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Incompatibility of quantum devices is one of the cornerstones of quantum theory, and the incompatibility
of quantum measurements and channels has been linked to quantum advantage in certain information-theoretic
tasks. In this work, we focus on the less well explored question of the incompatibility of quantum instruments,
that is, devices that describe the measurement process in its entirety, accounting for both the classical mea-
surement outcome and the quantum postmeasurement state. In particular, we focus on the recently introduced
notion of parallel compatibility of instruments, which has been argued to be a natural notion of instrument
compatibility. We introduce, in a manner similar to the case of measurements and channels, the incompatibility
robustness of quantum instruments and derive universal bounds on it. We then prove that postprocessing of
quantum instruments is a free operation for parallel compatibility. Last, we provide families of instruments for
which our bounds are tight and families of compatible indecomposable instruments.
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I. INTRODUCTION

The incompatibility of devices is a key feature of quantum
theory that sets it apart from classical physics [1]. The notion
of incompatibility captures the fact that some devices (such as
measurements or state transformations) cannot be performed
simultaneously. While at first incompatibility may sound like
a drawback, it turns out that incompatibility is an essential re-
source in various information processing tasks with quantum
advantage [2–5]. Furthermore, incompatibility is linked to
fundamental concepts such as Bell nonlocality [6], Einstein-
Podolsky-Rosen steering [3,7], and contextuality [8]. For this
reason, characterizing incompatible devices and quantifying
incompatibility are fundamental research questions relevant
to quantum information processing.

Arguably, the type of quantum devices whose incompati-
bility is the most studied is that of quantum measurements,
although various results regarding the incompatibility of
quantum channels (i.e., state transformations) also exist. The
third commonly studied family of quantum devices gener-
alizes measurements and channels and is called quantum
instruments. Instruments take a quantum state as an input and
produce a classical output and a quantum output. That is,
quantum instruments describe the full measurement process,
including the measurement outcome (the classical output) and
the postmeasurement state (the quantum output).

While the compatibility of quantum instruments has been
defined in the literature [9–11], its systematic study started
only recently [12,13]. It was recently pointed out that the
“traditional” notion of instrument compatibility might not be
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satisfactory in some cases [12]. The authors of Ref. [12]
introduced the notion of parallel compatibility and argued
that it is a more natural notion of instrument compatibility
than traditional compatibility. In this work we initiate the
characterization of parallel compatible instruments and the
quantification of parallel incompatibility.

We start with a few technical preliminaries in Sec. II on
quantum devices, their compatibility, and quantifying incom-
patibility. Then in Sec. III we introduce the incompatibility
robustness of quantum instruments, prove bounds on this
quantity, prove that postprocessing of instruments is a free
operation for parallel compatibility, and provide families
of instruments for which our bounds are tight, as well as
families of indecomposable compatible instruments. Finally,
in Sec. IV, we summarize our results and discuss future
directions.

II. PRELIMINARIES

Every quantum system has an associated Hilbert space H
that (although most definitions and statements in this paper
generalize to the infinite-dimensional case) we will assume to
be finite dimensional. We denote the set of linear operators on
the Hilbert space H by L(H) and the set of positive semidef-
inite linear operators on the Hilbert space H by L+(H). We
denote the set of quantum states (i.e., density matrices, or
positive semidefinite operators with trace 1) on H by S (H).

A. Quantum measurements

A quantum measurement A with a finite outcome set �A

is described by a set of |�A| positive-semidefinite operators
on H, i.e., A = {A(x)}x∈�A such that

∑
x∈�A

A(x) = IH, where
IH is the identity operator on H and |�A| is the cardinality of
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�A [14]. If the measurement A is performed on a quantum
state ρ ∈ S (H), the probability to obtain the outcome x is
given by tr[ρA(x)]. We denote the set of measurements with
outcome set � acting on the Hilbert space H by M(�,H). A
measurement A is said to be a trivial measurement if A(x) =
pxI for all x ∈ �A for some probability distribution px. In
general, we will use the term positive operator-valued measure
(POVM) interchangeably with the term quantum measure-
ment. Furthermore, if A2(x) = A(x) for all x ∈ �A, then the
measurement is called projective or a projection-valued mea-
sure.

A pair of measurements (A, B) on H is said to be com-
patible [1] if there exists a joint measurement G on H with
outcome set �A × �B such that

A(x) =
∑
y∈�B

G(x, y) ∀ x ∈ �A, (1)

B(y) =
∑
x∈�A

G(x, y) ∀ y ∈ �B. (2)

The outcome (x, y) of the measurement G on a given quantum
state ρ is distributed according to the joint distribution of the
outcome of A and B on the same quantum state. Therefore,
implementing G amounts to simultaneously implementing A
and B. Measurement pairs that are not compatible are called
incompatible, and the definition of (in)compatibility naturally
generalizes to sets of more than two measurements. Measure-
ment incompatibility has been linked to quantum advantage in
various information processing tasks [2–5]. Therefore, mea-
surement incompatibility can be thought of as a resource in
these tasks [15].

B. Quantum operations and quantum channels

A quantum operation maps every quantum state on a
Hilbert space H to a subnormalized quantum state on another
Hilbert space K. Formally, � : S (H) → L+(K) is a com-
pletely positive (CP) trace-nonincreasing map such that for
any set of states {ρi ∈ S (H)} and any probability distribution
{pi} we have that �(

∑
i piρi ) = ∑

i pi�i(ρi ). It is known
that every quantum operation has a unique linear extension
�̃ : L(H) → L(K), i.e., a unique linear map �̃ such that
� = �̃|S(H), where �̃|S(H) is the restriction of �̃ to S (H)
[14].

