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Coherence and realism in the Aharonov-Bohm effect
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The Aharonov-Bohm effect is a fundamental topological phenomenon with a wide range of applications. It
consists of a charge encircling a region with a magnetic flux in a superposition of wave packets having their
relative phase affected by the flux. In this work we analyze this effect using an entropic measure known as
realism, originally introduced as a quantifier of a system’s degree of reality and mathematically related to notions
of global and local quantum coherence. More precisely, we look for observables that lead to gauge-invariant
realism associated with the charge before it completes its loop. We find that the realism of these operators has
a sudden change when the line connecting the center of both wave packets crosses the solenoid. Moreover, we
consider the case of a quantized magnetic-field source, pointing out similarities and differences between the two
cases. Finally, we discuss some consequences of these results.
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I. INTRODUCTION

The magnetic Aharonov-Bohm (AB) effect [1,2] consists
of the influence of a magnetic field encircled by a charge
in the charge’s dynamics, even if it is completely isolated.
The phenomenon is typically discussed in terms of a charge
q traveling an interferometer with an ideal infinitely long and
thin solenoid with an associated magnetic flux �B at its center.
In this case, the charge’s state acquires an extra relative phase
φAB = q�B/h̄ after encircling the interferometer. This effect
was experimentally verified multiple times [3–6], including
the noteworthy experiment by Tonomura et al. in which the
magnetic-field source was shielded by a superconductor [7].

Initially, the AB effect was presented as a concrete man-
ifestation of electromagnetic potentials in quantum theory,
giving them a new status in this domain [2,8]. However, De-
Witt [9] objected to this view, showing that the effect could be
seen in terms of a nonlocal interaction between the charge and
the magnetic field, with no direct reference to potentials [10].
With this, he defended that the discussion should shift from
the role of potentials to local vs nonlocal theories. DeWitt’s
article in fact initiated a debate in the literature [10–12] that
has not been settled yet (see, e.g., [13–24]). Aharonov himself
has changed his view since his seminal paper with Bohm.
Now he describes the effect as a nonlocal interaction between
the field and the charge through modular variables [25–27],
a special type of nonlocality dubbed dynamical nonlocality
[28,29].

In this work we analyze the AB effect from the perspec-
tive of a quantity known as realism, an entropic measure of
definiteness of a property Ô of a system (or a subsystem of a

*ismaellpaiva@gmail.com

larger system) in the state ρ̂. This measure was introduced by
Bilobran and Angelo [30] and entails a generalization of the
so-called Einstein-Podolsky-Rosen element of reality [31]. In
fact, its construction is based on the idea that a nonselective
projective measurement of an observable does not disturb
the measured system if the property associated with it is
definite, i.e., it is established prior to the measurement. As
it will be briefly explained in the next section, although this
measure comes attached to an ontological interpretation, it
mathematically coincides with notion of coherence and, as
a result, is closely related to other important information-
theoretic quantities often considered in the literature.

Since our work is independent of the choice of inter-
pretation, we use realism as a measure of coherence (or
incoherence, as it will be better discussed later), even though
it presumably also quantifies the degree of reality of the sys-
tem. Consequently, at minimum, our work can be seen as an
informational treatment of the AB effect, which is typically
not the approach used in studies of this effect. In fact, the
only work we know that takes a similar route but in a scenario
less generic than the one we present here is Ref. [32], where
the AB effect with Yukawa interaction in the presence of
disclination was investigated. More precisely, here our aim is
to analyze the realism of observables before the charge com-
pletes the AB loop. For that, we consider both the standard
AB effect and the AB effect with a quantized source. In the
standard scenario, we look for observables whose realism is
gauge invariant and, at the same time, can detect the presence
of the magnetic flux. We find a class of such observables. As it
will be seen, a peculiar characteristic of their realism is that it
suffers an abrupt change when the line connecting the center
of both wave packets of the charge crosses the solenoid. This
is an example of application of this measure where a sudden
discontinuous change is present. In the case of a quantized
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source, we discuss the role of reference frames and show
how the analysis of the standard scenario is modified in this
context. We also discuss how our work introduces a useful
framework to the study of dynamical nonlocality.

