal pulse A*(¢) which, starting from a given
initial configuration p(0), produces the maximum value of the
output energy Enax(7); then in Sec. IV B we analyze the dual
problem, that is, we fix a target output state that ensures a
certain value of the final energy and try to find the optimal
control A*(¢) that enables us to reach it in the minimum
time 7.

A. Maximum output energy at fixed time

To begin with, we observe that if (i) the charging
Hamiltonian terms Hs are generators of the group U of the
unitary operators on the system and (ii) no restrictions are

imposed on the choice of the control vector A(z), allowing
D[O0, 7] to include all possible elements [ [0, t], then the dy-
namical evolutions (2) can span the entire set I/ of unitary
transformations on the system. Accordingly under conditions
(1) and (ii) we can write

Emax(t) = max (U, p(0)U,Hy)

A(t)elF[0,7]

= max(U p(0)U Hyp) =: E max, (15)
Ueld

where E . is @ T independent constant that represents the
maximum amount of energy we can force into the system
via arbitrary unitary manipulations. The constant E 4, can be
explicitly evaluated as

Emax =) _ 0} (0) €] (0), (16)

i=1

with 51 ={n](0), n)(0). ...} and s};={€](0), €](0), ...} be-
ing the spectra of p(0) and H, rearranged in increasing order.
Note that it is possible to establish a direct connection be-
tween E . and the antiergotropy [50] of the system (see
Appendix A for details). Apart from this special case, the
explicit evaluation of E,(7) is typically rather demanding
and does not admit a closed analytical solution. One possible
approach to tackle it is to make use of optimal control tech-
niques. In particular, in what follows we shall rely on the PMP
we have reviewed in Sec. III. For this purpose we rewrite the
final energy (5) as

E(r)= /O (Hop(1))dt + E(0), (17)

where p(t) = N[p(t)] = —i[H(t), p(t)]. Accordingly, we
can study the optimization of the charging process as a mini-
mization problem of the cost function:

J = —fo (HoNTp(®)])dt. (18)

The optimization task can then be translated into a PMP
problem by introducing the following arrangements:

v(t) — p(t), A(t) = A(@), p@)—> 7@),
f@), 0), 1) = Np@®)],
g((t), A1), 1) - —(HoNp(1)]),

p(t) - f(x(t), A1), 1) = (T(ON[p®)]), (19)

with 77 () being a self-adjoint operator of the same dimension
of p(t), and defining the pseudo-Hamiltonian

H(p®), A1), 7w (1), 1) := ([ (t) — HONTp()])
= M(t) - G(t) — i{7'()[Ho, p()]),
(20)

with 7/(¢) :== 7w (t) — Hy and G(t) := (G1(¢), ..., G,(t)) be-
ing a column vector of elements:

G;(t) := —i{m' ()[H}, p(1)]). 2y

032218-3



FRANCESCO MAZZONCINI et al.

PHYSICAL REVIEW A 107, 032218 (2023)

This allows us to express the necessary conditions (12) for the
optimal control vector A*(¢) as

p(t) = —i[H* (1), p(t)],
7'(t) = —i[H*(t), 7' (1)),

(@) -G@) < A@)-G@), Vi) e DIO, 7], (22)

where H*(t) represents the Hamiltonian (1) evaluated on the
optimal control pulse, i.e.,

H*(t):=Hy+ A*(¢)-H. (23)

In the third line of Eq. (22) we exploited Eq. (20) and the fact
that the term —i{7'(¢)[Hp, p(¢)]) does not depend explicitly
on A(t). In the case of a charging process with fixed time
and unknown optimal final state p(7), the list (22) has to be
completed with the extra condition (13) which in the present
case becomes

7(t)=0 <<= 7'(r)=—H,. (24)

The first two equations in (22) simply tell us that p(¢) and
7r'(t) represent the state and the costate operator of the sys-
tem evolved under the action of the Hamiltonian (23). What
ultimately decides whether a given A*(¢) has a chance of
being an optimal solution is the inequality in Eq. (22) which,
unfortunately, due to the implicit dependence upon A*(¢) of
G(1), is typically not analytically treatable. Nonetheless, in the
special special case where we have a unique control function
(i.e., m = 1) and the allowed domain DO, t] is chosen to
simply force the intensity of A; () to belong to a given interval
T, = [Ain, AaX], the inequality in Eq. (22) translates into a
series of (simplified) conditions which provide us with a nice
guidance on how to construct the optimal control pulse.

(a) Aj(t) can take the minimum allowed value )Jlni“ if and
only if the associated G| (¢) function is strictly positive, i.e.,

M) =AM = Gi(t) > 0.

(b) Aj(¢) can take the maximum allowed value A" if and
only if the associated G (¢) function is strictly negative, i.e.,

A@) = A" = Gi(t) <0.

(c) Aj(¢) can take arbitrary values in the allowed domain
1, = [A‘lni“, AT if and only if the associated Gy(¢) is equal
to zero.

From the above analysis it emerges that natural candidates
for Aj(z) are bang-bang-like step functions similar to the
one shown in Fig. 2 which alternate their values among the
allowed extreme AT and AT with switching points corre-
sponding to the zeros of the associated function G;(¢). The
only allowed exception to this rule is when G{(¢) is zero
over an extended interval (singular interval scenario): in this
case the necessary conditions in Eq. (22) give no information
about how to select Aj(z) without specifying the nature of
the system. Interestingly enough, a meticulous analysis of
singular intervals has already turned out to be crucial in ana-
lyzing optimal-time controls for dissipative quantum systems
[51,52].

