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In noninteracting isolated quantum systems out of equilibrium, local subsystems typically relax to nonthermal
stationary states. In the standard framework, information on the rest of the system is discarded, and such
states are described by a generalized Gibbs ensemble (GGE), maximizing the entropy while respecting the
constraints imposed by the local conservation laws. Here we show that the latter also completely characterize
a recently introduced projected ensemble (PE), constructed by performing projective measurements on the rest
of the system and recording the outcomes. By focusing on the time evolution of fermionic Gaussian states in a
tight-binding chain, we put forward a random ensemble constructed out of the local conservation laws, which we
call deep GGE (dGGE). For infinite-temperature initial states, we show that the dGGE coincides with a universal
Haar random ensemble on the manifold of Gaussian states. For both infinite and finite temperatures, we use a
Monte Carlo approach to test numerically the predictions of the dGGE against the PE. We study, in particular, the
k moments of the state covariance matrix and the entanglement entropy, finding excellent agreement. Our work
provides a first step towards a systematic characterization of projected ensembles beyond the case of chaotic
systems and infinite temperatures.
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I. INTRODUCTION

The established paradigm for quantum thermalization
in isolated quantum systems is extremely simple, and yet
surprisingly effective. When a system is initialized in a short-
range correlated state, it predicts, under a few typicality
assumptions, that the late-time properties of local subsys-
tems are described by a thermal Gibbs ensemble [1–3]. In
this framework, usually understood in terms of the eigenstate
thermalization hypothesis [4–6], one is interested in a local
subsystem, while its complement plays the role of a thermal
bath which is assumed not to be observed (i.e., measured).

Thermalization and its mechanisms have been probed
to exquisite detail in a number of cold-atomic experiments
[7–13]. In fact, these works fully demonstrate the ability of
current setups to keep track of both subsystems and their com-
plement, having access to information on the “bath” which
is discarded in the traditional setting. Motivated by this, two
recent works [14,15] have put forward a new perspective, in
which one is interested in the ensemble describing a subsys-
tem A when its complement, B, is observed via projective
measurements. This gives rise to an ensemble of pure states
in A, called projective ensemble (PE), which can be thought
of as a particular unraveling of the subsystem density matrix.

Based on numerical and experimental evidence,
Refs. [14,15] found that, for chaotic dynamics and infinite-
temperature initial states, the PE approaches a Haar-random
ensemble over the set of pure states in A, forming a quantum
state design [16,17]. From the fundamental standpoint, the
appeal of this result lies in its universality, as it is claimed to
be independent of any microscopic detail. Subsequent work

substantiated these findings, with rigorous results provided
in Refs. [18–20] for classes of chaotic dual-unitary quantum
circuits [21–23], while further connections between the onset
of thermalization and quantum state designs were investigated
in Refs. [24,25].

A natural question is how this picture is modified in
the presence of conservation laws, including, in particular,
integrable systems [26–28], nowadays easily realized exper-
imentally [10,29,30]. In this case, local subsystems approach
a stationary state described by a generalized Gibbs ensemble
(GGE) [31], built out of all the quasilocal conserved opera-
tors (or charges) [32–40]. GGEs are interesting as they differ
qualitatively from thermal states, representing nonequilibrium
phases with possibly exotic features [41–45]. Accordingly,
one can ask how local conservation laws affect the PE.

In this work, we tackle this problem in the simplest case
of noninteracting systems. Focusing on the time evolution of
fermionic Gaussian states in a tight-binding model, we put
forward a random ensemble constructed out of the conserved
charges, which we call deep GGE (dGGE), and provide ev-
idence of its validity based on Monte Carlo computations.
For infinite-temperature initial states, we show that the dGGE
coincides with a universal Haar random ensemble on the
manifold of Gaussian states, while, for generic initial states,
we introduce a generalized Haar ensemble to account for the
finite expectation values of the charges.

The rest of this work is organized as follows. In Sec. II we
introduce the model we study. We also briefly recall the stan-
dard GGE and the PE. In Sec. III we put forward our general
conjecture for the deep GGE, while Sec. IV shows how the
latter leads to a universal ensemble for infinite-temperature
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FIG. 1. An initial Gaussian state |�0〉AB evolves according to
a quadratic Hamiltonian H . The unitary dynamics remains within
the manifold of Gaussian states MAB. After the measurement, the
reduced state of the system is projected onto a pure Gaussian state
|� ′

t (z)〉A ∈ MA, depending on the outcomes z. We are interested in
the ensuing ensemble on MA.

initial states. Finally, our conclusions are consigned to Sec. V,
while several appendices provide details on the most technical
parts of our work.

II. THE MODEL

We consider a chain of spinless fermions, described by the
Hamiltonian

H = −
L∑

j=1

[c†
j+1c j + c†

j c j+1], (1)

where c j and c†
j are canonical operators satisfying {ci, c†

j } =
δi, j . We initialize the system in a short-range correlated state
|�0〉 and consider a bipartition into the region A and its com-
plement B, “the bath,” containing LA and LB sites, respectively
(cf. Fig. 1). In the limit LB → ∞, the subsystem A reaches a
stationary state at large time t . Since the model is integrable,
it is described by a GGE [35]. Namely, for any observable OA

supported on A, we have limt→∞ 〈�t |OA|�t 〉 = tr[ρGGEOA],
where

ρGGE = 1

Z
trB

[
exp

(
−

∑
k

βkIk

)]
. (2)

Here βk are Lagrange multipliers fixed by the initial state, Ik

are integral of motions, [Ik, H] = 0, and Z is a normalization
constant. For the Hamiltonian (1), Ik can be identified with the
momentum occupation numbers [46–49] n̂(k) = c̃†

k c̃k , with c̃k

being the Fourier transform of c j .
In the definition of the GGE, B is traced out. Instead, the