Quantum operations that map quantum states to normal-
ized quantum states (and hence can be thought of as state
transformations) are called quantum channels. Formally, a
quantum channel � : S (H) → S (K) is a trace-preserving
(TP) quantum operation, also called a CPTP map. We denote
the set of channels with input space H and output space K by
Ch(H,K).

Two quantum channels �1 : S (H) → S (K1) and �2 :
S (H) → S (K2) are said to be compatible [1] if there exists
a joint channel � : S (H) → S (K1 ⊗ K2) such that for all
ρ ∈ S (H) we have

�1(ρ) = trK2�(ρ), (3)

�2(ρ) = trK1�(ρ). (4)

The output of the joint channel � is a joint (composite) state
of the outputs of �1 and �2 on a tensor-product Hilbert space.

Channels that are not compatible are called incompatible, and
the definition of (in)compatibility naturally generalizes to sets
of more than two channels. The incompatibility of quantum
channels has been studied in various works [16–18], and it
has been shown to provide an advantage in quantum state
discrimination [19].

C. Quantum instruments

A quantum instrument I is described by a set of quantum
operations, in particular, I = {�x : S (H) → L+(K)}x∈�I
such that � = ∑

x∈�I
�x is a quantum channel [14,20–22].

We denote the set of quantum instruments with outcome set
�I , input space H, and output space K by In(�I,H,K).
We recall that every quantum instrument induces a unique
quantum measurement (a POVM) A [22], that is, a unique
set of positive-semidefinite operators A(x) on H such that
tr[ρA(x)] = tr[�x(ρ)] for all ρ ∈ S (H) and all x ∈ �I . It is,
in fact, straightforward to see that these operators are defined
by A(x) = �∗

x (I), where �∗
x : L(K) → L(H) is the dual of

�x defined via tr[�x(ρ)M] = tr[ρ�∗
x (M )] for all ρ ∈ S (H)

and for all M ∈ L(K). The probability of observing outcome
x upon measuring A on ρ is given by tr[�x(ρ)], and the
(un-normalized) postmeasurement state is given by �x(ρ).
An instrument inducing the POVM A is sometimes called an
A-compatible instrument. While every instrument induces a
unique POVM, for a given POVM many different instruments
implementing it exist. Therefore, one can think of instruments
as various ways of implementing a POVM, with various post-
measurement states.

Like in the case of quantum measurements and quantum
channels, one might call two quantum instruments compati-
ble if they can be performed simultaneously. The following
definition of parallel compatibility of quantum instruments is
one way to make this intuition rigorous [12].

Definition 1. Parallel compatibility. A pair of quantum
instruments I1 = {�1

x : S (H) → L+(K1)}x∈�I1
and I2 =

{�2
y : S (H) → L+(K2)}y∈�I2

is (parallel) compatible if there
exists a joint quantum instrument I = {�xy : S (H) →
L+(K1 ⊗ K2)}x∈�I1 ,y∈�I2

such that
∑

y

trK2�xy = �1
x ∀ x, (5)

∑
x

trK1�xy = �2
y ∀ y. (6)

In other words, the joint instrument I simultaneously
reproduces both the classical (x and y) and the quantum
[�1

x (ρ) and �2
y (ρ)] outputs of I1 and I2. Reference [12]

argued that parallel compatibility is, in some cases, a favor-
able definition of instrument compatibility compared to the
“traditional” definition [9–11], which requires the existence of
a joint instrument such that

∑
y �xy = �1

x and
∑

x �xy = �2
y

for all x and y. Therefore, in the following by “compatible
instruments” we mean parallel compatible instruments, unless
otherwise specified. It is also clear that this definition naturally
generalizes to more than two instruments.

We now recall the notion of postprocessing of quantum in-
struments, which will be useful for characterizing compatible
instruments [23].
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Definition 2. Consider the instruments I1 = {�1
x}x∈�I1

∈
In(�I1 ,H,K1) and I2 = {�2

y}y∈�I2
∈ In(�I2 ,H,K2).

Then, I2 is said to be the postprocessing of I2 if there exists a
set of instruments {Rx = {Rx

y}y∈�I2
∈ In(�I2 ,K1,K2)}x∈�I1

such that

�2
y =

∑
x∈�I1

Rx
y ◦ �1

x ∀ y ∈ �I2 . (7)

We denote this relation as I2 � I1, reflecting the fact that this
relation induces a preorder on the set of instruments.

The postprocessing preorder induces an equivalence re-
lation: I1 ∼ I2 if both I1 � I2 and I2 � I1 hold. Post-
processing defines a partial order on the equivalence classes
[23].

Two simple classes of instruments, defined directly through
their induced POVMs, are so-called measure-and-prepare
instruments [14]. One can intuitively think of them as per-
forming a measurement and then preparing a state depending
on the outcome of the measurement.

Definition 3. For a measurement A ∈ M(�A,H), a spe-
cial measure-and-prepare instrument is defined as JA = {JA

x :
S (H) → L+(K)}x∈�A , with dim(K) = |�A|, where

JA
x (ρ) := tr[ρA(x)] |x〉 〈x| (8)

for all ρ ∈ S (H) and x ∈ �A and {|x〉}x∈�A is an orthonormal
basis on K. The corresponding (special measure-and-prepare)
quantum channel �A acting on a quantum state ρ ∈ S (H) is
given by �A(ρ) = ∑

x JA
x (ρ) = ∑

x tr[ρA(x)] |x〉 〈x|.
Definition 4. For a measurement A ∈ M(�A,H), a

measure-and-prepare instrument is defined as J′
A = {J ′A

x :
S (H) → L+(K)}x∈�A such that for all ρ ∈ S (H) and x ∈ �A

J ′A
x (ρ) := tr[ρA(x)]ρ ′

x, (9)

where ρ ′
x ∈ S (K) are some fixed quantum states. The

corresponding (measure-and-prepare) quantum channel �′
A

acting on a quantum state ρ ∈ S (H) is given by �′
A(ρ) =∑

x J ′A
x (ρ) = ∑

x tr[ρA(x)]ρ ′
x.