B. Minimum charging time at fixed final state

Another problem that we can tackle using the PMP method
is to determine the minimum value of the charging time t that

t
/\inax |
2
A (®) -
/\rlnin t

FIG. 2. Example of the relationship between a time-optimal con-
trol A (¢) and the switching function G, (¢) for the case in which the
system is characterized by a single control function (m = 1). The
region with a question mark is a singular interval, where the value of
the optimal control is not determined by the conditions in Eq. (22).

allows us to move our initial state p(0) into a final target con-
figuration p,—for instance a state in which the eigenvalues
are sorted in increasing order which according to Eq. (16)
grants us the maximum value of the stored final energy E nax
allowed by the most general DCP process. The new cost
function of the problem can be written as

J = —/ ldt, 25)
0

which is a simple way to express the charging time in an
integral form. With the same notations adopted in the previous
section, we can hence define the pseudo-Hamiltonian of the
new problem as

H(p(t), A1), w(t), 1) == (T (ONp@)]) — 1
=A() - G@)—i{m(1)[Ho, p(1)]) —1,
where now G(¢) is the vector of components:
Gj@t) = —i(mw(®)[Hj, p()]). (26)

Doing almost the same calculations that led us to Eq. (22), we
can hence cast the PMP constraint (12) for the optimal pulse
A*(¢) that leads to the target state p,, in the minimal time 7, in
the following form:

p(t) = —i[H* (@), p(1)],
w(t) = —i[H* (1), 7 @)],

A@)-G@) < A(@)-G(r), VYA@) € D[O, 7], (27)

where H*(¢) is again defined as in (23), with the new extra
condition imposed by (14),

(T (OH"(7), pol) = i, (28)

replacing Eq. (24). Notice that also in this case p(¢) and the
costate 7 (¢) undergo the same temporal dynamics; however,
in the present problem the final value of the costate is only
partially determined by the new constraint Eq. (28). We also
point out that as for (22) simplifications arise when there is
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only one control parameter m = 1 with constrained intensity
A1 (t) € Z;, which allows one to translate the third equation of
(27) into the same (a), (b), and (c) rules detailed in the previ-
ous section.

V. EXAMPLES OF DCP MODELS

Here we analyze in detail some examples of DCP models:
a qubit with one (m = 1) or two (m = 2) charging fields,
and a harmonic oscillator under the action of a linear time-
dependent perturbation.

A. Qubit optimal DCP with a single charging field

In this section we focus on a first example of DCP where
the system of interest is represented by a single qubit which
is controlled via a single control field (i.e., m = 1). For the
Hamiltonian (1) we select

H0=%(11—az), H =x-o0, (29)
withx := (x1, x2, x3) a unit row vector of real components and
o := (0y, 0y, 0, )T the Pauli column vector.

Let us start by observing that whenever x is not pointing
the z direction H; and Hj form a generator set for the su(2)
algebra. Accordingly, despite the limited number of charging
terms, if no restrictions are posed on the intensity of the
control function XA;(¢) or, alternatively, if the charging time
7 is sufficiently large, the transformations (2) we can induce
on the system are still capable of spanning the entire unitary
space U and one recovers the result (15), i.e.,

Emax (T)|unbounded = Emax = @o (%) s (30)
where, given a(0) as the Bloch vector of the initial state p(0),
[1 4 |a(0)]]/2 is the maximum eigenvalue of such a state.
To study the case where instead X;(¢) is forced to belong to
a finite interval 7, = [)»'f““, AT™], we use the PMP method
detailed at the end of the previous section. In this particular
case, 7'(7) is a 2 x 2 Hermitian matrix with trace —wy. Since
the unitary evolution preserves the trace, we can always write
the state and the costate as

_ 1+a(t) o
p(t) = s
(1) = —wom#, (31)

where a(t) and b(t) are two unit row vectors with a(0) being
the Bloch vector of the input state of the system and b(t) =
(0,0, —1). Replacing this into (5) and Eq. (21) we hence get
E(t) = (wo/2)[1 — as(r)], where a3(t) is the z component
of a(t), and

Gi(t) = — i{(7'(O[H1, p()]) =%(b(t)~0[x -0,a(t) - o])

=—wob(t) - xnalt)=wox -blt)ANa(t).
(32)
The crucial case G{(t) = 0 can then be translated into the
condition

Gi(t)=0 < x-bt)ra()=0. (33)

As discussed in Appendix B this corresponds to the identity

M) = %xg (34)

as the constraint that leads to a singular interval, with x3 the
third component of the unit vector x. Following the indications
of the PMP detailed in the previous section, we can hence
claim that for the DCP model we are considering here the
optimal choice for the control parameter A} (#) must be indeed
a bang-bang protocol represented by a piecewise-constant
function that on the interval [0, 7] takes values extracted from
the three-element set S = {)Jl“i", Px3, AP} for Fx; € 7y,
or from the two-element set S = (A", A} if L3 ¢ T,
Specifically, given a (N + 1)-elements partition P of the
charging interval [0, 7],

O=tH<t) <--- <ty <y =T, 35)
and a collection £ := {A, Ay, ..., Ay+1} of elements ex-
tracted from the set S, we can write

N+1

M) =) Ag Stepy, [t — 1], (36)
k=1

where for all k ={1,..., N 4+ 1} we have At; :=1t, — tr_1,
and where

1 Vrel0, AT,
Stepprlt] == 37
0 otherwise

is a step function of length AT. This is clearly a huge sim-
plification of the optimization problem which highlights the
strength of the PMP approach. Unfortunately the identifi-
cation of the specific values of N, P, and £ goes beyond
the possibility offered by this method and they need to be
addressed case by case. To confirm our theoretical reasoning
we performed a numerical simulation for the special case in
which at time r = 0 the battery is in its ground state, i.e.,
©0(0) = |0)(0] or equivalently a(0) = (0, 0, 1). Furthermore,
to simplify the numerical simulation, we consider the charging
Hamiltonian in Eq. (29) to be H; = o, selectingx = (1,0, 0),
and we fix A" = 0 so that the set of allowed pulses S reduces
to {0, A"}, With these choices all the candidates for A*(z)
are given by simple bang-bang pulses with alternating values
of A"™ and zero (see Fig. 3). Excluding the sequences which
have A; = 0 in the first interval that are clearly suboptimal
(with such a choice nothing is going to happen to the system
at least until # = ;), a complete parametrization of the PMP
candidates (36) can hence be obtained in terms of the time
intervals of the selected partition P, i.e., At;, Ay, ..
such that Zf\’: J]l At; = 7. Choosing different sequences of the
At; s will generate different trajectories and different values of
the final energy E(t) = E(Aty, Aty, ..., Atyy1) which can
be explicitly computed case by case.

