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Qubits from the classical collision entropy
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An orthodox formulation of quantum mechanics relies on a set of postulates in a Hilbert space supplemented
with rules to connect it with classical mechanics such as quantization techniques, correspondence principle,
etc. Here, we deduce a qubit and its dynamics straightforwardly from a discrete deterministic dynamics and
conservation of the classical collision entropy. No Hilbert space is required, although it can be inferred from this
approach if necessary.
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I. INTRODUCTION

Soon after its inception, physicists encoded quantum the-
ory in a complex Hilbert space together with a set of postulates
to link it with the experimental process. Departure from
classical physics was bridged with a set of techniques and
prescriptions of how to “quantize” familiar classical ob-
jects such as Hamiltonian, Lagrangian, momentum, position,
etc. Although this approach works well enough, it lacks
clear physical meaning, unlike, for instance, general relativity
theory, entirely derived from two experimentally falsifiable
assumptions: relativity and equivalence principle. One’s de-
sire for more intuitive and simpler postulates to construct
quantum theory is understandable in this context.

In the last few decades, some researchers found alter-
native axioms for quantum theory. Hardy [1] proposed five
axioms which were later expanded and framed as gener-
alized probability theory (GPT) by Barrett [2]. All these
alternative formulations of quanta are forced to use quasi-
probability theory (also known as signed measures [3] or,
colloquially, as negative probabilities) to account for observed
randomness of microscopic phenomena [4]. Note that GPT
is constructed such that one never has to assign negative
probabilities to measurement outcomes. This eliminates any
ontological discussions about the meaning of negative proba-
bilities, a practice we follow in this paper.

Quasi-probabilities are almost as old as quanta itself thanks
to Wigner, who introduced them in 1932 [5]. Since then the
idea has been discussed by many authors in diverse contexts
[3,6–10]. The most recent developments in the field suggest
that quasi-probabilities could be viewed as a fundamental
resource in quantum nonlocality [11–15] and quantum com-
putation [16–21], and used extensively in quantum optics
[22–24].
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Here we propose a simple information-theoretic postulate
from which we can derive a discrete four-dimensional quasi-
stochastic system equivalent to a qubit and its dynamics.
Curiously, with no further restrictions, our postulate allows
universal-NOT operation, but we can get rid of it if we assume
continuity of reversible quasi-stochastic processes. One of the
interesting aspects of this approach is that we can reconstruct
the discrete quantum system without invoking a Hilbert space
at all. The information-theoretic flavor of our proposal falls
closely within the proximity of information causality and its
subsequent generalizations [25–27].

II. DETERMINISTIC DYNAMICS AND RENYI ENTROPIES

Consider a particle on a one-dimensional lattice with d ver-
tices (enumerated by i = 1, 2, . . . , d) and periodic boundary
conditions. Or, if you prefer, you can see it as an abstract
dynamical system whose states are single-vertex occupations,
i.e., bit strings like this (000 . . . 01000 . . . 0), where 1 denotes
the ith vertex occupation.

The simplest possible discrete deterministic dynamics is
when the particle starts at some vertex i and in every step hops
to the next vertex: i → i + 1 → i + 2 → · · · . We represent
the particle’s state as a d-dimensional basis vector e (only one
entry equals to 1, with others equal to 0) and its dynamics as a
permutation matrix �. After k steps, the initial state e evolves
to e(k) = �ke.

If the initial conditions are uncertain, e becomes a prob-
ability vector p = [p1, p2, . . . , pd ]T , where pi (pi � 0 and∑d

i=1 pi = 1) is the probability of finding the particle in the
vertex i. The dynamics stays the same, i.e., after k steps the
state changes to p(k) = �kp. It is rather obvious to observe a
simple information-theoretic property of such dynamics:

d∑
i=1

pα
i =

d∑
i=1

([�kp]i )
α
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for every k and α � 0, i.e.,
∑d

i=1 pα
i is constant for any initial

probability distribution p. More generally we can express this
with Renyi-α entropies, Hα (p), as

Hα (�kp) = Hα (p), (1)

where Hα is

Hα (p) = 1

1 − α
log2

(
d∑

i=1

pα
i

)
. (2)

In fact, any permutation conserves all the Renyi entropies.
Introducing Renyi entropies may look unnecessary, but it does
give us an option to study Shannon entropy for α = 1. It is
physically obvious that Shannon entropy is constant for any
initial state p and deterministic dynamics.