PE [14,15] is constructed by measuring and keeping track of
the bath. Given a pure state |�〉AB on A and B (in our case,
the evolved state |�t 〉), we consider measuring n̂ j = c†

j c j at
each of the sites in B. We denote by zB = {z1, . . . , zLB} the
outcomes (z j = 0 and 1), occurring with probability p(zB).
After the measurement, A is in a pure state |� ′(zB)〉A, and the
PE reads

EPE = {p(zB), |� ′(zB)〉A}. (3)

Averages over this ensemble coincide with expectation values
over ρA = trB[|�〉 〈�|], but the PE contains more information

encoded in the higher statistical moments

ρ
(k)
E =

∑
zB

p(zB)(|� ′(zB)〉〈� ′(zB)|)⊗k. (4)

References [14,15] showed that the PE assumes a universal
form for chaotic Hamiltonians without conserved quantities,
coinciding with a uniform Haar measure over all pure states
in A. Our goal is to characterize it in the opposite case of an
integrable Hamiltonian such as Eq. (1).

To simplify the problem, we consider an initial Gaussian
state [50],

|�0〉AB =
N∏

k=1

⎡
⎣ L∑

j=1

Vjkc†
j

⎤
⎦|�〉AB, (5)

where N is the number of particles, |�〉AB is the vacuum, and
V is a unitary operator. Since the Hamiltonian (1) is quadratic,
|�t 〉AB remains Gaussian at all times. In fact, the same is
true for the measurement process [50]; i.e., the projected state
|� ′

t 〉A is also Gaussian.
This observation allows us to simplify the analysis of the

PE. Since Gaussian states satisfy Wick’s theorem and N is
conserved, all states in the PE (3) are completely determined
by the corresponding covariance matrix

[C′
t (zB)]i, j = 〈� ′

t (zB)|c†
i c j |� ′

t (zB)〉 , (6)

with i, j = 1, . . . , LA. Thus, higher moments of the PE are
encoded in the ensemble EPE

C = {p(zB),C′
t (zB)} and the k-fold

averaged covariance matrices

C(k)
EPE

C
=

∑
zB

p(zB)C′
t (zB)⊗k. (7)

This is a significant simplification, as the size of covariance
matrices scales linearly in the system size.

More importantly, both p(zB) and C′
t (zB) can be computed

exploiting Gaussianity [50], allowing us to derive exact de-
terminant formulas which can be evaluated efficiently for
large system sizes (cf. Appendix A). Still, computation of
the averages in Eq. (7) remains hard, as the number of terms
grows exponentially in LB. To overcome this problem, we
have set up a Metropolis Monte Carlo approach, which allows
us to sample p(zB) and estimate the averages in Eq. (7). This
method, which takes as an input the covariance matrix of the
evolved state, Ct , turned out to be very efficient, providing
reliable numerical data up to LB 	 400 and a relative error of
order 10−2 with ∼105 Monte Carlo steps. We provide details
of the method in Appendix B.

III. THE DEEP GGE

Our goal is to construct a random ensemble, the dGGE,
matching the predictions of the PE in the limit LB → ∞, t →
∞ (in this order). It is useful to imagine that the sites in B are
measured sequentially. Each measurement induces a random
nonlinear transformation of the covariance matrix restricted to
A. For large LB, it is natural to assume that this causes enough
scrambling that only a minimal amount of information on the
initial state is retained. Thus, it is crucial to identify those
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features which are preserved by the measurements. Beyond
Gaussianity, we know that the dGGE should at least feature
complete information on the conserved charges Ik , encoded
in the Lagrange multipliers βk , as it is clear considering the
first moment of the PE ensemble [the GGE (2)]. Follow-
ing this logic, we propose the representative-state approach.
Considering a pure Gaussian state |�〉AB, whose conserved
charges match those of the initial state |�0〉AB, we may define
the dGGE as the ensemble obtained by performing projective
measurements on subsystem B, i.e.,

EdGGE = {p�(zB), |�′(zB)〉A}. (8)

Here p�(zB) is the probability of obtaining zB when measur-
ing {n̂i}i∈LB , while |�′(zB)〉A is the postmeasurement state. To
see that EdGGE correctly reproduces the first moment of the
PE (3), we invoke the generalized Eigenstate Thermalization
Hypothesis [35,51,52], stating 〈�|OA|�〉 = tr[ρGGEOA] for
all OA supported on A and LB → ∞.

To test the validity of Eq. (8) beyond the first moment, we
perform explicit numerical computations. To be concrete, we
consider the dimer initial state

|�0〉 = 1

(1 + |α|2)L/4
(c†

1 + αc†
2) · · · (c†

L−1 + αc†
L )|0〉, (9)

which is Gaussian and corresponds to a nontrivial GGE for
α �= 0, with occupations numbers

n(k) = 1

2
+ Re

(
e−ikα

1 + |α|2
)

. (10)

For finite LB, the PE is sampled using the Monte Carlo ap-
proach previously discussed. To sample from the dGGE, we
follow two approaches. The simplest choice for the pure state
in Eq. (8) is the single-eigenstate ensemble: |�〉AB is chosen as
a simultaneous eigenstate of all conserved quantities such that
the eigenvalues match the expectation values in |�0〉AB [53].
In practice, we take an eigenstate of H , |�〉 = c̃†

k1
. . . c̃†

kL/2
|�〉,

where k j are drawn randomly according to the distribution
function n(k). A second possibility is to identify |�〉AB with a
randomly generated correlation matrix C = UDL,NU †, where
DL,N is a diagonal matrix with N 1′s and L − N 0′s. The
unitary matrix U is drawn from the following distribution over
the appropriate Haar measure, once global symmetries have
been taken into account (see below for an example):

P(U ) = 1

Z
e− Tr[�FUDL,NU †F †]. (11)

Here F is the Fourier-transform operator mapping the
quasimomentum space to the real one. We call this
the generalized Haar ensemble: the diagonal matrix � =
diag(ω1, ω2, . . . , ωL ) contains Lagrange multipliers enforcing
the constraints 〈�AB|n̂(k)|�AB〉 = n(k) [ωk should not to be
confused with βk appearing in the GGE]. The normaliza-
tion Z is the Harish-Chandra-Itzykson-Zuber (HCIZ) integral
[54–56]. Its form is nontrivial but several approximation tools
[56–58] allow determining the functional relation between
{ωk} and {n(k)}, as we discuss in Appendix C.