Setting A" = 0.3w), we have run a numerical simula-
tion of the problem for different values of the total charging

L) Al‘N-}—lv
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0 7 >
%’_J‘,_/ — t
Aty At AtN_H

FIG. 3. Example of an optimal control PMP candidate (36) with
N switches for the single-qubit DCP problem with x = (1,0, 0)
and A" = 0: it corresponds to a bang-bang function that oscillates
between zero and AT at the switching times #; of the selected
partition (35).

time 7 selected in the domain [0, 15/wg], with different sets
of time intervals At’s. The obtained results are summarized
in Fig. 4, which reports the maximum E2T(7) of the final
energy E(Aty, At, ..., Aty41) we have obtained by run-
ning a numerical search on bang-bang functions of the type
Fig. 3 organized in groups of increasing values of N. Specif-

ically, the blue curve reports results obtained for N < 1 (i.e.,

05
G1 (t)oo

piecewise-constant functions with up to two intervals Af}s),
the dotted green curve reports those for N < 3, and the red
curve reports those for N < 5. The first thing that one can
notice is that, as predicted in Eq. (30), for t sufficiently
large (specifically for T 2 14.0wy), EMom (1) reaches the value
of wy, which for the selected choice of the input state cor-
responds to the absolute maximum Emax. The plot shows
also that in order to achieve these results we had to use
piecewise-constant functions with N = 5. In contrast, having
N =1 or 3 is just enough to push E™™(7) up to ~0.26E pax
and ~0.78E .« (dash-dotted blue and dotted green plateaus
in Fig. 4). Another element which emerges from the above
discussion is that, even though E}"7'(7) is explicitly nonde-
creasing in 7, it exhibits a staircaselike behavior with extended
plateau regions. This means that increasing the final time does
not necessarily lead to an increment of the final energy. On the
contrary, by allowing for negative values of the intensity of the
control, one can drastically increase the performance, getting
rid of the plateaus and obtaining a monotonically increasing
function for E27(7) (this will be extensively discussed in
Sec. V B). Naturally, since the analysis relies on a numerical
optimization performed on a selected class of bang-bang func-
tions with a limited (up to N 4+ 1 = 6) number of switching
times, one cannot exclude that enlarging the pool of candi-
dates (e.g., increasing N) would also remove the staircase
behavior; however, we believe that this is a typical feature of
the constraint on the intensity of the control we have chosen,
an interpretation that is validated by the fact that EX2V(7) is
not staircaselike if we allow A;(¢) to be negative. Our final
remark concerns the consistency of the obtained numerical

-0.5

wo 0.2

0.4 4

A
wo 0.2

0.0

10 15 A1

wo 0.2

0.0

0 2 4 648 10 12

FIG. 4. Plot of the maximum-energy value £ (7) at the end of DCP process (29) of duration 7, obtained by performing a numerical

max

optimization with respect to the bang-bang protocols of Fig. 3 with different values of N [the charging term here is chosen such that x =
(1, 0,0)]. The side panels report also the values of A;(¢) and of the associated G(¢) function computed as in Eq. (32) for four particular
simulations. Notice that points A and C follow the PMP prescriptions detailed at the end of Sec. IV, while points B and D do not. More
specifically, B and D miss the last switches, continuing to maintain A;(¢) = O: this happens because they have no possible switches left [we
have fixed N = 1 and 3, respectively, and, consequently, they are forced to stay with A;(t) = O for the remaining time].
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results with the PMP criteria. For this purpose we focused
on four particular points A, B, C, and D of the central plot
in Fig. 4. Each point corresponds to a particular charging
protocol (i.e., N and At}, Aty, ..., Aty fixed) for which
we present the explicit value of A;(¢) and the associated G ()
function computed as in Eq. (32). We notice that only the
protocols on the solid red line (i.e., A and C), which provide
our best guess for the maximum final energy, fulfill the PMP
criteria (a), (b), and (c) in Sec. IV A, that prescribe a switch
of A1(¢) whenever Gy (¢) changes sign. The other two instead
fail to follow the prescription, e.g., missing the final switching
point. This is in line with the fact that B and D are clearly
not optimal, since there are other points along the solid red
line providing better final energy values for the same charging
time t.

Optimal charging times

We now tackle the problem of minimizing the charging
time 7 that enables us to reach a final target state p,. Inte-
grating the equations of motion for p(¢) and 7 (¢) given in
Sec. IV B we expressed them in the Bloch vector representa-
tion:

1+a()-
oty = 40,
7(t) = w, (38)

where at variance with (31) we parametrized the costate in a
such a way to leave its trace undetermined and not directly
connected with the length of the vector b(z). Replacing this
into (26) we hence get

Gi(t) =

(b(t)-olx-0,a(t)-o]) =x-bt)Aa(), (39)

i
4
which up to an irrelevant scaling factor wy coincides with the
one given in Eq. (32). We can hence apply the same analysis
of the previous section to declare that the optimal pulses will
be again a piecewise-constant function belonging to the class
(36) with the same set S of allowed constant plateaus (see
Appendix B 1 for details).

B. Qubit optimal DCP with two charging fields (m = 2)

We now consider the charging process of a qubit in the
presence of two controls. As in Sec. V A, we choose Hy =
2 (1 — o) as reference Hamiltonian, but assume the presence
of two different charging terms H; = o, and H, = o, with
control functions A;(¢) and A,(¢) fulfilling a constraint which
limits their joint intensity, i.e.,

M)+ A5() < r?

max’

(40)

that we can parametrize as A;(¢) := r(¢)cos0(t) and A, (¢) :=
r(t)sin6(t) with r(t) € [0, rmax] and 6(¢) real. In this case we
find it useful to study the problem using the interaction pic-
ture where, given V (¢) := e’ the unitary associated with
the free evolution, we replace p(¢) with the density operator
pt) :=V@) p@)V(t)=[1 +a() - o]/2, with @(t) being its
associated Bloch vector. Accordingly the dynamical equation
of the model reads

B(t) = —i[Hm(t), p(t)] = a(t) =2k(t) Aa@t), (41)

where
Hin(2) := V()'[r(t) cos 0(t)oy + r(t)sin 0(t)oy |V (t)
=it)-0o (42)

is the interaction picture Hamiltonian characterized by a con-
trol vector A(t) = (A(t), A2(r), 0) of components @) =
r(t)cosB(t) and Ar(¢) := r(t)sinf(r) with 6(t) :=6()+
wot. Noting that the final energy of the system still reads as

E(t) = (p(t)Ho), (43)

we can cast the PMP using an associated costate 7'(t) =
—ao[1 + b(t) - a]/2, which evolves via the same dynamical
equation p(?), i.e.,

() = —il[Him (1), #(1)] < b(t) = 2K(t) ABQ), (44)

and a two-dimensional vector G(¢) for the corresponding
pseudo-Hamiltonian (20) that can be expressed as