We now ask the fundamental question in this paper: Can
we extend deterministic dynamics in our model to some other
dynamics, not necessarily deterministic, such that some Renyi
entropies remain constant for any given initial state p?

A “yes” answer would mean there is a family of dynamics
S and states such that (i) Sp remains a proper positive proba-
bility distribution and (ii) there is a range of α where

Hα (Sp) = Hα (p) (3)

for any p for which Sp is a proper positive probability distri-
bution.

We can already expect certain features of this extension.
First, any extended dynamics S must be a d×d matrix whose
rows sum up to one or else the probabilities Sp would not be
normalized. However, we cannot guarantee that S’s elements
are all positive, making S at least a quasi-stochastic matrix, if
not a quasi-bistochastic one.

To sum up, at this moment, we have a well-defined, physi-
cally motivated mathematical problem. In the next section, we
provide a solution of deep physical significance: we recover a
qubit and its dynamics without a Hilbert space.

III. GENERALIZED DYNAMICS AND RENYI ENTROPIES

The problem formulated in the previous section is difficult
to solve. However, we found an important solution for the
Renyi entropy with α = 2. This entropy is called collision
entropy in the literature and it reads

H2(p) = − log2 |p|2, (4)

where |p| =
√∑d

i=1 p2
i , i.e., it is the geometric length of a

d-dimensional vector p.
If you want to satisfy Eq. (3), i.e., keep the collision en-

tropy invariant under a generalized dynamics S, you must have

|Sp|2 = |p|2.
This is possible only if transposition of the matrix S is its own
inverse because of a trivial observation,

|Sp|2 = (Sp) · (Sp) = p · (ST Sp) = p · p = |p|2

⇒ ST = S−1.

In other words, orthogonal matrices produce the new general-
ized dynamics.

Next, we need to find the minimal dimension d where this
is possible. It helps to note that if S is a valid dynamics, so is
ST , and thus S must have columns and rows summing up to
one if we want to keep Sp a proper probability vector. This is
only possible if some of the elements in rows and columns are
negative, because the off-diagonal terms in SST must be equal
to zero. Thus, S must be a quasi-bistochastic matrix.

For d = 2 the most general quasi-bistochastic matrix reads

S =
[

q 1 − q
1 − q q

]
, (5)

where q is an arbitrary real number. It is easy to see that
orthogonality is only true for q = 0 or q = 1, which makes it a
permutation. Hence, no new dynamics is observed for d = 2.

The situation changes for d = 3. We start with the
generalized Birkhoff–von Neumann decomposition [15] of
quasi-bistochastic matrices

S =
2∑

k=0

qk�
k +

2∑
k=0

rk�
kR, (6)

where � is a permutation matrix such that 123 → 312, R
permutes 123 → 132, and

∑2
k=0(qk + rk ) = 1 (qk, rk can be

negative). It is easy to see that �k and �kR cover all six
permutations of the string 123. For convenience we put Q =∑2

k=0 qk�
k and Q′ = ∑2

k=0 rk�
k so that

S = Q + Q′R. (7)

Orthogonality means SST = 1, and thus

1 = QQT + Q′(Q′)T + QR(Q′)T + Q′RQT

= QQT + Q′(Q′)T + 2QQ′R, (8)

where the last equality is obtained from using the fact that
R�−k = �kR. This equation can be true if and only if (i)
QQ′ = 0 or (ii) QQ′ = R. However, the latter is not possible
because determinants of Q, Q′ are +1, whereas the R’s deter-
minant is −1. We are left with two distinct possibilities: either
Q or Q′ is zero, giving us S+ = Q or S− = Q′R. The subscript
± is to indicate that the respective solution has determinant
±1. Note that S− corresponds to a discontinuous dynamics
that is not physical.