(a)
(b)

(c)

FIG. 2. Dimer state. (a) Difference between the averaged higher
moments (7) in the PE EPE

C and in the dGGE (8) [inset (b) log-log
plot showing power-law decay] from the initial state (9) (α = ei

√
5/2,

breaking time-reversal symmetry). (c) Space-averaged entanglement
entropy SA(t ), with the corresponding predictions given by the dGGE
(horizontal black line) and the infinite-temperature ensemble (hori-
zontal red lines). The PE is computed at each time step 
t = 1, using
105 samples.

We sample both the single-eigenstate and the canonical
Haar ensembles via the same Monte Carlo approach used for
the PE (cf. Appendixes B and C). For sufficiently large LB,
we have verified that the two choices for |�AB〉 give indistin-
guishable numerical results, so that in the following we only
report data from the single-eigenstate ensemble.

We computed the Frobenius norm [59] of the difference be-
tween the k-fold averaged covariance matrices (7) in EPE

C and
EdGGE, denoted by 


(k)
t . An example of our data is reported in

Fig. 2(a), convincingly showing convergence as t → ∞. We
see, in particular, a very clear power-law decay 


(k)
t ∼ t−1/2

independently of k.
As a second nontrivial test, we studied the aver-

age of the von Neumann entanglement entropy SA1 [zB] =
−trρA1 (zB) ln ρA1 (zB). Here, A1 and A2 are two subsets of
A, with A = A1 ∪ A2, while ρA1 (zB) = trA2 [|� ′(zB)〉 〈� ′(zB)|].
Since |� ′

t (zB)〉 is Gaussian, SA1 [zB] can be computed from
C′

t (zB) [60], allowing us to sample it via Monte Carlo. Note
that SA1 [zB] involves all higher moments of C′

t (zB), yielding
a nontrivial benchmark. In Fig. 2(b), we report our data for
the space-averaged entanglement entropy SA(t ), namely, the
sum of the values of the bipartite entanglement entropy at
each point in A, divided by LA. The plot shows very good
agreement between the numerical simulation and the result
of the ensemble (11). We stress that the entanglement entropy
under consideration is not the one of the GGE, as this quantity
is also not a linear functional of the density matrix. Overall,
our results consistently support the equivalence between the
dGGE and the PE. This is a nontrivial statement, implying that
the mere knowledge of the conserved quantities is enough to
reconstruct not only the reduced density matrix but also all
higher moments in Eq. (4).
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IV. INFINITE-TEMPERATURE UNIVERSAL ENSEMBLE

The dGGE necessarily contains information on Ik , strongly
depending on H . On the other hand, at infinite temperatures
the GGE loses any information on the latter, suggesting the
possibility of a universal description of the PE. We show that
this is the case. However, contrary to Refs. [14,15], the PE
takes the form of a uniform measure over the manifold of
fermionic Gaussian states. Closely related ensembles have
appeared in a number of recent works [61–67] and have
extended the notion of Haar-random states to noninteracting
systems.

We focus on the “Néel” state, obtained by setting α = 0
in Eq. (9), corresponding to an infinite-temperature state.
From Eq. (10), one has n(k) = N/L = 1/2, so that ωk = 0
in Eq. (11). It follows that an appropriate correlation matrix
for the whole system is obtained by drawing a unitary ma-
trix from the Haar measure. In fact, additional constraints
arise due to global symmetries. To elucidate this point,
consider the change of basis Rπ/2 = ∏L

j=1 ei(π/2)n2 j . By in-
spection, we see that |�t 〉AB = Rπ/2 |�t 〉AB and the projected
state |�′

t 〉A are symmetric under time-reversal symmetry T ,
i.e., their wave function in the canonical basis defined by c†

j
and |�〉AB is real. Therefore, the PE can only explore the
sector of Gaussian states which is invariant under the joint
global symmetry T Rπ/2, and the corresponding ensemble
in the space of covariance matrices can be defined as C =
R†

π/2ODL,N O†Rπ/2, where O is drawn from the uniform mea-
sure over the orthogonal group O(L) [68]. Importantly, after
the projective measurements, this ensemble can be reduced to
one defined only on the subsystem A. In particular, the invari-
ance of the Haar measure under left and right multiplication is
preserved by the projective measures for all orthogonal trans-
formations restricted to A. However, although |�t 〉AB has a
well-defined particle number, this is not true for the subsystem
A, and after the measurement it collapses onto a pure state
|� ′

t (NA)〉 with NA particles, with some probability p(NA). One
can see that the uniform measure with a fixed particle number
N for the whole system implies that this is only determined by
an entropic factor, i.e., by the dimensions of the corresponding
sector of the Hilbert space, and a random-matrix computation
yields p(NA) = (LA

NA

)
2−LA (cf. Appendix D). We thus arrive

at the following prediction: the PE equals a grand canoni-
cal ensemble EGC over different particle-number sectors each
weighted with probability p(NA). In each sector, it takes the
form

ENA = {C = R†
π/2ODLA,NA O†Rπ/2}, (12)

with O being uniformly distributed in O(LA). EGC allows us to
obtain explicit predictions, by either numerical sampling [69]
or analytic formulas derived using the properties of the Haar
measure (cf. Appendix C). We have tested it against numerical
sampling of the PE. As before, we have studied 


(k)
t and the

space-averaged entanglement entropy SA(t ). An example of
our data is reported in Fig. 3, displaying excellent agreement.