Gi(t) == wo %; -b(t) na(t), Vj=1,2 (45)

withx; = (1,0,0) and £, = (0, 1, 0). Dropping the irrelevant
constant factor wy, we can then cast the third PMP inequality
of (22) as

@) b)) na@) < A@)-b@) Aa@). (46)

Solving Eq. (46) is much more demanding than the corre-
sponding case with a single control function, so we will adopt
a different strategy by guessing the optimal solution and after
verifying that it fulfills the necessary conditions (46). Since
E(t) = wo[l — as(t)]/2 we notice that increasing E(7) is
equivalent to decreasing the value of a3(t). In view of this
fact we expect the maximum charging power to be achieved
when A(¢) is chosen in order to force a rotation of the system
(in the interaction picture) around the axis orthogonal to the
plane containing the z axis and the Bloch vector a(0) [note
that @(0) and @(0) coincide]. This axis is

k= X3 Aa(0)/|a(0)| = (cos by, sin Gy, 0), (C))]

with the implicit convention that if a(0) is oriented along the
X3 axis we then take k= (1, 0, 0) (any other vector orthogonal
to X3 would work as well in this case). To achieve this we need
6(t) = 6, that is realized with the choice

r(t) = Fmax, (48)

where with the second condition we aim at maximizing the
speed of rotation. When (48) holds we have Hiy () = rpaxk -
o and the dynamical equation simply reads

a(t) = a(0)cos2rmaxt) + [I:t A a(0)]sin(2rmaxt)
= 1a(0)[cos(2rmaxt + @0)¥3 = SINQrmat + a0)(E3 A k)],
(49)

where in the second identity we used (47) and introduced the

symbol

a(0) - %3
la(0)|

ol 1= arccos ( ) = arccosaz(0) € [0, 7], (50)
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to indicate the angle between the vectors a(0) and X3. Accord-
ingly we can write az(¢) =x3-a(t) = |a(0)| cos(2rmaxt +
), so that

E(7) = wo[l — |a(0)]| cos(2rmaxt + a0)1/2. (51

Notice now that for ¢ equal to 1) := (m — ®g)/(2rmax) the
function (51) reaches its maximum absolute value, i.e.,
Eoax = a)ow. We can hence identify two possible sce-
narios.

(1) If ¢ > t; the optimal protocol is arguably to do a
“pi pulse” and keep evolving the system using Eq. (48) until

t = 11, and then stopping, i.e.,

~

- rmaxk Vt [S [O’ Tl],
V@)= (52)
0 vt €]y, T,

with an associated final maximal energy E () that saturates to
the absolute maximum E .

(2) If T < 14, our best candidate for the optimal protocol is
to use (48) until the very end of the charging period, i.e.,

(1) = rmaxk, V€10, 7], (53)

with an associated optimal final energy that can be

estimated as

1 — |a(0)| cos(2rmaxT + o)
2

Enax(t) = w0|: i| (54)
We finally checked (see Appendix C for the details) that the
above guesses verify the constraint Eq. (46). To conclude, it
is interesting to compare the energy achieved with the optimal
protocol in the m = 2 case with its analog in the m = 1 case
(discussed in Sec. V A), thus highlighting the advantage of an
increased accessible domain for the charging Hamiltonians.
In Fig. 5 we plot the final energy in Eq. (54), picking rmax =
0.3wy, for different values of the total charging time tv and
initializing the system in the ground state. In addition, we plot
the correspondent quantity Ep,«(7) related to the case of only
one control field (m = 1) treated in Sec. V A and an alternative
m = 1 case in which we allow the intensity of the control to be
negative. As expected, the latter two cases are subperforming
with respect to the m = 2 case.

C. Harmonic oscillator optimal charging

Here we analyze a DCP model for a continuous variable
system with a single excitation mode described by the usual
Hamiltonian (1), with a single control function (m = 1) and

Hy=woa'a, Hy =a+a, (55)
where a (a) is the creation (destruction) bosonic operator. As
for the qubit DCP model of Sec. V A, we are interested in
finding the optimal function A} (), with A‘f‘i" <A (@) < AP
as a constraint, that enforces an evolution that maximizes the
energy of the system in a fixed time 7. In this case instead of
solving the dynamical evolution in the standard Schrodinger
picture we find it useful to adopt the Heisenberg represen-
tation. The reason for such a choice is that the expectation
values of the first and second momenta of the field operator

p
L 4

----- m=1,17; = [Oarmax]
.......... m=1,71 = [~Tmax, "'max]

——m =2, \{(t) + A5(t) < i |

— "max

0 5 10 15

FIG. 5. Comparison of optimal charging processes for three dif-
ferent DCP models corresponding to different constraints on the
controls (see legend). (a) The maximum-energy value at the end of
a charging process of duration 7, where we have set 7y, = 0.3wy.
(b) The evolution in Bloch’s sphere of a full charging process for all
the different DCP models. In particular, each Bloch’s sphere repre-
sents a specific instance of the optimal charging processes displayed
in panel (a) (represented by a green diamond, a red circle, and a blue
star).

form a closed system of differential equations, i.e.,

vi(t) = (a'ap(t)) V() = =201 ()va (1),
V() =Im(ap()) = §020t) = —wov3(t)—A1(t), (56)
v3(t) = Re (ap(?)) 13(2) = woua (1),

with the cost function (18) expressed as

J=—wg /T vi(t)dt. (57)
0

Notice that Eq. (56) represents the equation of motion
of a classical harmonic oscillator driven by an external
time-dependent force proportional to A;(z), and Eq. (57)
is proportional to the energy of the classical oscillator. In-
deed, denoting with r(¢) and v(¢) the position and velocity
of a particle of mass m coupled to a spring characterized
by k= ma)(z), the second equation of (56) can be written
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as mvo(t) = —kr(t) + F(t) through the identification v,(¢) =
a)glv(t), v3(t) = r(t), and A((t) = —(mwo)~'F(t), with the
third equation on the power of the battery being proportional
to the power of the classical harmonic oscillator, i.e., E )=
2(mwo) " 'w(t)F (t).