In Appendix A we show that S+ has a unique form that
reads

S+(φ) = q0I + q1� + q2�
2, (9)

where qk (φ) = 1
3 [1 + 2Re(ωkeiφ )], ω = ei2π/3 is the cubic

root of unity. Note that for any φ only one of the quasi-
probabilities is negative, and because

∑2
k=0 ωk = 0, we have∑2

k=0 qk = 1. As such, this nondeterministic dynamics is re-
versible as the dynamics it generalizes.

What we need to fix now is the domain of the state space
to which S+(φ) is a valid transformation. As p describes a
probability distribution on the lattice, it must stay positive for
any S+(φ). Again, the proof is in Appendix A, and here we
give the solution:

pk (θ ) = 1
3 (1 + t âk · [sin θ, cos θ ]), k = 0, 1, 2, (10)

where 0 � t � 1, 0 � θ � 2π , and âk’s are two-dimensional
real unit vectors such that

∑2
k=0 âk = 0.
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We arrived at a generalized dynamics for d = 3, conserv-
ing the collision entropy of any initial positive probability
distribution p. This is a quasi-bistochastic dynamics that pre-
serves the positivity of p and thus resembles quasi-probability
representations of quantum theory discussed in Ref. [28].
Indeed, this dynamics and the set of admissible probability
distributions is equivalent to rotations around the axis ẑ of
qubit states with the Bloch vector s = t[sin θ, cos θ, 0] con-
fined to the xy plane.

Dropping the continuity of S, we end up with a bigger
dynamical system that still describes a qubit but with a larger
dynamics that contains experimentally impossible operations.
They correspond to reflections of qubit’s Bloch vector (includ-
ing the forbidden universal-NOT gate) if we map them to a
two-dimensional Hilbert space.

Of course, laboratory measurements on a qubit give only
two outcomes (qubit in the state |0〉 or |1〉 along the measure-
ment direction), so we need to show how to interpret the lattice
probability distribution p. We easily recover the measurement
probabilities along an arbitrary direction on the Bloch sphere’s
equator m̂ if we use the overcompleteness of the vectors âk ,∑2

k=0 âk âk = 3
2 I (here ab denotes a dyadic product of two

vectors). We have

p(±|m̂) = 1
2 (1 ± m̂ · s) (11a)

= 1
2 (1 ± v) · p, (11b)

where 1 is vectors of all ones and v = [m̂ · â0, m̂ · â1, m̂ · â2].
We define e(±|m̂) = 1

2 (1 ± v) as the effect corresponding to
the measurement along m̂ with outcome ±. Effects formalism
is not the primary concern of this paper, but there is extensive
literature on this topic [29] that the reader can consult.

In Appendix B we show how to extend the continuous
dynamics found for d = 3 to d = 4. The significance of this
extension is a full reconstruction of qubit states and their
physical transformations.

A natural question at this point is if we can derive a
two-qubit dynamics and thus, using a set of two-qubit univer-
sal gates, dynamics of any D-dimensional quantum system.
We already know such collision entropy preserving quasi-
bistochastic dynamics equivalent to two qubits—it can be
constructed using a symmetric, informationally complete,
positive operator-valued measure (SIC-POVM) frame [30], a
mapping from a four-dimensional Hilbert space to a quasi-
probabilistic space. This means we can at worst get a larger
class of systems, some of which may not correspond to two
qubits. What would such systems be? These are, for now, open
questions that we will address in future work.

IV. CONCLUSIONS

The gist of this paper is that one can deduce the ex-
istence of a qubit together with its full dynamics from a
deterministic (reversible) dynamics of a particle hopping on a
one-dimensional lattice with four vertices if one postulates the
collision entropy conservation. A Hilbert space is not needed
but you can recover it if you need to.

Using this information-theoretic postulate we get the
qubit’s dynamics as an orthogonal quasi-bistochastic con-
tinuous process of a particle hopping on a one-dimensional

four-vertex lattice. The particle’s states are restricted to non-
negative probability distributions that can be uniquely mapped
to the qubit’s measurement probabilities.