Our results show that the infinite-temperature PE is uni-
versal even for noninteracting systems, as it only depends on
the Gaussianity of the model and on its global symmetries,
but not on the details of the Hamiltonian. The same kind of

(a)
(b)

(c)

FIG. 3. Néel state. (a) Difference between the averaged higher
moments (7) in EPE

C and in the infinite-temperature ensemble (12) [in-
set (b) log-log plot showing power-law decay], from initial state (9)
with α = 0. (c) Space-averaged entanglement entropy SA(t ). We plot
the predictions given by the correct ensemble (12) with orthogonal
matrices (horizontal black line) and one where time-reversal sym-
metry is not correctly enforced, i.e., choosing Haar-random unitary
matrices (horizontal red lines).

universality was found, for instance, in Refs. [70–74], study-
ing the averaged entanglement entropy of the eigenstates of
quadratic Hamiltonians.

V. CONCLUSIONS

We have studied the PE emerging at late times after quan-
tum quenches in noninteracting integrable systems. We have
characterized it in terms of a random ensemble, the dGGE,
constructed out of the initial expectation value of the con-
served charges. We have tested our predictions against Monte
Carlo sampling of the PE, finding convincing agreement.
From the fundamental point of view, our work reveals that,
even in noninteracting systems, the PE is largely independent
from microscopic details. In particular, at infinite temperature
it coincides with a universal Haar-random ensemble over the
set of Gaussian states directly formulated in the subsystem
[61–66]. This fact could be useful for realizing related en-
sembles in practice, leveraging the intrinsic randomness of
measurements, and extending the logic of quantum state de-
signs [14,15]. For finite temperatures, the existence of a finite
correlation length ξ prevents the definition of a postmeasure-
ment ensemble expressed uniquely in terms of the charges of
A. However, this could be possible for LA � ξ . We leave this
question for future work. Finally, it would be interesting to
generalize our study for interacting integrable models where
an extensive number of conserved quantities is still present but
the Gaussian structure of correlations is lost.
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APPENDIX A: COVARIANCE MATRIX AFTER
PROJECTIVE MEASUREMENT OF LOCAL DENSITIES

In this Appendix we derive the transformation induced on
the covariance matrix, defined for any pure state |�〉 as

Ci j = 〈�| c†
i c j |�〉 . (A1)

We first consider the effect of measuring the density operator
n̂
 = c†


c
 on a given site j and subsequently the simultaneous
effect of many single-site measurements altogether.

1. Single-site measurement

We foremost observe that, after measuring the density op-
erator n̂
, two outcomes are possible corresponding to the
eigenvalue z = 0 (empty site) or z = 1 (occupied site). De-
noting as Pa the projector onto the corresponding eigenspace,
the postmeasurement state can be represented as

|�(z)〉 = �z |�〉
〈ψ |�z|ψ〉1/2

, �z =
{

n̂
, z = 1,

1 − n̂
, z = 0.
(A2)

Upon an inessential normalization, we can always represent
the projector �z ∝ limμ→∞ e(z−1/2)μn̂
 , i.e., the exponential
of a quadratic operator. This implies that the projective mea-
surement of a local density preserves the Gaussianity of the
state. We can thus focus on the transformation induced on the
covariance matrix Ci j . We have

Ci j → Ci j (z) ≡ 〈�| �zc
†
i c j�z |ψ〉

〈�|�z|�〉 , Pz = 〈�|�z|�〉 ,

(A3)
where Pz denotes the probability of obtaining the outcome z
after the measurement. Since after the measurement the state
of site 
 factorizes, one must have

C
,
(z) = z, Ci
(z) = C
 j (z) = 0, ∀i, j �= 
. (A4)

We can thus focus on the relevant submatrix Ci j (z) with both
i, j �= 
. Let us focus for simplicity on the case z = 1. Then,
Eq. (A3) reduces to (see also, e.g., Ref. [75])

Ci j (z = 1) = 〈�| c†
i c jn
 |ψ〉

〈�|n
|�〉 = Ci j − Ci
C
 j

C



, (A5a)

for i, j �= 
 and

P1 = C

, (A5b)

where the last equality follows from a simple application of
Wick’s theorem. The other case z = 0 can be obtained by
a similar calculation or by making use of the particle-hole
symmetry and leads to

∀i, j �= 
, Ci j (z = 0) = Ci j + Ci
C
 j

1 − C



, (A6a)

P0 = 1 − C

. (A6b)

We can put together Eqs. (A5) and (A6) in the single equation

∀i, j �= 
, Ci j (z) = Ci j + (−1)z Ci
C
 j

Pz
, (A7a)

Pz = 1 − z − (−1)zC

. (A7b)

2. Measurements on multiple sites

Now that we understand the effect of measurement on
one site, we can generalize it to multiple-site measurements.
Following the notation of the main text, we assume that the
sites undergoing projective measurements of their local den-
sities are all in the spatial region B and we denote as zB =
{z1, . . . , zLB}, z j ∈ {0, 1}, the outcomes of the measurements.
We are interested in computing the resulting covariance ma-
trix C(z)i j for i, j ∈ A and the joint probability of all outcomes
P(z).

a. Iterative procedure

Since the operators n j for j ∈ B all commute to one an-
other, it is clear that measuring all sites in B can be performed
as a sequence of single-site measurements with outcomes zB,
irrespectively of the order. In order to simplify the notation,
we assume that the sites are measured from left to right and
that the sites in B are the LB leftmost ones. Let us denote as
z(
) = {z1, . . . , z
}, i.e., the measurement outcomes of the 


leftmost sites in B. Then, by making use of Eq. (A7), we have

P(z(
+1)) = P(z(
) )p, (A8a)

p ≡ (1 − z
+1 − (−1)z
+1C(z(
) )
+1,
+1), (A8b)

Ci j (z(
+1)) = Ci j (z(
) )

+ (−1)z
+1
Ci,
+1(z(
) )C
+1, j (z(
) )

p
, (A8c)

and the procedure finishes when k = LB as z(LB ) = zLB .

b. Determinant form

It is possible to derive a closed determinant form which
expresses directly P(zLB ) and C(zLB ). In order to do so, we
introduce the LB × LB matrix D(zLB ) and the LB dimensional
vectors �c j as

D(zLB ) = −

⎛
⎜⎜⎝

(−1)z1 0 . . . 0
0 (−1)z2 . . . 0

0 0 . . .
...