We now turn to the optimal control setting. We define the
pseudo-Hamiltonian as in Eq. (11):

H = 2wori (t)v2(t) + pr()[—211(#)v2(2)]
+ pa(O)[—wov3 () — A1 ()] + p3(O)wov2(t)],  (58)

where the p;(t)’s are the costates that enforce the evolution of
the first and second momenta. Notice that as we are still in the
case where 7 is linear in the control function (), the PMP
inequality (12) is still of the form (22)

M@G (1) < M(@)G (1), (59)
with a single switching function:

Gi(1) = 2wov2(t) = 2p1(H)va2(t) — pa(). (60)

As proved in Appendix D, when starting from the ground state
of Hy, no singular intervals are allowed, leading to an optimal
charging protocol consisting of a bang-bang modulation with
L1(#) switching between the values A™" and ™. In the long-
time limit, this modulation achieves the optimal performance
when its frequency is resonant with the one of the oscillator,
as proven in Appendix E.

VI. EXAMPLES OF MCP MODELS

In this section we analyze MCPs where energy is trans-
ferred to the battery through an additional system (charger).

A. Qubit-qubit

We begin by studying the most straightforward case of a
charger-battery setting with a single controllable interaction
term (m = 1): here, the charger and the quantum battery are
two qubits that evolve according to a global Hamiltonian of
the form (7), with

Hy = 21— o?).
Hy = %(1 —oB), 61)

Hi = (0 +o™)(0? + o),

S

where o7, are Pauli matrices acting on system S =A, B

and o = [05]" = (0 + iays)/2 is the two-level raising op-
erator. Throughout this section, we focus on the w4 # wp
case since the energy transfer trivially occurs via the well-
known Rabi oscillations [4] when the two qubits are resonant
(wa = wp). For general initial states, determining the optimal
A1(¢) that leads to the maximum value for the final energy
stored in the subsystem B is quite challenging, due to the
fact that the evolution of the quantum battery in this setting
is not unitary. However, we can exploit the fact that in the
{100}, |11),|10),|01) } basis the resulting Hamiltonian (62)

is a block-diagonal matrix:

0 (@) 0 0

_ M) wp+ wy 0 0
Hn=1" 0 o1 M) 62)
0 0 Ai(t) wp

Accordingly, we can map the MCP model into a single-qubit
DCP scheme by suitably choosing the initial state.

1. Case psp(0) = [10)(10]

We first consider the battery in the ground state and the
charger completely charged, assuming as input state of the
model p45(0) = |10)(10]|. It is evident that in this situation
we can consider just the second block in Eq. (62), associated
with the basis {|10), |01)}. Let us call our new vector basis as
|g) := [10) (for “ground state”) and |e) := |01) (for “excited
state”). This is now equivalent to a single-qubit model with
reference Hamiltonian

H'(t) := Hy + m(DH], (63)
where

Hp o= 4o 4 906 = o) (g] + wgle) e,

Hi =0, = |e) (gl + Ig)(el. ©9

The global state at time ¢ can be written as |¢'(f)) =
a(t)|g) + B(t) |e), corresponding to a reduced density ma-
trix pp(t) = |a(t)|? |0)(0] 4+ |B(¢)|? |1)(1] for the battery. The
maximization of Eg(t) can now be turned into a DCP problem
by noting that

Ep(t) = (pp(t)Hp) = |B(1)*wp
= (0'(1)Hp), (65)

with Hj := wg |e)(e|. The original MCP has been turned
into a modified single-qubit DCP problem, that is the same
as the one presented in Sec. V A, apart from an additional
term appearing in the energy function Hy = Hj — Hj, where
H; = w4 |g) (g]. However, notice that the presence of H)
does not change the nature of the optimal solutions, since
the points where Ep(t) = |B(7)|*wp and (o' (t)H}) = wa +
|8(1)|*(wp — wy) have extrema are the same (in more de-
tail, a maximum of the former respectively corresponds to a
maximum or minimum of the latter depending on the sign of
wp — wy). With this in mind, we can still treat the problem
using the same PMP approach we detailed in Sec. IV, writing
the cost function as

J= —/ (HgN'[p'(1)))dt, (66)
0
with NMp'(t)] = —i[H'(¢), p'(t)]. More precisely, the opti-

mization problem is equivalent, with the following arrange-
ments:

0) = 1g), [1) — le}, (67)
Ho — Hl, H — H|, (68)
E(t) = (p(t)Hy) — Ep(t) = (0'(t)Hp). (69)
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Therefore, since H{ = o, we have shown in Sec. V A that the
bang-bang-off protocol is the optimal choice for this initial
configuration.

2. Case pap(0) = 100)(00]

We now consider a case where both the battery and the
charger start in their ground state. The process is not a sim-
ple energy flow from one system to another since they start
completely uncharged. Instead, the energy comes from the
modulation of the interacting Hamiltonian H;. The charger
works more like a “plug” that allows the battery to absorb
energy thanks to their interaction. Interestingly, thanks to the
block structure of the global Hamiltonian (62), also this case
can be mathematically mapped into a single-qubit battery with
reference Hamiltonian as in (63), where

[ eatony _ ety
Hj = @uteny  ortong

H =o,. (70)

Therefore, the optimal charging with these initial conditions
will still be performed through a bang-bang-off protocol.

B. Harmonic oscillator—qubit

In this section we want to understand if it is possible to
boost the qubit charging process by considering a different
charger, focusing on the analysis of a quantum harmonic
oscillator system as a charger. Since we can have more than
one excited level in this case, we expect that fixing the same
frequency w, will allow us to charge our battery faster. We
consider the global Hamiltonian of the system still in the form
(7), with

1—-o,

Hy=wsd'a, Hp=wg 5 (71)

H =d'o_+ao,. (72)

Considering as initial state pap(0) = |n, 0)(n, 0], that is,
the charger is prepared in an eigenvector of the number oper-
ator a’a with eigenvalue 7, and the battery is initialized in the
ground state, we can restrict the analysis to subspaces with a
given number n of excitations spanned by vectors |g) = |n, 0)
and |e) = |n — 1, 1). The Hamiltonian contributions in this
two-dimensional subspace are

Hé — [wA(Zn—21)+w3]]l + (wA;wR)O‘z,
H| = {/no,.

This is equivalent to the qubit-qubit case in Eq. (64) by
changing A™* — /nA™¥* (the coefficient that multiplies the
identity operator is always irrelevant). Consequently, we are
boosting the bang-bang-off protocol, allowing us to charge
the qubit battery faster than the two-qubit protocol by a
factor of /.

(73)

VII. CONCLUSIONS

We have presented a systematic analysis of two quantum
battery charging processes, focusing on qubit systems and
quantum harmonic oscillators. We analyzed two charging
scenarios: (1) the direct charging process, where a single
quantum system, representing the battery, is charged through

the modulation of an external Hamiltonian, and (2) the me-
diated charging process, where energy is transferred between
two quantum systems A and B, representing respectively the
charger and battery.