Last, measure-and-prepare instruments corresponding to
trivial measurements are called trash-and-prepare instru-
ments since their outcome does not depend on the input state.

Definition 5. A measure-and-prepare instrument J′
T is

called as a trash-and-prepare instrument if T is a trivial mea-
surement.

D. Incompatibility robustnesses

A common way of quantifying the incompatibility of a set
of quantum devices is to ask how much noise needs to be
added to the set in order to make it compatible [1]. While this
quantifier depends on what is considered to be “noise” [24],
in what follows we adopt the definition usually referred to as
generalized robustness.

For a pair of measurements {A1(x)}x∈�A1
and {A2(y)}y∈�A2

on H, the generalized incompatibility robustness is

defined as [25]

RM (A1, A2) = min r

such that
A1(x) + rÃ1(x)

1 + r
=

∑
y

G(x, y) ∀ x,

A2(y) + rÃ2(y)

1 + r
=

∑
x

G(x, y) ∀ y,

Ã1(x), Ã2(y) � 0 ∀ x, y,∑
x

Ã1(x) =
∑

y

Ã2(y) = I,

G(x, y) � 0 ∀ x, y.
(10)

In other words, the generalized incompatibility robustness
quantifies how much noise (Ã1, Ã2) can be added to the
pair (A1, A2) before the noisy POVM pair (A1 + rÃ1)/(1 + r)
and (A2 + rÃ2)/(1 + r) becomes compatible (with some joint
measurement G). The term “generalized” refers to the fact
that Ã1 and Ã2 can be chosen to be arbitrary POVMs on H
with outcome numbers matching with those of A1 and A2,
respectively. Note that the incompatibility robustness can be
cast as an efficiently computable semidefinite program (SDP)
[26] and that this definition naturally generalizes to more than
two measurements.

The incompatibility robustness of two quantum channels
�1 : S (H) → L+(K1) and �2 : S (H) → L+(K2) can be de-
fined similarly [25]:

RC (�1,�2) = min r

such that
�1 + r�̃1

1 + r
= trK2�,

�2 + r�̃2

1 + r
= trK1�,

� ∈ Ch(H,K1 ⊗ K2),

�̃i ∈ Ch(H,Ki ) i = 1, 2.

(11)

Note that via the Choi representation, the incompatibility ro-
bustness of quantum channels can be cast as an SDP as well
and that this definition also naturally generalizes to larger sets
of channels.

III. CHARACTERIZING THE COMPATIBILITY OF
QUANTUM INSTRUMENTS

In this section, we initiate the quantitative characterization
of parallel incompatibility of instruments, along lines similar
to the characterization of measurement and channel incom-
patibility through incompatibility robustness. First, we define
the generalized incompatibility robustness of quantum instru-
ments in a way analogous to measurements and channels.

Definition 6. The generalized incompatibility robustness of
two quantum instruments I1 = {�1

x : S (H) → L+(K1)}x∈�1
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and I2 = {�2
y : S (H) → L+(K2)}y∈�2 is given by

RI (I1, I2) = min r

such that
�1

x + r�̃1
x

1 + r
=

∑
y

trK2�xy,

�2
y + r�̃2

y

1 + r
=

∑
x

trK1�xy,

I = {�xy} ∈ In(�1 × �2,H,K1 ⊗ K2),

Ĩ1 = {�̃1
x} ∈ In(�1,H,K1),

Ĩ2 = {�̃2
y} ∈ In(�2,H,K2).

(12)

Similar to the generalized incompatibility robustness of
measurements and channels, the generalized incompatibility
robustness of instruments can be cast as an SDP (through
the Choi states of the individual CP maps), and the definition
naturally generalizes to more than two instruments.

In the remainder of this section, we prove some basic
characteristics of the incompatibility robustness of quantum
instruments. Note that in the following, by “incompatibility
robustness” we mean generalized incompatibility robustness,
unless otherwise specified.

A. Bounds on the incompatibility robustness

First, we show that the incompatibility robustness of two
quantum instruments is lower bounded by the incompatibility
robustness of their induced POVMs and their induced chan-
nels.

Theorem 1. Consider two instruments I1 = {�1
x} ∈

In(�I1 ,H,K1) and I2 = {�2
y} ∈ In(�I2 ,H,K2). Let

us denote the POVM induced by Ii by Ai. Furthermore,
consider the induced channels, �1 = ∑

x∈�I1
�2

x and

�2 = ∑
y∈�I2

�2
y . Then we have that RI (I1, I2) �

max{RM (A1, A2), RC (�1,�2)}.
Proof. Suppose that RI (I1, I2) = r. Then, following from

the definition of the incompatibility robustness of instruments
in Definition 6, there exist quantum instruments I = {�xy} ∈
In(�I1 × �I2 ,H,K1 ⊗ K2), Ĩ1 = {�̃1

x} ∈ In(�I1 ,H,K1),
and Ĩ2 = {�̃2

y} ∈ In(�I2 ,H,K2) such that

�1
x + r�̃1

x

1 + r
=

∑
y

trK2�xy ∀ x (13)

�2
y + r�̃2

y

1 + r
=

∑
x

trK1�xy ∀ y. (14)

Summing up the first equation over x and the second one
over y, we see that there exist quantum channels �̃1 and �̃2

such that (�1 + r�̃1)/(1 + r) and (�2 + t�̃2)/(1 + r) are
compatible. Therefore, by the definition of the incompatibility
robustness of channels in Eq. (11), we have r � RC (�1,�2).