0 0 . . . (−1)zLB

⎞
⎟⎟⎠, �Cj =

⎛
⎜⎜⎝

C1 j

C2 j
...

CLB j

⎞
⎟⎟⎠, (A9)

also we denote as C(B) the restriction of C to the sites in B. Then, we can set

Ci, j (zB) = 1

P(zB)
det

LB+1

(
Ci j �C†

i · D(zB)
�Cj

1−D(zLB )
2 + C(B) · D(zLB )

)
, (A10)
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with the associated probability

P(zB) = det
LB

(
1 − D(zB)

2
+ C(B)(zB)D(zB)

)
. (A11)

The equivalence between the two procedures can be verified by induction.
As a benchmark, we check that the sum over all probabilities for all possible strings zB gives 1. Using the variables σ j =

2z j − 1, we have

∑
zB

P(zB) =
⎡
⎣ LB∏

j=1

∑
σ j=±

⎤
⎦ det

[
δik (1 − σk ) + C(B)

ik σk
] =

⎡
⎣ LB∏

j=1

∑
σ j=±

σ j

⎤
⎦ det

[
δik (σk − 1) + C(B)

ik

]
. (A12)

We can expand the determinant as

det
[
δik (σk − 1) + C(B)

ik

] =
LB∏

i=1

[
(σi − 1)/2 + C(B)

ii

] +
∑
P �=1

(−1)[P]
LB∏

i=1

C(B)
iP(i). (A13)

Summing over [
∏LB

j=1

∑
σ j=± σ j], we easily notice that only the first term contributes (since the others miss at least one of the

factors (1 − σi )/2), and the only term not giving zero is [
∏LB

j=1

∑
σ j=± σ j]

∏
i(σi − 1)/2 = 1.

In practice, for numerical stability and efficiency, we found it more efficient to perform the measurements over the whole
region B using the iterative procedure (A8).

APPENDIX B: MONTE CARLO SAMPLING
OF THE PROJECTED ENSEMBLE

In order to compute the PE at any time t , we time evolve
the correlation matrix using the single-particle Hamiltonian
hi, j = δi, j+1 + δi, j−1:

C(t ) = eihtC0e−iht , (B1)

with C0 = 〈�0|c†
i c j |�0〉 evaluated on the initial state, and at

each time step 
t = 1 we sample the PE by the Monte Carlo
(MC) procedure; namely, given the correlation matrix C at
time t , we start from a random sequence z0

B of zeros and
ones, and we compute C(z0

B) and P(z0
B) using the iterative

procedure (A8). The next Monte Carlo step is to generate a
new configuration z1

B by flipping one 0 or 1 at random within
the sequence z0

B and to compute their ratio of corresponding
probabilities

r = P
(
z1

B

)
/P

(
z0

B

)
, (B2)

which is to be compared with a randomly generated real
number in the interval [0,1]. If the latter is smaller than r, the
move is accepted and the new correlation matrix is computed
as C(z1

B), otherwise it is rejected and the sequence and the
correlation matrix are left unchanged. The algorithm is then
iterated on NMC steps where all higher moments of the PE are
taken as

〈C(k)〉MC = N−1
MC

NMC−1∑
g=0

C
(
zg

B

)⊗k
. (B3)

In Fig. 4 we show the convergence of the von Neumann
entropy at different times, by plotting the standard deviation
sampled with 40 different realizations of NMC = 2500, com-
puted as

σ =
√

〈(SA)2〉MC − 〈(SA)〉MC

〈(SA)〉MC
, (B4)

where SA is the entanglement entropy in the subsystem
summed over all sites. The average values are the data re-
ported in the main text. The plot shows that expected errors
on the Monte Carlo averaging at late times are of order 10−2.

We note that for the measurements over a set of com-
muting quantities like we consider here, one can introduce a
slightly simpler procedure, which avoids any correlation be-
tween configurations produced by the Monte Carlo algorithm.
In practice, in exactly LB steps, one generates an entire random
sequence zB = {z1, . . . , zLB} with the correct probability: the
sites are sequentially measured from left to right, but choosing
at each step

z
 =
{

1 with probability 1 − C(z(
−1))
,
,
0 with probability C(z(
−1))
,
,

(B5)

FIG. 4. Plot of the relative error σ from Eq. (B4) for the evolution
of the total entanglement entropy in LA = 4 for the dimer state with
α = 0.5ei

√
5.
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where the correlation matrix C(z(
−1)) is obtained after the
measurement of all sites up to 
 − 1 (as explained in Ap-
pendix A 2 a). See, for instance, Ref. [75]. Here, we chose to
use the more general Monte Carlo algorithm explained above.

APPENDIX C: GENERALIZED HAAR ENSEMBLE

As discussed in the main text, a simple way to generate
representative states is to sample randomly from an appro-
priate distribution over the Haar measure, thus enforcing the
correct average expectation of the conserved charges. This
could be constructed as follows. Because of the conservation
of the number of particles, we can always assume that C =
UDL,NU †. However, we want to enforce the constraint about
the occupation number in the Fourier basis [FCF †]kk ∼ n(k),
where Fk j = e2π ik j/L/

√
L performs the change of basis be-

tween the momentum and the real space basis. This naturally

leads to the microcanonical Haar ensemble of covariance
matrices:

P(C) = 1

ZMC

∫
Haar

dUδ[C − UD(L, N )U †]

∏
k

δ

(
N∑

i=1

|[FU ]k,i|2 − n(k)