We have shown that the optimal charging protocols for both
approaches are obtained by modulating the control parameter
as a step function between few specific values, greatly simpli-
fying the optimal control problem. In particular, we observed
that alternating the intensity of the control parameter between
its boundary limits is almost always an optimal strategy.

We have also shown that replacing the qubit charger with a
quantum harmonic oscillator can enhance the performance of
our charging process, allowing us to charge the battery faster.
This result was expected since we can store more energy in a
quantum harmonic oscillator system with the same frequency.
This inevitably has a positive impact on the charging protocol,
as encountered in our analysis.

A natural direction for future research is extending this
analysis to the case of open quantum systems, where a unitary
operation no longer describes the state evolution. In addi-
tion, it would be interesting to exploit our control methods
with scalable many-body systems. We know already from our
analysis in Sec. IV A that a charging DCP model of a many-
body battery with one control will likely result in an optimal
bang-bang modulation (or a possible variant depending on the
singular intervals). Moreover, building on the work presenting
a +/N speedup in the collective charging of a so-called Dicke
quantum battery [13], i.e., a particular MCP model where
N qubits are coupled to a single cavity in a resonant regime,
our model could be used to extend that result to a more general
scenario (for example by considering both a nonzero detuning
and a time-dependent control).
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APPENDIX A: ERGOTROPY, TOTAL ERGOTROPY, AND
THERMAL FREE ENERGY

At variance with purely classical settings, discriminating
which part of the internal energy of a quantum system p can
be identified with extractable work is difficult [49,53-55].
Ergotropy E[p, H], total ergotropy Elp, H], and thermal
free energy Flp, H] are three different ways to evaluate such
a quantity based on different assumptions on the resources
we have dedicated to the task. The first one measures the
amount of work we can get from p if we limit the allowed
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operations to local unitary transformations. Formally it can be
expressed as

Elp, H] := (pH) — min(U pU H), (A1)

Ueld
where the minimization in the first term is performed over all
possible unitary transformations acting on the system. Such a
term can be cast in a closed formula by introducing the passive
counterpart ot of p [56,57], i.e., the special state which has
the lowest energy among those with the same spectrum of
p. Introducing the spectral decomposition p = Y, n;|i) (i| and
H =), ¢l€;) (€| of the state and of the Hamiltonian, we can
write

pti= nfle e, (A2)

where si = {r;ll, n%, ...} is a rearrangement of the spectrum
Sp = {n1, M2, ...} of p where the various terms are organized
in decreasing order (i.e., 17l.l > nf), and {|elT)}i are instead
the eigenvectors of the system Hamiltonian organized in in-
creasing order of their associated eigenvalues (i.e., e[T < eiT_H ).
With this choice Eq. (A1) can hence be written as

Elp. Hl = (pH) — (p*H) = (pH) = Y _n} €], (A3)

which applied to our problem leads to Eq. (6) with
F(Spwy 81,) = F(Sp0), s1,) = 317 (0) € (0). Tt is worth
noticing that a quantity that is related to E[p, H] is the antier-
gotropy functional A[p, H] that instead gauges the minimum
work extractable from the system via unitary transforma-
tions [50]. This is obtained by replacing the minimization in
Eq. (A1) with a maximization, i.e.,

Alp, H] := (pH) —rlgleag(UpU H)

= (pH) — (p"H) = (oH) = > "nl €], (A%

where now p! 1= Y. nf |eiT) (efl is the antipassive counterpart
of p.

Ergotropy turns out to be nonextensive [58,59]: when op-
erating with reversible coherent operations on N copies of
a given state p, it is possible to increase the total amount
of extractable energy by acting jointly on the whole set of
subsystems. The maximum amount of energy per copy that is
attainable under this new paradigm is quantified by the rotal
ergotropy Eulp, H], a functional which can obtained via a
proper regularization of (Al), i.e.,

. 1 n n
Ealp, H] := lim ~E[p®", H"] = (pH) — (vgH)
(AS)

where 145 := e ## /Tr[e7#"] is a thermal Gibbs state of the
system whose inverse temperature 8 € R™ is fixed in order
to ensure that it possesses the same von Neumann entropy
of p,ie.,

S(1g) = S(p) := —Tr[plog p] = — Z n;log n;. (A6)

Notice that as 8 is an implicit function of just the spectrum of
0, we can again cast the total ergotropy as in Eq. (6) by setting
F(spys sm,) = F(5p0), SH,) = (Tg,Ho) With Bo = B(s,(0))-

Finally beyond the value defined by &[0, H] more energy
from the system can still be converted into useful work only if
we are willing to admit some dissipation side effect, e.g., by
coupling the system with an external thermal bath [49,60]. In
this case the overall amount of extractable energy is provided
by the nonequilibrium free-energy functional:

Falp, H] := (pH) — S(p)/B = (oH) + (1/B) Y _ nilogn;,

(AT)

with B representing the inverse temperature of the bath. Once
more, for our problem the above expression reduces to the
form of Eq. (6): F(s,), s1,) = (1/B) 3_; 1:(0) log 1:(0).

APPENDIX B: SINGULAR INTERVAL ANALYSIS FOR THE
DCP QUBIT MODEL WITH A SINGLE CONTROL
FUNCTION

We have shown in Sec. VA that for the DCP qubit
model with a single control function having singular intervals
(G(t) = 0) is equivalent to having x -b(t) Aa(t) =0 [see
Eq. (33)]. A closed inspection of this formula implies that
there are only two alternatives allowed: (1) x L a(t) Ab(t)
and (2) a(t) || b(¢), with x the three-dimensional (3D) vector
which defines the charging Hamiltonian (29), and with a(t)
and b(¢) the Bloch vectors (31) which define the temporal
evolution of the state and of the costate of the system (29).
In the following we shall analyze separately the two cases,
showing that the only possible option one has is provided by
condition (34) of the main text.