Besides this introduction, the text is organized as follows.
In Sec. II we present the definition of realism, review some
of its properties, and describe various other definitions of
coherence and other quantum correlations that are equivalent
or related to it. Then we start our informational analysis of
interferometers. First, in Sec. III we consider a standard in-
terferometer, meaning that no magnetic flux is placed on its
interior. Following this, in Sec. IV we study the standard AB
effect, which involves a classical flux. Continuing, in Sec. V
we investigate the AB effect with a quantized flux. Later, in
Sec. VI we discuss how our analysis fits and give insights into
the study of modular variables and dynamical nonlocality. Fi-
nally, in Sec. VII we present our closing remarks. Appendixes
are used to expand some calculations.

II. REALISM AND ITS RELATION TO COHERENCE AND
OTHER INFORMATIONAL MEASURES

Let Ô = ∑
j o jÔ j be a discrete-spectrum observable acting

on HS . Here Ô j = |o j〉 〈o j | is the projector in the direction
of the eigenvectors |o j〉, whose eigenvalue is o j ∈ R. More-
over, let the system of interest, represented by the density
matrix ρ̂, be associated with the Hilbert space HS ⊗ HR.
Then the realism of Ô is said to be defined for the state ρ̂

if �Ô(ρ̂) = ρ̂, where �Ô(ρ̂ ) = ∑
j (Ô j ⊗ 1)ρ̂(Ô j ⊗ 1) is a

projection-valued measure.
Based on this idea, an entropic measure that quantifies

the indefiniteness of a property Ô for a given state ρ̂ can be
introduced as

IÔ(ρ̂) ≡ min
�̂

S(ρ̂||�Ô(�̂)) = S(�Ô(ρ̂)) − S(ρ̂), (1)

where S(ρ̂||σ̂ ) = tr[ρ̂(log ρ̂ − log σ̂ )] is the relative entropy
and S(ρ̂ ) = −tr(ρ̂ log ρ̂ ) is the von Neumann entropy, where
the base of the logarithm can be chosen by convenience. This
measure is known as irrealism. Observe that it depends on the
context given by states and observables. Moreover, it satisfies
0 � IÔ(ρ̂) � log dS , where dS = dim HS , and it vanishes if
and only if ρ̂ = �Ô(ρ̂). From the definition of irrealism, it is
also possible to introduce a measure of realism

RÔ(ρ̂) ≡ log dS − IÔ(ρ̂), (2)

which quantifies how definite a property Ô is for a given state
ρ̂. If the realism of an operator is maximal for a given system’s
state or, equivalently, the associated irrealism vanishes, it is
said that the system has an element of reality for the respective
property.

Naturally, one can envision the employment of different
types of entropy other than the von Neumann entropy to quan-
tify realism or irrealism. In fact, it has recently been shown
that other entropic measures can be found to partially satisfy a
set of physically motivated axioms of realism [33]. However,
it turns out that only the measure induced by the von Neumann
entropy used in Eq. (2) is known to respect all the axioms
proposed.

Moreover, a metric different from the relative entropy
might be used to quantify how close a state under scrutiny
is to a state that has its elements of reality well defined.
Nevertheless, the use of relative entropy is convenient because
it allows insightful connections between realism or irrealism
and other information-theoretic quantities. To start, it can be
shown that [30]

IÔ(ρ̂) = CÔ(ρ̂S ) + DÔ(ρ̂), (3)

where CÔ(ρ̂S ) ≡ S(�Ô(ρ̂S )) − S(ρ̂S ) is the coherence of ρ̂S

on the eigenbasis of Ô [34], DÔ(ρ̂) ≡ IS:R(ρ̂) − IS:R(�Ô(ρ̂))
is the nonminimized quantum discord, and IS:R(ρ̂) = S(ρ̂S ) +
S(ρ̂R) − S(ρ̂ ) is the quantum mutual information. Clearly,
for completely separable states the irrealism reduces to the
amount of quantum coherence, showing that coherence is
sufficient to preclude classical reality [33].