In a similar way, one can show that r � RM (A1, A2). Let us
take the dual of the operations in Eqs. (13) and (14), and notice
that (trK2�xy)∗(X ) = �∗

xy(X ⊗ IK2 ) for all X ∈ L(K1) and,
similarly, (trK1�xy)∗(X ) = �∗

xy(IK1 ⊗ X ) for all X ∈ L(K2).

We then apply the dual of Eq. (13) to IK1 and the dual of
Eq. (14) to IK2 , which yields

A1(x) + rÃ1(x)

1 + r
=

∑
y

G(x, y), (15)

A2(y) + rÃ2(y)

1 + r
=

∑
x

G(x, y), (16)

where we have defined the POVMs Ã1(x) = (�̃1
x )∗(IK1 ),

Ã2(y) = (�̃2)y)∗(IK2 ), and G(x, y) = �∗
xy(IK1 ⊗ IK2 ). From

the definition of the incompatibility robustness of measure-
ments in Eq. (10) it is then clear that r � RM (A1, A2).

In summary, we have RI ({I1, I2}) � max{RM (A1, A2),
RC (�1,�2)}, which is exactly the statement of the theorem.�

The following theorem establishes a universal upper bound
on the incompatibility robustness of two instruments.

Theorem 2. Consider two arbitrary instruments I1 =
{�1

x} ∈ In(�I1 ,H,K1) and I2 = {�2
y} ∈ In(�I2 ,H,K2).

Then RI (I1, I2) � 1.
Proof. Consider two quantum states η1 = |η1〉 〈η1| ∈

S (K1) and η2 = |η2〉 〈η2| ∈ S (K2). Let us define a quantum
instrument I = {�xy}, where x ∈ �I1 and y ∈ �I2 , given by
its action

�xy(ρ) = 1

2

(
�1

x (ρ) ⊗ 1

|�I2 |
η2 + 1

|�I1 |
η1 ⊗ �2

y (ρ)

)
,

(17)

which clearly defines a quantum instrument.
Now, consider the quantum instruments Ĩ1 =

{�̃1
x = ∑

y∈�I2
trK2�xy = �1

x+�
η1
x

2 }x∈�I1
and Ĩ2 = {�̃2

y =∑
x∈�I1

trK1�xy = �2
y+�

η2
y

2 }y∈�I2
, where Tη1 = {�η1

x }x∈�I1

and Tη2 = {�η2
y }y∈�I2

are the trash-and-prepare instruments

defined via �η1
x (ρ) = tr(ρ)

|�I1 |η1 and �η2
y (ρ) = tr(ρ)

|�I2 |η2 for all

ρ ∈ S (H), x ∈ �I1 , and y ∈ �I2 . By definition, Ĩ1 and
Ĩ2 are compatible via the joint instrument I. Furthermore,
they are noisy versions of the instruments I1 and I2 with
noise parameter r = 1 and noise instruments Tη1 and Tη2 .
Therefore, from the definition of incompatibility robustness
in Definition 6, we find that RI (I1, I2) � 1. �

B. Postprocessing as a free operation in a resource theory

Resource theories [27] are a systematic way of quantifying
the resourcefulness of certain quantum systems or devices.
In order to define a resource theory, one needs to define the
resource itself, which is usually done by defining the states
and devices without the resource (called free states or devices).
The next step is to define free operations, that is, operations
that map states to states (devices to devices) in a way that
they do not create a resourceful state or device from one with-
out a resource. There is certainly some freedom in defining
these operations, and they are often taken to be operations
with physical meaning (such as local operations and classical
communication in the resource theory of entanglement [28]).
Once the resource and free operations are defined, resource
monotones can be defined to quantify the resourcefulness of
states and devices. A resource monotone assigns a real number
to states or devices such that the value does not increase under
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any free operation, and therefore, in this sense it is a faithful
representation of the resourcefulness. We refer the interested
reader to Ref. [27] for a review on quantum resource theories.

As an example, incompatible measurements are a nec-
essary resource in certain quantum information processing
tasks. One might therefore define a resource theory of in-
compatibility of measurements (defining sets of compatible
measurements as free sets of measurements), taking pre- and
postprocessing as free operations and the incompatibility ro-
bustness as a resource monotone [24] (note that a resource
theory of incompatibility of measurements with a larger set of
free operations was already developed in Ref. [15]).

Since incompatible measurements and channels provide
quantum advantage, it is natural to assume that incompatible
instruments are also advantageous in some information pro-
cessing tasks. As such, characterizing the incompatibility of
quantum instruments via resource-theoretic tools is an ade-
quate method for studying the potential quantum advantage
of incompatible instruments. In the next theorem we prove
that postprocessing preserves the compatibility of quantum
instruments (maps free devices to free devices). That is, one
may view postprocessing as a free operation in a potential
resource theory of incompatibility.

Theorem 3. Consider two arbitrary instruments I1 =
{�1

x} ∈ In(�I1 ,H,K1) and I2 = {�2
y} ∈ In(�I2 ,H,K2)

and another two instruments Ĩ1 = {�̃1
x̃} ∈ In(�Ĩ1

,H, K̃1)
and Ĩ2 = {�̃2

ỹ} ∈ In(�Ĩ2
,H, K̃2) such that Ĩ1 � I1 and

Ĩ2 � I2. Then, if I1 and I2 are compatible, then Ĩ1 and Ĩ2

are also compatible.
Proof. Since I1 and I2 are compatible, there exists an

instrument I = {�xy} such that Eqs. (5) and (6) hold. Also,
since Ĩ1 � I1 and Ĩ2 � I2, there exist two sets of instru-
ments {R1,x = {R1,x

x̃ } ∈ In(�Ĩ1
,K1, K̃1)}x∈�I1

and {R2,y =
{R2,y

ỹ } ∈ In(�Ĩ2
,K2, K̃2)}y∈�I2

such that

�̃1
x̃ =

∑
x∈�I1

R1,x
x̃ ◦ �1

x ∀ x̃ ∈ �Ĩ1
, (18)