1. Condition 1

Enforcing condition 1 for some nontrivial temporal interval
requires that in such an interval a(¢) and b(f) remain in the
the plane orthogonal to the vector x. Rewriting the system
Hamiltonian in the Bloch vector form,

H(t)=Ho+ 1 ()H, =n() -0, (BI)
with n(z) the row vector
n(t) == 2(x A1 (2), X2 (1), X341 (1) — wo/2), (B2)

reveals that the dynamics (22) forces both a(r) and b(¢) to un-
dergo rotations around the time-dependent axis (B2) evaluated
on the optimal control A}(?), i.e.,

at) = (op(t)) = —ile[n*(t) - o, p(1)]) = n*(t) Aa(r),
| (o' (1))

b(r) = T g = w ol e 7O
=n*(t) Ab(t), (B3)
with
n*(t) :=n)|x =m0 (B4)

A little algebra now reveals that condition 1 allows only one
possible solution, i.e., taking x orthogonal to n*(¢). To see this
explicitly observe that by construction Eq. (B3) implies that
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also the vector ¢(¢) = a(t) A b(¢) and all its time derivatives
undergo the same dynamics of a(¢) and b(¢), i.e.,

ct) =n*(t) Ac(t),
)y =n)Ne@)=n" @) AR @) Ac@@)]. (B5)

Now if we wish to enforce the orthogonality condition be-
tween c(¢) and x for some finite time interval that implies in
particular that the following conditions must hold:

x-c(t)=0, (B6)
x-¢ct)=x-n"{t)Ac() =0, B7)
x-c@)=x-n@)A[r*(t) Ac(t)] =0, (B3)

i.e., we need to choose x in such a way that it is orthogonal to
c(t),ci(t) :=n*(t) Ae(t),and cr(t) ;== n*(t) A [m*(t) Ac(t)]
at the same time. Since all these vectors live in a 3D space, the
only possibility we have to fulfill such a constraint is when
c(t), ¢1(t), and ¢,(¢) are not linearly independent. Consider
first the scenario where n*(¢) is parallel to ¢(¢): in this case
ci(t) =c,(t) =0 and the last two conditions of (B6)—(BS)
trivialize. A solution of condition 1 can be hence obtained by
forcing orthogonality between x and n*(t), i.e.,

x-n*(t) =2)[(t) — woxz =0, B9)

leading to condition (34) of the main text. Consider next the
case where instead n*(¢) is orthogonal to ¢(¢): in this case
n*(t), c(t), and c¢|(¢) will form an orthogonal set, forcing
¢, (t) to be parallel to ¢(¢). In other words if n*(¢) is orthog-
onal to ¢(), then ¢(t), ¢ (¢), and c,(¢) lay on a plane which
is orthogonal to n*(¢) and one could satisfy the conditions
(B6)—(B8) by simply choosing x parallel to n*(¢). However, as
evident from (B2), the only case where we can have x || n*(¢)
is when wy = 0, which is not included in our analysis. Finally
we are left with the intermediate case where n*(¢) is neither
orthogonal nor parallel to ¢(¢): in this scenario we shall have
that ¢(t), ¢1(¢), and n*(¢) will be independent but will not form
a mutually orthogonal set. Therefore in this case ¢,(¢) is not
forced to be in the plane spanned by c(¢) and ¢ (¢), making
them linearly independent: no solutions of (B6)—(B8) can be
found in this case.

2. Condition 2

Consider next the case of condition 2: since the state p(t)
and the costate 7/(¢) obey the same evolution, once their
Bloch vectors a(t) and b(¢) become parallel, they will con-
tinue to be parallel for all the remaining time of the protocol.
This means that we can equivalently check the condition at
the final time 7, rewriting it as

a(t) || b(r) = (0,0, —1), (B10)

where we used the fact that 7'(t) = —H,. This implies that
condition 2 can only be realized if a(r) = %la| (0, 0, 1), What
we have proved is that, to be in a singular interval, the state has
to reach either the minimum energy achievable with a unitary
evolution or the maximum one. The first option is certainly
undesirable for an optimal control method, since it does not
lead to an optimal protocol, and for this reason we discard it.
However, the second option would surely be the best protocol.

3. Singular interval analysis for the time-optimization problem

Asseenin Sec. V A, when optimizing the charging time for
fixed final state p,, the switching function G(¢) has the same
structure of the maximum-energy optimization problem [see
Eq. (39)], the only difference being with the specific values
of the vectors a(t) and b(t) which arise from dynamical equa-
tions which in principle are different from those of Eq. (33).
Imposing the singular interval condition for G(t) we hence
get the same two possibilities detailed at the beginning of
Sec. VII. Condition 1 leads exactly to the identification of the
same condition (34); indeed also here we can rely on the fact
that both a(¢) and b(¢) rotate around a common axis n* (7).

Condition 2 requires however an independent analysis as
now (B10) does not hold. Instead we can invoke the constraint
(28) which expressed in terms of the controls of the DCP
problem becomes

i = (m(D[H(1), po]) = (H(D)las - 6,b(x) - 6]), (BII)

with a,, being the Bloch vector of the target state p,. Observe
next that the following identity applies:

las -0,b(r)- 0] =la(r)-0,b(7) - 0]
= —4[p(r), 7(7)]
—4U U o), m I} U
= U (U a@) - 0,b(t) - 01U (U},
(B12)

for all re€[0,7r] and where we defined U} :=
Texp[—ifot dt'H*(t")]. The first of equalities (B12) is a
consequence of the constraint p(t) = p,, the second and the
fourth derive from the Bloch representation of the state and
of the costate, and the third derives from the unitarity of the
evolution. It is hence clear that if we do have a case where a(t)
is parallel to b(¢) for some time ¢, then [a(¢) - 0, b(¢) - 6] = O,
leading to a contradiction when replaced into (B11). This
means that for the time optimization problem, enforcing
condition 2 to identify the presence of singular time intervals
always leads to a contradiction: Eq. (34) is the only option
that we have.

APPENDIX C: PMP ANALYSIS FOR THE QUBIT DCP
WITH TWO CHARGING FIELDS

Here we show that the solutions (52) and (53) fulfill the
PMP condition (46).