)
, (C1)

where ZMC is the normalization such that
∫

P(C)dC = 1. Note
that, for an infinite-temperature ensemble, n(k) = N/L for any
k, the δ functions impose no constraints at large L and the
matrices U are simply drawn from the uniform distribution
over the Haar measure. On the contrary, for generic n(k) the
δ′s force a bias on the distribution of the matrix U . For prac-
tical purposes, instead of working with Eq. (C1), it is better
to replace the δ constraint with the canonical Haar ensemble,
defined by

P(C) = 1

Z[ω]

∫
Haar

dUδ
(
C − UDL,NU †

)
e− Tr [�FUDL,NU †F †] =

∫
Haar

dŨδ
(
C − F †ŨDL,NŨ †F

)
e− Tr [�ŨDL,NŨ †], (C2)

Z[ω] =
∫

Haar
dUe− Tr [�FUDL,NU †F †] =

∫
Haar

dŨe− Tr [�ŨDL,NŨ †], (C3)

where we make use of the invariance of the Haar measure Ũ ≡
FU and introduce the diagonal matrix � = diag[ω1, . . . , ωL]
containing the Lagrange multipliers. Their value can be fixed
via

∂ωk ln Z[ω] + n(k) = 0. (C4)

We observe that Z[ωk + c] = e−cN Z[ωk] for any constant c.
So, the solution of Eq. (C4) is always defined up to a constant,
which we fix by imposing the constraint

∑
k

ωk = 0. (C5)

1. Gaussian approximation

A simple approximation for the integration over the Haar
measure is obtained assuming that all entries of the matrix U
are Gaussian distributed for large L. In the case of Eq. (C3),
for nonzero ω′s, there is a competition between the constraint
imposed by unitarity,

L∑
i=1

|Ũki|2 = 1, (C6)

and the one coming from Eq. (C4). To enforce both constraints
and a Gaussian distribution of the matrix entries, we rather
consider the measure

Z[ω, γ ] =
∫

dŨe− ∑
k,i γk |Ũki|2 e− ∑

k

∑N
i=1 ωk |Ũk,i|2 , (C7)

and fix the Lagrange multiplier γ ′s and ω′s via the
conditions

∂ωk ln Z[ω, γ ] + n(k) = 0, (C8)

∂γk ln Z[ω, γ ] + 1 = 0. (C9)

In the case of the unitary group, Ũ ∈ U (L), the entries are
Gaussian complex numbers, so that the integration measure
factorizes as

dŨ →
∏
k,i

dRe[Ũk,i]dIm[Ũk,i], (C10)

leading to the solutions

γk = L
n(k) − n

1 − n(k)
, ωk = −L

n(k) − n

[1 − n(k)]n(k)
. (C11)

In the infinite-temperature case, the filling function n(k) =
N/L, all the biases ωk = 0, consistently with the fact that one
can simply sample from the pure Haar distribution.

In principle, one may wonder whether the additional con-
straint about the normalization of columns should also be
imposed, i.e.,

L∑
k=1

|Ũki|2 = 1, ∀i = 1, . . . , L. (C12)
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It is easy to verify that this constraint is automatically satisfied
by the solution above, since

E

[
L∑

k=1

|Ũki|2
]

=
∑

k

1

γk + ωk

= 1

Ln

∑
k

n(k) = 1, i � N, (C13)

E

[
L∑

k=1

|Ũki|2
]

=
∑

k

1

γk

= 1

L(1 − n)

∑
k

[1 − n(k)] = 1, i > N,

(C14)

where E[. . .] indicates the average with the measure in
Eq. (C7).

A similar approximation can be obtained for other groups,
i.e., the orthogonal group, by appropriately changing the in-
tegration measure Eq. (C10). The values of ω′s given in
Eq. (C11) provide a good approximation when n(k) does not
vary too much with k, i.e., close to infinite temperature, but
they are not exact in general. In the next sections, we show
different methods to obtain more accurate evaluations.

2. Finite-size evaluation

The partition sum Z[ω] can actually be computed explicitly
using the Harish-Chandra-Itzykson-Zuber [54,55] formula.
We recall that this formula gives the following integral:∫

Haar
dUeTr[AUBU †] = det

[
eλA

i λB
j
]


[λ(A)]
[λ(B)]
, (C15)

where λ
(A/B)
i is the spectrum of A/B and we define the Van-

dermonde determinant of a set as


(λ) =
∏
i< j

(λi − λ j ). (C16)

Thus, if we define the diagonal matrix � = diag(ωk ), the
integral in Eq. (C3) can be evaluated replacing A → � and
B → D(L, N ). However, the matrix D(L, N ) has (several) de-
generate eigenvalues, since its made of N ones and L − N
zeros. In this case, a limit is required to properly compute the
right-hand side of Eq. (C15). To regularize, we set

Dε (L, N ) = diag[1 − ε, 1 − 2ε, . . . , 1

− Nε, ε, 2ε, . . . , (L − N )ε] = diag
(
d (ε)

i

)
(C17)

and take the limit ε → 0 at the end. We have clearly


[d (ε)] =
∏
i< j

(
d (ε)

i − d (ε)
j

)
= (−1)N (N+1)/2εN (N−1)/2+(L−N )(L−N−1)/2

× G(N + 1)G(L − N + 1), (C18)

where G(x) is the Barnes G function. Ignoring numerical
factors which are irrelevant in the normalization, one has in
the limit

Z[ω] = det A[ω]


[ω]
, (C19)

where the matrix A[ω] takes the form

A[ω] =

⎛
⎜⎜⎜⎝

1 ω1 . . . ωN−1
1 e−ω1 e−ω1ω1 . . . e−ω1ωL−N−1

1

1 ω2 . . . ωN−1
2 e−ω2 e−ω2ω2 . . . e−ω2ωL−N−1

2
...

...
...

1 ωL . . . ωN−1
L e−ωL e−ωL ωL . . . e−ωL ωL−N−1

L

⎞
⎟⎟⎟⎠. (C20)

Although exact, Eq. (C19) does not allow an efficient eval-
uation at large L, because as already seen in Eq. (C11), the
ω′s become large with L, thus making the exponentials in
Eq. (C20) hard to evaluate numerically.