�̃2
ỹ =

∑
y∈�I2

R2,y
ỹ ◦ �2

y ∀ ỹ ∈ �Ĩ2
. (19)

Let us define the instrument Ĩ = {�̃x̃ỹ}x̃∈�Ĩ1
,ỹ∈�Ĩ2

, given by
its action

�̃x̃ỹ =
∑

x∈�I1

∑
y∈�I2

(
R1,x

x̃ ⊗ R2,y
ỹ

) ◦ �xy. (20)

Since
∑

x̃∈�Ĩ1
R1,x

x̃ =: R1,x and
∑

ỹ∈�Ĩ2
R2,y

ỹ =: R2,y are both

quantum channels and therefore trace preserving, we have
∑

ỹ∈�Ĩ2

trK̃2

(
R1,x

x̃ ⊗ R2,y
ỹ

)
(·) = R1,x

x̃ ◦ trK2 (·), (21)

∑
x̃∈�Ĩ1

trK̃1

(
R1,x

x̃ ⊗ R2,y
ỹ

)
(·) = R2,y

ỹ ◦ trK1 (·). (22)

Using these relations, it is easy to verify that
∑

ỹ∈�Ĩ2

trK̃2
�̃x̃ỹ = �̃1

x̃, (23)

∑
x̃∈�Ĩ1

trK̃1
�̃x̃ỹ = �̃2

ỹ . (24)

Therefore, Ĩ1 and Ĩ2 are compatible. �
As a consequence of the above theorem, given a pair of

compatible instruments, every pair of instruments that is post-
processing equivalent to the given pair is also compatible.

Corollary 1. Consider two arbitrary instruments I1 and I2

and another two instruments Ĩ1 and Ĩ2 such that Ĩ1 ∼ I1 and
Ĩ2 ∼ I2. Then, I1 and I2 are compatible if and only if Ĩ1 and
Ĩ2 are compatible.

In the following, we will show that trash-and-prepare in-
struments are compatible with any other instrument with the
same input space. As a preparation, we prove the following
lemma, noting that a quantum channel can be considered a
one-outcome instrument.

Lemma 1. The identity channel idH ∈ Ch(H,H), viewed
as a one-outcome instrument idH ∈ In({1},H,H), is
compatible with any trash-and-prepare instrument J′

T ∈
In(�J′

T ,H,K).
Proof. Let us denote the fixed outcome of the identity

channel idH by 1. Consider the trivial measurement T =
{T (x) = pxI}, where {px} is a probability distribution. Then,
J′

T has the form J′
T = {�x}, where, for any quantum state

ρ ∈ S (H), �x(ρ) = pxηx, where ηx ∈ S (K) for all x ∈ �J′
T .

Now consider the quantum instrument I = {�′
x1}, where, for

any quantum state ρ ∈ S (H),

�′
x1(ρ) = pxηx ⊗ ρ (25)

for all x ∈ �J′
T . Then, from Eqs. (5) and (6), we find that

I is a joint instrument for idH and J′
T , and hence, they are

compatible. �
From the fact that any instrument can be postprocessed

from the identity channel [23], Theorem 3 and Lemma 1, the
following proposition follows directly.

Proposition 1. Any instrument I ∈ In(�I,H,K) is
compatible with any trash-and-prepare instrument J′

T ∈
In(�J′

T ,H,K′).
The following theorem establishes an even stronger

relation between incompatibility robustness and the postpro-
cessing preorder: the incompatibility robustness of quantum
instruments is monotonic under postprocessing. That is, one
may view incompatibility robustness as a resource monotone
in a potential resource theory of incompatibility.

Theorem 4. Consider two arbitrary instruments I1 =
{�1

x} ∈ In(�I1 ,H,K1) and I2 = {�2
y} ∈ In(�I2 ,H,K2)

and another two instruments Ĩ1 = {�̃1
x̃} ∈ In(�Ĩ1

,H, K̃1)
and Ĩ2 = {�̃2

ỹ} ∈ In(�Ĩ2
,H, K̃2) such that Ĩ1 � I1 and

Ĩ2 � I2. Then, RI (Ĩ1, Ĩ2) � RI (I1, I2).
Proof. Since Ĩ1 � I1 and Ĩ2 � I2, there exist two sets

of instruments {R1,x = {R1,x
x̃ } ∈ In(�Ĩ1

,K1, K̃1)}x∈�I1
and

{R2,y = {R2,y
ỹ } ∈ In(�Ĩ2

,K2, K̃2)}y∈�I2
such that Eqs. (18)

and (19) hold.
Suppose that RI (I1, I2) = r. Then there exist two instru-

ments {J1
x } ∈ In(�I1 ,H,K1) and {J2

y } ∈ In(�I2 ,H,K2)

such that the instruments J1 := {�1
x+rJ1

x
1+r } ∈ In(�I1 ,H,K1)

and J2 := {�2
x+rJ2

x
1+r } ∈ In(�I2 ,H,K2) are compatible.

Consider the postprocessing of J1 and J2, given by J̃1 =
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{ �̃1
x̃+rJ̃1

x̃
1+r } ∈ In(�Ĩ1

,H, K̃1) and J̃2 = { �̃2
ỹ+rJ̃2

ỹ

1+r } ∈ In(�Ĩ2
,

H, K̃2), where

J̃1
x̃ =

∑
x∈�I1

R1,x
x̃ ◦ J1

x , (26)

J̃2
ỹ =

∑
y∈�I2

R2,y
ỹ ◦ J2

y . (27)

Then from Theorem 3, we find that J̃1 and J̃2 are compatible
since J̃1 � J1 and J̃2 � J2. Thus, from the definition of
the incompatibility robustness of instruments, we find that
RI (Ĩ1, Ĩ2) � r. �

As a consequence of the above theorem, every post-
processing equivalent pair of instruments has the same
incompatibility robustness.