Our results can be positioned in the ongoing research
to derive quantum mechanics from some basic information-
theoretic principles without invoking orthodox Hilbert space
axioms.

Some open questions:
(1) It is not clear at the moment what the physical sig-

nificance of the collision entropy is. Technically, it enforces
orthogonality of the quasi-bistochastic dynamics S and thus
its reversibility: S−1 = ST . However, you can imagine a more
general reversibility where S−1 �= ST . You can also notice that
the S’s orthogonality is equivalent to the conservation of a
qubit’s purity by unitary dynamics.

(2) How do we recover a dissipative qubit dynamics?
(3) Can we get some other, perhaps postquantum dynam-

ics (for instance, PR-boxes [31]) conserving Renyi entropies
for other α?

(4) Can we extend this approach to continuous variable
systems?

After finishing this work, we learned about a paper by
Brandenburger et al. [32] where the authors also use Renyi
entropies to connect a qubit with quasi-probability distribu-
tions via quantum uncertainty principle. How Brandenburger
et al.’s results are related to ours requires in-depth study.
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APPENDIX A: DERIVATION OF DYNAMICS
AND STATES FOR d = 3

Here, we show the parametrization of the orthogonal quasi-
bistochastic matrix for d = 3. There are two forms of the
solution. The first with +1 determinant has the form

S+ =
⎡
⎣q0 q2 q1

q1 q0 q2

q2 q1 q0

⎤
⎦ (A1)

with the constraints

q0 + q1 + q2 = 1, (A2a)

q2
0 + q2

1 + q2
2 = 1, (A2b)

q0q1 + q0q2 + q1q2 = 0. (A2c)

Parametrizing the solution space based on the constraints
above means that we are solving the problem of intersection
between a three-dimensional hypersphere with a hyperplane
of the same dimension. The general procedure for solving
this problem is presented in Appendix C. The solution for the
parameter space is

q0(φ) = 1

3
+ 2

3
cos φ, (A3a)
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q1(φ) = 1

3
− 2

3
sin

(
π

6
+ φ

)
, (A3b)

q2(φ) = 1

3
− 2

3
sin

(
π

6
− φ

)
. (A3c)

The above can be compactly expressed as qk = qk (φ) =
1
3 [1 + 2Re(ωkeiφ )], k = 0, 1, 2, where ω is the cube root of
unity. These quantities can take values from − 1

3 � qk � 1 and
clearly satisfy the unit sum for all φ. S+ = S+(φ) here forms
the group of quasi-bistochastic SO(3) matrices.

The other solution is an orthogonal quasi-bistochastic ma-
trix with −1 determinant of the form

S− =
⎡
⎣q0 q1 q2

q1 q2 q0

q2 q0 q1

⎤
⎦, (A4)

with similar constraint as in Eq. (A2). Consequently, the so-
lution space can be parametrized similarly as in Eq. (A3).
Contrary to the previous case, S− here is not continuous and
does not form a group.

The next thing that we will find is the domain of the state
space, which we have specifically chosen to be nonnegative
and will behave consistently under the S(φ) above. The reason
we can do this is due to the self-duality relation between
the state and effect [33]. This choice of construction will not
change the behavior of the system. With this in mind, let us
now construct the state space S ⊂ R3

+ based on the quantum
dynamic that we just obtained.

The problem of finding the state space can be stated as
follows. Suppose that we have a quasi-bistochastic matrix S+
from Eq. (A1) with qk given by Eq. (A3). The goal is then to
find the domain S ⊂ R3

+ where p ∈ S satisfies

S+p = p′ ∈ S ∀ p, ∀φ. (A5)

Since p = [p0, p1, p2]T is a probability distribution, it is then
a constraint to have a unit sum,

∑
k pk = 1. Since the matrix

can take negative values, the state space S is then a subset of
the probability simplex.