3. High-temperature expansion

The large L asymptotics of the HCIZ integral has been in-
vestigated in several papers [57,58]; see also the introductory
review [56]. One important result is that it is possible to write
down explicitly the “large temperature” expansion of Eq. (C3)
directly in the limit of large L in terms of combinatorial
quantities. First of all, we know already from Eq. (C11) that
at large L, the ω′s are going to be scaled linearly with L. So
we set

ωk = Lz(2πk/L ≡ p), (C21)

where p is the quasiparticle momentum in the thermodynamic
limit. With this definition, we can express the moments of the

matrix � as

Tr[�m] =
L∑

k=1

ωm
k → Lm+1

∫
d p

2π
z(p)m ≡ Lm+1s(m).

(C22)
We can now introduce a free energy in the form

F [z] = − lim
L→∞

1

L2
ln Z[ω], (C23)

which is now a functional of z(p). We have the expansion in
powers of z (see Eq. (2.10) in [56]):

F [z] =
∞∑

d=1

(−1)d

d!

∑
α,β�d

(−1)
(α)+
(β ) �H0(α, β )n
(β )

(α)∏
i=1

s(αi),

(C24)

where the sum runs over the partitions α and β of the in-
teger d and �Hg(α, β ) are the monotonous Hurwitz numbers
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associated with the pair of partitions α and β computed at
genus g = 0 [76] and we refer to Ref. [56] for their combinato-
rial definition. The constraint Eq. (C5) turns into the equation

δF [z]

δz(k)
= n(k)

2π
. (C25)

Expanding up to the third order (d = 3), one has

F [z] = ns(1) − 1
2 (n − 1)n[s(1)2 − s(2)]

+ 1
3 (n − 1)n(2n − 1)[2s(1)3 − 3s(2)s(1) + s(3)]

+ O(z4). (C26)

Taking the functional derivative and constraining s(1) = 0
[consistent with Eq. (C5)],

n − (1 − n)nz(k) − (1 − n)n(2n − 1)[z(k)2 − s(2)] = nk,

(C27)

where n = N/L is the particle density. One can easily verify
that this is solved up to the order O(nk − n)2 by

z(k) = n(k) − n

(n − 1)n
+ (1 − 2n)[n(k) − n]2

(n − 1)2n2
+ A

+ O{[n(k) − n]3}, (C28)

where the constant A is put to enforce the constraint s(1) = 0.
The result is consistent with the Gaussian approximation in
Eq. (C11).

However, at the next order, deviations from the Gaussian
approximation appear. As an example, we compute them for
the case of the dimer states introduced in Eq. (9). Writing for
generic α = α0eiθ , with α0 ∈ R and θ ∈ [0, 2π ), we can write
it explicitly as

nk = 1

2
+ α0 cos(k − θ )

1 + α2
0

= 1

2
+ ε cos(k − θ ), ε = α0

1 + α2
0

.

(C29)

After some manipulations, one obtains

z(k) = −4ε cos(k − θ ) − 8ε3 cos(k − θ ) cos[2(k − θ )]

+ O(ε4), (C30)

which differs from the small ε expansion of the Gaussian
approximation (C11),

zGauss(k) = −4ε cos(k − θ ) − 16ε3 cos3(k − θ ) + O(ε4).

(C31)

4. Monte Carlo sampling from the generalized Haar ensemble

We now suppose that the values of the ωk are known, and
we want to sample from the distribution in Eq. (C2). The
problem has been also analyzed in Ref. [77]; here we discuss
a straightforward implementation based on the Metropolis-
Hastings algorithm. To do so, we introduce a random walk in
the SU(L) group. We consider the Markov process at discrete

time step τ :

pτ+1
(
Ũ

) = pτ

(
Ũ

)
+

∫
Haar

dŨ ′ [P(Ũ ′ → Ũ )pτ (Ũ ′)

− P(Ũ → Ũ ′)pτ (Ũ )]. (C32)

Let us first analyze the simple case ωk = 0, where one simply
needs to sample in from the Haar distribution. Given a certain
distribution measure P(M ) over Hermitian matrices M (that
we specify later on), one can set

P0(Ũ → Ũ ′) =
∫

dMP(M )δHaar (Ũ
′ − Ũ eıM ). (C33)

We stress that the δ function refers to integration via the Haar
measure; i.e., it is defined by∫

Haar
dŨδHaar (Ũ − Ũ ′) f (Ũ ) = f (Ũ ′). (C34)

It is easy to verify from this definition that δHaar (Ũ − Ũ ′Ũ0) =
δHaar (Ũ ′ − ŨŨ †

0 ). Indeed,∫
Haar

dŨ ′δHaar (Ũ − Ũ ′Ũ0) f (Ũ ′)

=
∫

Haar
dŨ ′′δHaar (Ũ − Ũ ′′) f (Ũ ′′Ũ †

0 ) = f (ŨŨ †
0 ), (C35)

where in the first equality we changed variable Ũ ′′ = Ũ0Ũ ′
and we used the invariance of the Haar measure over left
multiplication (dŨ ′ = dŨ ′′). We thus see that, if we choose
P(M ) = P(−M ), one immediately has

P0(Ũ ′ → Ũ ) =
∫

dM P(M )δHaar (Ũ − Ũ ′eıM )

=
∫

dM P(M )δHaar (Ũ
′ − Ũ e−ıM )

= P0(Ũ → Ũ ′). (C36)

Thus, detail balance is fulfilled with the flat measure pn(Ũ ) →
pstat (Ũ ) = 1.