Corollary 2. Consider two arbitrary instruments I1 and I2

and another two instruments Ĩ1 and Ĩ2 such that Ĩ1 ∼ I1 and
Ĩ2 ∼ I2. Then, RI (I1, I2) = RI (Ĩ1, Ĩ2).

One might also consider other operations that preserve
compatibility in a potential resource theory of incompatibility.
Here we show that the operation that was shown to be a
free operation for traditional compatibility [29] is not a free
operation for parallel compatibility.

Reference [29] uses the terminology programmable instru-
ment devices (PIDs) for a set of instruments that induce the
same quantum channel. Furthermore, a PID is called simple
if the instruments that comprise the PID are traditionally
compatible. Hence, since traditionally compatible instruments
induce the same quantum channel [12], simple PIDs corre-
spond exactly to traditionally compatible instruments. The
authors of Ref. [29] introduced a family of maps that map
PIDs to PIDs and, moreover, map simple PIDs to simple PIDs,
and they called this family free PID supermaps. For the sake
of clarity, we recall their definition here.

Definition 7. A free PID supermap maps a set of instru-
ments {Ii = {�i

x}x∈�Ii
∈ In(�Ii ,H,K)}nI

i=1 to another set of

instruments {J j = {� j
y }y∈�J j

∈ In(�J j , H̃, K̃)}nJ
j=1. The map

is given by

� j
y =

∑
s,i,x

qy|x,s�
j
is ◦ (

�i
x ⊗ id

) ◦ �, (28)

where � : S (H̃) → S (H ⊗ Q) is a quantum channel from H̃
to H ⊗ Q, where Q is an arbitrary auxiliary Hilbert space.
Here id is the identity channel on Q, and s is an element of
the set [nS] := {1, . . . , nS}, where nS is some integer. {� j :=
{� j

is}i,s ∈ In([nS] ⊗ [nI],K ⊗ Q, K̃)}nJ
j=1 is an arbitrary sim-

ple PID (set of traditionally compatible instruments), and qy|x,s
is a probability distribution for every x and s.

The following theorem was proven in Theorem 1 of
Ref. [29].

Theorem 5. Free PID supermaps map every set of tra-
ditionally compatible instruments to a set of traditionally
compatible instruments. Moreover, every set of traditionally
compatible instruments can be mapped to any other set of tra-
ditionally compatible instruments using a free PID supermap.

The second statement is relatively easy to see by noticing
that the definition of a free PID supermap includes applying
a set of traditionally compatible instruments. Hence, one can

just throw away the output of the original set and apply the
new set.

The above theorem essentially states that free PID su-
permaps are free operations for traditional compatibility. Be-
low, we show that this is not the case for parallel compatibility.

Theorem 6. Free PID supermaps are not free operations for
parallel compatibility. In particular, free PID supermaps might
map parallel compatible instruments to parallel incompatible
instruments.

Proof. Consider the following two instruments:

I =
{
�x : S (H) → L+(H) | �x(ρ) = tr(ρ)

n
η

}n

x=1

, (29)

J =
{
�x : S (H) → L+(H) | �x(ρ) = 1

n
ρ

}n

x=1

, (30)

where η is some fixed state on H. It is straightforward to verify
that two copies of I are traditionally compatible via the joint
instrument

It =
{
�t

xy : S (H) → L+(H) | �t
xy(ρ) = tr(ρ)

n2
η

}n

x,y=1

.

(31)
Similarly, two copies of J are also traditionally compatible
via the joint instrument

Jt =
{
�t

xy : S (H) → L+(H) | �t
xy(ρ) = 1

n2
ρ

}n

x,y=1

.(32)

Therefore, following Theorem 5, there exists a free PID su-
permap that maps two copies of I to two copies of J .

One can also show that two copies of I are parallel com-
patible via the joint instrument

Ip =
{
�p

xy : S (H) → L+(H ⊗ H)|

�p
xy(ρ) = tr(ρ)

n2
η ⊗ η

}n

x,y=1

. (33)

On the other hand, two copies of J are not parallel compat-
ible, which is a direct consequence of the no-cloning theorem
or, alternatively, the fact that the identity channel is not com-
patible with itself [12]. Therefore, the free PID supermap
mapping two copies of I to two copies of J maps a pair of
parallel compatible instruments to a pair of parallel incompat-
ible instruments. As such, free PID supermaps are, in general,
not free operations for parallel compatibility. �

Remark 1. In general, the above theorem is a consequence
of Theorem 5, the fact that there exist instruments that are both
traditionally compatible and parallel compatible, and the fact
that there exist instruments that are traditionally compatible
but not parallel compatible [12].

Concluding this section, we have identified a natural class
of free operations for parallel compatibility, namely, the class
of postprocessing of quantum instruments from Ref. [23]. At
the same time, we showed that another class of operations—
the free PID supermaps of Ref. [29]—that are natural free
operations for traditional compatibility are not free operations
for parallel compatibility. It could be an interesting research
direction to try to identify more physically motivated classes
of free operations for parallel compatibility and to develop a
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resource theory of instrument incompatibility based on these
free operations.

C. Cases for which the bounds are tight

The following theorem establishes that the lower bound on
the incompatibility robustness of instruments in terms of the
incompatibility robustness of the induced POVMs and chan-
nels from Theorem 1 is tight for special measure-and-prepare
instruments.

Theorem 7. The lower bound in Theorem 1 is tight for any
pair of special measure-and-prepare instruments IA1 and IA2 ,
where A1 ∈ M(�A1 ,H) and A2 ∈ M(�A2 ,H).