Let us start by considering first the case (53) where during
the entire charging interval A"(r) maintains a constant value
equal to Fmaxk. By direct integration of Eq. (44) we get

b(t) = b(0) + b1 (0) cOSQrmaxt) + [k A b1 (0)] sin(2rmat),
(C1)

with b(0) and b, (0) the components of b(0) which are par-
allel and orthogonal to k, respectively. Notice however that
since 7#'(t) = —H,, we must have b(t) = (0,0, —1) = —&3:
replacing this into (C1) and remembering that k is orthogonal
to X3 [see Eq. (47)], we can conclude that b;(0) = 0. Hence
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Eq. (C1) simplifies to
b(1) = b(0) cosrmaxt) + [k A B(0)] Sin(2rmaxt),

=[B(O)IcOS(2rmaxt + Po)¥3 —Sin(2rmaxt +Bo) (&3 )]

(C2)
with

b(0) - %3

1b(0)]
Comparing Egs. (C2) and (49) reveals that for the entire dy-
gamical evolution @(t) and b(¢) lay on the plane orthogonal to
k, rotating with the same constant angular velocity given by
Fmax- In particular, this implies that their vectorial product is

constant in time during the entire evolution and pointing into
a direction which is antiparallel to the rotation axis k, i.e.,

Bo := arccos ( ) = arccos b3(0) € [0, r]. (C3)

by Ana@) =b(x) Aa(T) = —%3 Ad(T)

= —|a(0)| sinQrmat + ) k,  (C4)

where we use (49) and the fact that X3 A (X3 A I:t) =—k [no-
tice that since T < t; we have that 2rp.7 + ¢ < 7 so that
Sin(2rmax T + o) = 0]. From this Eq. (46) now follows by
observing that

—X(t) - b(t) Aa() < IAOIIb() Aa@)|
Tmax [@(0)] sin(2rmax T + o)

= —X"(t)-b(t) nar).

NN

(C5)

In the case described by Eq. (52) we are supposed to keep
X*(t) equal to rmaxfc for all + € [0, ;] and then to switch off
the control. This means that for all ¢ €]z, ] both a(¢) and
I;(t) are constant and equal to their final values, i.e.,

a(r) = a(r) = —la(0)|%3,

b(t) = b(1) = —%3. (C6)

In particular this implies that they are parallel and this condi-
tion is also maintained in the initial part of the dynamics as
they rotate around the same axis. Therefore in this case

bt)yrat)=0 = G()=0, (C7)

making the entire trajectory a singular interval [hence satisfy-
ing (46)].

APPENDIX D: SINGULAR INTERVALS FOR THE
HARMONIC OSCILLATOR DCP MODEL

Here we study the presence of singular intervals for the
harmonic oscillator DCP model, i.e., time intervals during
which the function G(¢) of Eq. (60) gets equal to zero.
The fundamental observation is that in order to fulfill such
constraint it is necessary to have not just G;(¢) = 0, but also
% = 0 Vn. Recalling Eq. (60) this implies

p2(t) = 2v,(1) wo,
d"pa(t) d"vp(1)
=2 w,
drt dr
By imposing the PMP conditions for optimality in (11), we
have that the costates of the harmonic oscillator DCP model

. (D1)

evolve in the following way:
p) =0,
pa(t) = —wol221 (1) + p3 ()] + 2p1(1)A (1),
p3(t) = wopa(t),

(D2)

with boundary condition p;(t) =0 for all j [notice that in
particular this already tells us that p;(t) = O for all ¢ so that
we can eliminate it from the list].

From Eq. (D1) with n = 1 and from Eqgs. (56) and (D2) we
have

Pa(t) = 2woin(t) = —205v3(t) — 2wori (1)

= —w0p3(l‘) — 2wo (1) (D3)

from which we get

p3(t) = 2wov3(1). (D4)

In conclusion the conditions to be in a singular interval are

p2(t) = 2wova2(t), p3(t) = 2wou3(2). (D5)

Now since up to a constant rescaling p,(¢) and p3(t) have
the exact same evolution of v,(¢) and v3(¢), respectively, it
is evident that if (D5) holds at a time #, then it will continue to
be true until + = 7. From the boundary conditions p(t) = 0,
we obtain that v,(t) = v3(r) =0, i.e.,

(ap(r)) = 0.

Notice however that if we assume that the input state of the
system is the ground state of Hy, then the above condition
can only be verified if and only if p(t) corresponds to the
ground state itself (a condition that is certainly undesirable
for an optimal control method that aims to increase the energy
of the model). This fact follows from the observation that
the Hamiltonian (55) can only induce displacements or phase
shifts in the system, so that starting from the vacuum it will
always produce coherent states. And the only coherent state
that has zero expectation value for the annihilation operator
is indeed the vacuum itself. This means that there cannot
exist an optimal Aj(z) that could enforce the condition for
singularity.

(D6)

APPENDIX E: HARMONIC OSCILLATOR FREQUENCY
OPTIMIZATION

Here we show that, among all the bang-bang solutions that
are optimal according to the results presented in Sec. V C,
a square wave with a resonant frequency achieves the best
performance in the long-time limit. From the dynamical equa-
tions for v, and v; in (57) we obtain

U3(t) + wjva(t) = —wohi (1) (ED)

The differential equation above can be solved using the
Green’s-function approach. The retarded Green’s function sat-
isfying [% + @?]G(t —t') = 8(t —t') can be computed with
the Fourier transform and reads

1 00 efiw(tft’)
Gt —1t) = —/ ——dw (E2)

: 2
21 J_ o 0? + iwe — W

032218-13



FRANCESCO MAZZONCINI et al.

PHYSICAL REVIEW A 107, 032218 (2023)

where € > 0 is a small parameter that we will send to zero at
the end of the calculations. The general solution of (E1) is

03(0)

v3(t) = v3(0) cos(wpt) + ———
sin(wot)

_ f At woG(t — 1A (1),
0
(E3)

which by initializing the battery in the ground state, i.e., by
choosing v3(0) = v3(0) = 0, reduces to

710)(1 t')
vs(t) = 5— / /w2+lwe Okl(t)dw (E4)

Combining the results above with the first and the last of
Eq. (56), we obtain that the charging power reads

—za}(v t')

vl(t)——/ ds/ dt/ o time =

Xl(t A (s)dw,
(ES)

where the last integral is nonzero only in the interval [0, 7],
that is, when the external driving force is switched on. After
performing the integrals on the time variables we are left with

iwy /°° ol (w)?

vit) = — dow. (E6)
b

oo W+ iwE — W}
With the residue theorem, after sending € to zero, the previous
integral gives

v1(t) & e[| (@0)]* + |1 (—wo)], (E7)

where c is a constant and the time dependence of v; is hidden
in the parametric dependence of A (w) by time (remember
that the control has to nullify outside [0, #]). From the equa-
tion above, we obtain that to maximize the total work in the
long-time limit we have to choose a protocol that maximizes
|A1(w0)|? + |21 (—wp)|?*. In the set of bang-bang protocols that
we proved to be optimal, the best choice is a square wave with
frequency wy.
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