To solve this, we bring up the fact that S+ is an orthogonal
matrix so it leaves the squared norm of the state vector in-
variant after the transformation, i.e., |S+p|2 = |p|2. A typical
probability vector has a squared norm that is less than or equal
to 1, but we know that S+ can potentially bring a probability
vector with a squared norm of 1 into negative probability
distribution. Therefore, it implies that there exists an upper
bound K < 1 for the squared norm of p ∈ S . To find this
bound, we consider the parametrized state

r = λ

⎡
⎣1

0
0

⎤
⎦ + (1 − λ)

⎡
⎢⎢⎣

1
3
1
3
1
3

⎤
⎥⎥⎦

= 1

3

⎡
⎣1 + 2λ

1 − λ

1 − λ

⎤
⎦, 0 < λ < 1. (A6)

The squared norm of r can be easily calculated to be
(1 + 2λ2)/3. The goal here is to find the largest λ such that

S+r � 0 ∀φ. (A7)

The above positivity criteria then implies that

λ � 1

1 − 3q0
, (A8a)

λ � 1

1 − 3q1
, (A8b)

λ � 1

1 − 3q2
. (A8c)

Since it needs to be in the range 0 < λ < 1 and works for
all φ, one can easily deduce that in the end we have λ � 1

2 .
Therefore, we can infer that the squared norm of p takes the
range 1

3 � ∑
k p2

k � K = 1
2 . The extremal states (pure states)

of S are p � 0,
∑

k pk = 1, with |p|2 = 1
2 .

From here we can parametrize p as

pk = 1
3 (1 + t âk · [sin θ, cos θ ]), k = 0, 1, 2, (A9)

where 0 � t � 1, 0 � θ � 2π , and âk’s are two-dimensional
real unit vectors and

∑
k âk = 0. If we choose â0 = [0, 1],

then it is natural to have â1 = [
√

3
2 ,− 1

2 ] and â2 = [−
√

3
2 ,− 1

2 ].
We can reparametrize [t sin θ, t cos θ ] → [x, y] with the con-
dition x2 + y2 � 1. It can also be shown easily that p above is
closed under transformation of S−, i.e., S−p ∈ S .

With the hindsight of Hilbert space quantum mechanics,
we already know that the degrees of freedom [x, y] correspond
to the components of the Bloch sphere in the unit circle. In
fact, with the choice of âk above, we recovered the trine quasi-
probability representation of a qubit in the xy plane [30].

As for the measurement space, one only needs to find the
real vector m that satisfies

0 � m · p � 1 ∀ p ∈ S. (A10)

The shrinking of the state space from the classical simplex and
the deformity of the geometry allows the effect space to be
larger than the classical effect space, and hence take on neg-
ative values. This trade-off is known as (strong) self-duality
[33].

APPENDIX B: DERIVATION OF DYNAMICS
AND STATES FOR d = 4

The construction of the extended theory in d = 4 can
be done in a similar manner to how it is done in d = 3.
However, finding the general form for the quasi-bistochastic
SO(4) group using the method above can be quite tedious
and complicated. Instead, we will construct it through some
basic assumptions about its properties. First, we note that
the quasi-bistochastic SO(3) matrix is a subgroup of the
quasi-bistochastic SO(4) matrices. Hence, there exist four el-
ementary rotation matrices:

R1 =

⎡
⎢⎢⎣

1 0 0 0
0 q0 q2 q1

0 q1 q0 q2

0 q2 q1 q0

⎤
⎥⎥⎦, (B1a)

R2 =

⎡
⎢⎢⎣

q0 0 q2 q1

0 1 0 0
q1 0 q0 q2

q2 0 q1 q0

⎤
⎥⎥⎦, (B1b)
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R3 =

⎡
⎢⎢⎣

q0 q2 0 q1

q1 q0 0 q2

0 0 1 0
q2 q1 0 q0

⎤
⎥⎥⎦, (B1c)

R4 =

⎡
⎢⎢⎣

q0 q2 q1 0
q1 q0 q2 0
q2 q1 q0 0
0 0 0 1

⎤
⎥⎥⎦, (B1d)

with Rk = Rk (φ) and qk = qk (φ) having exactly the same
expression in Eq. (A3). Then, the general quasi-bistochastic
SO(4) matrices S can be written in terms of

S = R1(φ1)R2(φ2)R3(φ3)R4(φ4), (B2)

where φk’s are real parameters that can be found for any quasi-
bistochastic SO(4) matrices.