Proof. Suppose that RM (A1, A2) = r. Then there exist A′
1 ∈

M(�A1 ,H) and A′
2 ∈ M(�A2 ,H) such that Ā1 = {Ā1(x) =

A1(x)+rA′
1(x)

1+r }x∈�A1
and Ā2 = {Ā2(y) = A2(y)+rA′

2(y)
1+r }y∈�A2

are
compatible. That is, there exists a joint measurement G ∈
M(�A1 × �A2 ,H) such that

Ā1(x) =
∑

y

G(x, y) ∀ x ∈ �A1 , (34)

Ā2(y) =
∑

x

G(x, y) ∀ y ∈ �A2 . (35)

Now consider the special measure-and-prepare quantum
instrument I = {�xy : S (H) → L+(K1 ⊗ K2)}x∈�A1 ,y∈�A2

given by

�xy(ρ) = tr[ρG(x, y)]|x〉〈x | ⊗ |y〉〈y|. (36)

Then, for all x ∈ �A1 we have
∑

y

trK2�xy(ρ) =
∑

y

tr[ρG(x, y)]|x〉〈x |

= tr[ρĀ1(x)]|x〉〈x |

= tr

[
ρ

A1(x) + rA′
1(x)

1 + r

]
|x〉〈x |

= tr[ρA1(x)]|x〉〈x | + rtr[ρA′
1(x)]|x〉〈x |

1 + r
,

(37)

and for all y ∈ �A2 we have
∑

x

trK1�xy(ρ) =
∑

x

tr[ρG(x, y)]|y〉〈y|

= tr[ρĀ2(y)]|y〉〈y|

= tr

[
ρ

A2(y) + rA′
2(y)

1 + r

]
|y〉〈y|

= tr[ρA2(y)]|y〉〈y| + rtr[ρA′
2(y)]|y〉〈y|

1 + r
.

(38)

Hence, from Definition 3 and Definition 1, we have r =
RM (A1, A2) � RI (IA1 ,IA2 ). Since from Theorem 1 we have
RM (A1, A2) � RI (IA1 ,IA2 ), we establish that RM (A1, A2) =
RI (IA1 ,IA2 ). Also, from Theorem 1, we know that
RI (IA1 ,IA2 ) � RC (�A1 , �A2 ). Therefore, we conclude that
RM (A1, A2) � RC (�A1 , �A2 ), and in summary, the lower
bound in Theorem 1 is tight. �

The following lemma from Ref. [23] allows us to gen-
eralize the previous result to arbitrary measure-and-prepare
instruments.

Lemma 2. For any measurement A ∈ M(�A,H), a generic
measure-and-prepare instrument J′

A is a postprocessing of the
special measure-and-prepare instrument JA, that is, J′

A � JA

([23], Proposition 10).
Corollary 3. The lower bound in Theorem 1 is tight for any

pair of generic measure-and-prepare instruments I′
A1

and I′
A2

for any A1 ∈ M(�A1 ,H) and A2 ∈ M(�A2 ,H).
Proof. From Lemma 2, Theorem 4, and Theorem 7

we have RI (I′
A1

,I′
A2

) � RI (IA1 ,IA2 ) = RM (A1, A2), and from
Theorem 1, we have RI (I′

A1
,I′

A2
) � RM (A1, A2). Therefore,

we conclude that RI (I′
A1

,I′
A2

) = RM (A1, A2). �

D. Indecomposable instruments

Indecomposable instruments were introduced in Ref. [23].
They play a fundamental role in the postprocessing preorder
since (although these instruments are not, in general, maximal
in the preorder) every instrument can be obtained from an
indecomposable instrument via postprocessing. This property
is analogous to rank-1 POVMs in the sense that every POVM
can be obtained from a rank-1 POVM via classical postpro-
cessing. For the sake of clarity, we recall the definition and
a basic characterization of indecomposable instruments from
Ref. [23].

Definition 8. A quantum operation � is called indecom-
posable if � = � + � ′ for some quantum operations � and
� ′ implies � = μ� and � ′ = μ′� for some μ,μ′ > 0. A
quantum instrument is called indecomposable if all of its
nonzero operations are indecomposable.

Proposition 2. A quantum operation is indecomposable if
and only if it has Kraus rank 1.

To show that every instrument is a postprocessing of an in-
decomposable instrument, one needs to introduce the concept
of a detailed instrument [23].

Definition 9. Consider a quantum instrument I = {�x}
with Kraus decomposition �x(ρ) = ∑nx

i=1 KixρK†
ix. The de-

tailed instrument of I is defined as Î = {�̂ix(ρ) = KixρK†
ix}.

It is straightforward to see that for every instrument I we
have I � Î [23], and clearly, every detailed instrument is
indecomposable. In Ref. [23], the authors provided a class of
instruments for which the converse is true as well, and hence,
the instrument is postprocessing equivalent to its detailed
instrument.

Proposition 3. An instrument I = {�x} ∈ In(�,H,K)
with Kraus decomposition �x(ρ) = ∑nx

i=1 KixρK†
ix is postpro-

cessing equivalent to its detailed instrument if K†
ixKjx = 0 for

all i �= j and x ∈ �.
Since indecomposable instruments are fundamental in the

postprocessing preorder, it is useful to characterize compat-
ible sets of indecomposable instruments. Here we provide
a family of compatible pairs of indecomposable instruments
constructed from compatible measurements.

Theorem 8. For every pair of compatible measurements
A ∈ M(�A,H) and B ∈ M(�B,H) there exists a pair of com-
patible indecomposable instruments.