From this construction, it becomes clear how to modify
the algorithm to obtain sampling from Eq. (C2) via the usual
Metropolis-Hastings formula. It is enough to set

P(Ũ → Ũ ′) = P0(Ũ → Ũ ′)A(Ũ , Ũ ′),

A(Ũ , Ũ ′) ≡ min[1, eTr[�Ũ ′DŨ ′†]−Tr[�ŨDŨ †]]. (C37)

In order to do so, it is convenient to specify further the
distribution over the Hermitian matrices P(M ). We choose it
as rotations. In other words,

(i) we randomly choose a pair of distinct indices i and j
uniformly;

(ii) we choose a direction α = x, y, or z with equal proba-
bilities 1/3;

(iii) we choose a random “angle” φ ∈ [0, 2π );
(iv) we set

M = 1
2φσ (i, j)

α , (C38)
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where σ
(i, j)
α indicates a Pauli matrix in the subspace (i, j) and

the identity elsewhere;
(v) we accept the new unitary Ũ ′ = Ũ eıM

(1) with probability 1 if both i, j ∈ {1, . . . , N} or i, j ∈
{N + 1, . . . , L}, because in both these cases eıMDe−ıM =
D as the matrix D restricted to (i, j) is a multiple of the
identity;

(2) with probability 1 if α = z, because |Ũ ′
ki|2 = |Ũki|2

and |Ũ ′
k j |2 = |Ũk j |2, as the transformation only adds a

phase;
(3) with probability p = A(Ũ , Ũ ′) if i ∈ {1, . . . , N} but

j ∈ {N + 1, . . . , L}. Note that A(Ũ , Ũ ′) can be restricted to
the subspace of indices (i, j).

5. Self-improving Monte Carlo method

The algorithm presented in the previous section assumes
that the parameters ωk are given and allows sampling from
Eq. (C3). In reality, what is given is the density n(k) and the
parameters ωk are to be fixed from (C4). In practice, starting
from some initial estimation for the ω′s, we can iteratively
apply the MC procedure to gradually improve such an estima-
tion. We introduce the functional

F[ω] = 1

2

∑
k

[∂ωk ln Z + n(k)]2. (C39)

The optimal choice of the ω′s lies at the minimum of F[ω].
We can use gradient descent to improve the current estimation
of ωk:

ω
(n+1)
k = ω

(n)
k − γ

∂F

∂ωk

= ω
(n)
k − γ

∑
k

[∂ωk ln Z + n(k)]∂ωkω

ln Z

= ω
(n)
k − γ

∑
k

(
n(k) − 〈

Ũ 2
k

〉)〈
Ũ 2

k Ũ 2



〉
c, (C40)

where we use Ũ 2
k as a shortcut for

∑N
i=1 |Ũki|2. In practice, we

run a few MC steps Nit at fixed ω′s, which allow estimating
〈Ũ 2

k 〉 and 〈Ũ 2
k Ũ 2


 〉. Then one can use (C40) to update the values
of the ω′s. Note, however, that the fluctuations due to finite Nit

prevents converging to arbitrary accuracy. In practice, after
a few iterations, the algorithm cannot improve unless Nit is
increased.

APPENDIX D: NUMBER DISTRIBUTION
IN GAUSSIAN STATES

In this Appendix we prove the formula given in the main
text about the distribution of the number of particles in the
region A. We assume that the whole system is in a random

Gaussian state |�〉AB described by the ensemble of covariance
matrices

Eβ = {C = UDL,NU † | U ∼ Haarβ}, (D1)

where the parameter β indicates (i) the orthogonal group (β =
1) and (ii) the unitary group β = 2. We set

p(NA) = E[〈�|δN̂A,NA
|�〉], (D2)

where N̂A = ∑
j∈A n̂ j and the average E[. . .] is taken over the

ensemble (D1). We claim that the following formula holds:

p(NA) =
(LA

NA

)( L−LA

M−NA

)
(L

M

) , (D3)

which has a simple combinatorial interpretation as splitting
the M particles such that NA are in A and M − NA are in B.
Equation (D3) can be easily proven for random states over the
whole Hilbert space [66,78]. In the Gaussian case, its proof is
less evident.

We proceed as follows. We first of all introduce the gener-
ating function

g(λ) =
LA∑

NA=0

eiλNA p(NA) = E[〈�|eiλN̂A |�〉]

= E[det
LA

[1 + (eiλ − 1)C(A)]], (D4)

where in the last equality we use Wick’s theorem to express
the expectation value in terms of a determinant of the reduced
covariance matrix to the region A, i.e., C(A)

i j = Ci j for i, j ∈ A.
From this construction, the matrix C(A) is known to be drawn
from the β Jacobi ensemble [79]. The joint probability distri-
bution function of its eigenvalues λ1, . . . , λLA takes the form

P(λ1, . . . , λLA ) = 1

Z

LA∏
i=1

λ
β/2(a+1)−1
i (1 − λi )

β/2(b+1)−1

×
∏
i< j

|λi − λ j |β, (D5)

where the constants are a = M − LA and b = L − LA − M.
Setting z = eiλ − 1, we can thus express

g(λ) =
∫

dλ1 . . . dλLA P(λ1, . . . , λLA )
∏

i

(1 + zλi )

=
LA∑

k=0

(
LA

k

)
zkQk, (D6)

where in the last equality we use the symmetry of the integral
under the permutation of the eigenvalues. The coefficient Qk

can be expressed in terms of the Aomoto’s integral [80,81]
and reads

Qk = 1

Z

∫
dλ1 . . . dλLA

k∏
j=1

λ j

LA∏
i=1

λ
β/2(a+1)−1
i (1 − λi )

β/2(b+1)−1
∏
i< j

|λi − λ j |β = �(−a − b − 2LA)�(−a + k − LA)

�(−a − LA)�(−a − b + k − 2LA)
. (D7)
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Plugging this last expression in Eq. (D6), we obtain the final formula:

g(λ) = 2F1(−a − LA,−LA; −a − b − 2LA; −z) = 2F1(−LA,−M; −L; −z). (D8)

Now, standard manipulations of hypergeometric functions can be used to show that Eqs. (D8) and (D4) lead to Eq. (D3), as
expected.
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