We employ the same method to find the state space and find
that extremal states have squared-norm |p|2 = 1

3 . Hence, the
parametrization of the extremal state follows a similar form as
the d = 3 case:

pk = 1

4

(
1 + b̂k · [x, y, z]

)
, k = 0, 1, 2, 3, (B3)

where we have the constraint x2 + y2 + z2 � 1 and b̂k’s are
three-dimensional real unit vectors that satisfy

∑
k b̂k = 0. As

a generalization from the d = 3 case that has vectors of an
equilateral triangle, we then can have b̂k’s to be vectors of a
tetrahedron:

b̂0 = [0, 0, 1], (B4a)

b̂1 =
[√

8

9
, 0,−1

3

]
, (B4b)

b̂2 =
[
−

√
2

9
,

√
2

3
,−1

3

]
, (B4c)

b̂3 =
[
−

√
2

9
,−

√
2

3
,−1

3

]
. (B4d)

We have recovered the full Bloch vectors [x, y, z] and
hence the most elementary system in the discrete quantum
system—the qubit. In fact, this quasiprobability representa-
tion corresponds to the frame representation with SIC-POVM
frames [30].

Lastly, the effect space is also constructed in a similar
manner as the previous section.

APPENDIX C: SOLUTION TO THE INTERSECTION
BETWEEN n-DIMENSIONAL HYPERSPHERE

AND HYPERPLANE

Here, we will show how to obtain the solution to the in-
tersection of an n-dimensional hyperplane and n-dimensional

hypersphere with unit radius. This problem can be formulated
as finding the solution space of a = [a1, a2, . . . , an] ∈ Rn

given that it satisfies two equations:∑
i

ai = a1 + a2 + · · · + an = 1, (C1a)

∑
i

a2
i = a2

1 + a2
2 + · · · + a2

n = 1. (C1b)

Before going on to obtain the solution space, let us first learn
how to parametrize the solution for an n-dimensional hyper-
sphere with radius r:

b2
1 + b2

2 + · · · + b2
n = r2. (C2)

The trick for this is to iteratively reduce the problem into
a two-dimensional sphere equation, which we already know
how to parametrize. Let x2

1 = b2
1, y2

1 = b2
2 + b2

3 + · · · + b2
n,

r1 = r, and we have reduced Eq. (C2) into the equation of
a circle:

x2
1 + y2

1 = r2
1 . (C3)

Therefore, the solution to this can be parametrized as

x1 = r1 cos t1, y1 = r1 sin t1. (C4)

Then, we can repeat the same thing again for

y2
1 = b2

2 + b2
3 + · · · + b2

n = r2
1 sin2 t1. (C5)

Letting x2
2 = b2

2, y2
2 = b2

3 + · · · + b2
n, r2

2 = r2
1 sin2 t1, we obtain

another level of parameter:

x2 = r2 cos t2, y2 = r2 sin t2. (C6)

Doing this n − 1 times will resolve the parametrization prob-
lem.

The following describes the method to solve the inter-
section problem. Suppose that U = [u1, u2, . . . , un] is an
orthogonal matrix with {u1, u2, . . . , un} forming an orthonor-
mal basis with un = (1, 1, . . . , 1)/

√
n. We then can write

a = Ub =
⎡
⎣ ↑ ↑ ↑

u1 u2 . . . un

↓ ↓ ↓

⎤
⎦

⎡
⎢⎢⎣

b1

b2
...

bn

⎤
⎥⎥⎦. (C7)

From the above expression, we have the following two equa-
tions:

1√
n

= uT
n a = bn,

b2
1 + b2

2 + · · · + b2
n−1 =

√
1 − 1

n
. (C8)

The second equation becomes a problem of an (n − 1)-
dimensional hypercube with radius r = 1 − 1

n . The solution
can be parametrized using the technique discussed above.
Upon parametrizing b, the form of a in Eq. (C7) immediately
satisfies Eq. (C1).
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