Proof. We base our construction on the pair of com-
patible instruments for a given pair (A, B) of compatible
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measurements from Ref. [12]. While these instruments are,
in general, not indecomposable, we show using Proposition
3 that they are postprocessing equivalent to their detailed
instruments. Therefore, following Corollary 1, the detailed
instruments (which are indecomposable) are also compatible.

Let us recall the construction from Ref. [12]. Consider two
POVMs, {A(x)}x∈�A and {B(y)}y∈�B , on H such that they are
compatible, that is, there exists a POVM {G(x, y)}x∈�A,y∈�B on
H such that

A(x) =
∑

y

G(x, y) ∀ x, (39)

B(y) =
∑

x

G(x, y) ∀ y. (40)

Now consider a Naimark dilation of the joint measurement G,
that is, a projective measurement 	(x, y) on a Hilbert space
H ⊗ K such that

tr[(ρ ⊗ |0〉〈0|)	(x, y)] = tr[ρG(x, y)] ∀ ρ ∈ S (H) (41)

for some |0〉 ∈ K. Furthermore, consider a rank-1 fine grain-
ing of 	(x, y), given by

	(x, y) =
∑

zxy∈P(x,y)

|φzxy〉〈φzxy |, (42)

where P(x, y) is a set indexing the rank-1 projections that
comprise 	(x, y). It is clear that 〈φzxy |φz′

x′y′
〉 = δx,x′δy,y′δzxy,z′

x′y′
.

Take the A-compatible instrument

IA =
⎧⎨
⎩�A

x : S (H) → L+(H ⊗ K) |

�A
x (ρ) =

∑
y

∑
zxy∈P(x,y)

|φzxy〉〈φzxy |(ρ ⊗ |0〉〈0|)|φzxy〉〈φzxy |

=
∑

y

∑
zxy∈P(x,y)

KA
(y,zxy ),xρ(KA

(y,zxy ),x )†

⎫⎬
⎭, (43)

where KA
(y,zxy ),x = |φzxy〉〈φzxy |(IH ⊗ |0〉), and the B-compatible

instrument

IB =
⎧⎨
⎩�B

y : S (H) → L+
H⊗K |

�B
y (ρ) =

∑
x

∑
zxy∈P(x,y)

|φzxy〉〈φzxy |(ρ ⊗ |0〉〈0|)|φzxy〉〈φzxy |

=
∑

x

∑
zxy∈P(x,y)

KB
(x,zxy ),yρ(KB

(x,zxy ),y)†

⎫⎬
⎭, (44)

where KB
(x,zxy ),y = |φzxy〉〈φzxy |(IH ⊗ |0〉). Reference [12]

showed that IA and IB are compatible.

Using Proposition 3, we show that IA and IB are postpro-
cessing equivalent to their detailed instruments, ÎA and ÎB,
respectively. Indeed, we have

(
KA

(y,xyz),x

)†
KA

(y′,z′
xy′ ),x

= (IH ⊗ 〈0|) |φzxy〉 〈φzxy |φz′
xy′

〉 〈φz′
xy′

| (IH ⊗ |0〉) = 0

(45)

for all x whenever (y, zxy) �= (y′, z′
xy′ ), which implies that IA ∼

ÎA by Proposition 3. Similarly, we can show that IB ∼ ÎB.
Therefore, following Corollary 1, we find that the indecom-
posable instruments ÎA and ÎB are compatible. �

Remark 2. While for every pair of compatible measure-
ments there exists a pair of compatible instruments that
induce the measurements, it is not true that all such instru-
ments are compatible. Indeed, consider the Lüders instrument
�x(ρ) = √

A(x)ρ
√

A(x) of a measurement A. Given two triv-
ial measurements A and B (which are always compatible), the
corresponding Lüders instruments are not compatible since
they both induce the identity channel [12]. However, follow-
ing Ref. [12], there exists a pair of instruments compatible
with A and B such that these instruments are compatible.
Moreover, Ref. [30] proved that every A-compatible instru-
ment is a postprocessing of the Lüders instrument of A.
Thus, it would be interesting to characterize, starting from
the (potentially incompatible) Lüders instruments of a pair
of compatible measurements A and B, at what point in the
postprocessing preorder we obtain a compatible pair of A-
and B-compatible instruments. Another consequence of the
fact that every A-compatible instrument is a postprocessing
of the Lüders instrument of A is that every instrument that is
compatible with the Lüders instrument of A is compatible with
all A-compatible instruments.

IV. CONCLUSION

In this paper, we have studied the quantification and char-
acterization of the recently introduced concept of parallel
compatibility of quantum instruments, which is a natural gen-
eralization of more established notions of measurement and
channel compatibility. We have defined the incompatibility
robustness of quantum instruments to quantify the incompati-
bility of instruments and have proved universal bounds on this
quantity. Furthermore, we have proved that postprocessing of
quantum instruments is a free operation in a potential resource
theory of quantum instruments. We also have proved that
free PID supermaps, which are free operations for traditional
compatibility, are not free operations for parallel compatibil-
ity. In addition, we have provided families of instruments for
which our bounds are tight. Finally, we have proved that for
every pair of compatible measurements there exists a pair of
compatible indecomposable instruments.

Given this well-defined way of quantifying the incompati-
bility of quantum instruments, it is a natural further research
direction to see how the incompatibility robustness relates
to quantitative measures of the performance of instruments
in quantum information processing tasks. Since quantum in-
struments appear in the description of sequential tasks, such
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as sequential prepare-and-measure protocols [31,32] and se-
quential Bell scenarios [33–35], it would be an interesting
research direction to investigate the quantitative relationship
between the incompatibility robustness of instruments and
the success probability or Bell violation in these information
processing tasks. Furthermore, while we provided some ex-
amples and counterexamples for free operations of parallel
compatibility, a potential further research direction could be
to systematically study such free operations and develop a
resource theory of instrument incompatibility.
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