In addition, from the strong subadditivity of the von
Neumann entropy, it holds that S(ρ̂) + S(�Ô(�Ô′ (ρ))) �
S(�Ô(ρ̂)) + S(�Ô′ (ρ̂)) for a pair of observables Ô and Ô′
associated with mutually unbiased bases (MUBs). Since, in
this case, S(�Ô(�Ô′ (ρ̂))) = S(1/dS ⊗ ρ̂R) = log dS + S(ρ̂R),
it follows that [35,36]

RÔ(ρ̂ ) + RÔ′ (ρ̂ ) � log dS + S(ρ̂S ) − IS:R(ρ̂). (4)

Then correlations between two subsystems deny quantum
systems from reaching full realism for a pair of maximally
incompatible observables. Moreover, for pure bipartite states,
this upper bound reduces to log dS − E(ρ̂), where E(ρ̂) =
S(ρ̂A) is the entanglement entropy.

Realism was experimentally assessed with nuclear mag-
netic resonance techniques in the context of Wheeler’s
delayed-choice quantum experiments [36] and with photonic
weak measurements [37] in the study of the emergence of
realism upon monitoring [38,39]. This measure was also
employed in the theoretical study of several other concepts
and frameworks, such as nonlocality [40–43], quantum walks
[44], resource theory [45], monitoring under weak measure-
ments [46], and continuous-variable systems (via operational
discretization) [35] with an application to matter-wave inter-
ferometry [47].

To point out more connections between realism and other
concepts from quantum information, we first note that, had
only information about system S been available, i.e., if the
state of the system was ρ̂S ≡ trR(ρ̂), the irrealism IÔ(ρ̂S ) of
Ô associated with ρ̂S would reduce to the coherence CÔ(ρ̂S ),
also known as relative entropy of superposition [48]. This
quantity was also shown to correspond to the distillable
coherence of ρ̂S [49]. More generally, IÔ(ρ̂) was dubbed
quantum-incoherent relative entropy in Ref. [50], where its
role in assisted coherence distillation was investigated, and
measurement-dependent thermal discord in Ref. [51]. Irreal-
ism can also be seen as a type of G asymmetry in the context
of frames of reference [52,53].

It should be noted that works related to coherence tend to
consider a single fixed basis. In the literature of realism, how-
ever, individual studies often consider multiple bases, since
each basis is more directly identified with a given property
of the system. This is the main reason for the preference of
phrasing our results in terms of realism here.
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FIG. 1. Three interferometers studied with entropic quantities
in this work. (a) First, a standard interferometer, where a system
travels in a superposition of wave packets in the left and right arms,
represented by the states |0〉 and |1〉, respectively, is considered.
(b) Then the analysis moves to the case where a source of magnetic
flux �B, say, a solenoid, is added to the center of the interferometer.
(c) Finally, the classical magnetic flux �B is replaced by a quantized
flux �̂B, proportional to the angular momentum L̂z of a rotating
cylinder.

III. STANDARD INTERFEROMETERS

Consider the interferometer represented in Fig. 1(a). A
quantum particle, associated with the Hilbert space HS , travels
the interferometer in a superposition of wave packets, one in
the left arm, represented by the state |0〉, and the other in the
right arm, represented by |1〉. For now, we do not assume the
particle to be a charge. Moreover, for simplicity, we assume
the initial state of the particle as soon as it enters the loop is

|ψi〉 = 1√
2

(|0〉 + |1〉). (5)

While in the loop, its state can be represented by

|ψ0(θ )〉 = 1√
2

[|0〉 + ei f (θ )|1〉], (6)

where f (θ ) is the relative phase between the wave packets
after each wave packet traveled an angle θ in opposite arms.
It may include, for instance, effects of phase shifters or other
local potentials. In the introduced notation, θ is 0 when the
wave packets enter the loop and grows monotonically until π ,
when the packets interfere.

In the case of a system in a pure state, like the one of inter-
est here, it can be checked that IÔ(ρ̂) = S(�Ô(ρ̂ )) and hence
RÔ(ρ̂ ) = log dS − h( 	O), where h( 	O) ≡ −tr(

∑
k Ok log Ok ) is

the Shannon entropy with 	O = (Ok ) the vector whose compo-
nents are the eigenvalues of �Ô(ρ̂ ). Since we are analyzing
two-level systems, we can work with base-2 logarithms and
write

RÔ(ρ̂) = 1 − h(λ), (7)

where the notation has been simplified with h(λ) ≡
−λ log2 λ − (1 − λ) log2(1 − λ).

With this, observe that the realism associated with σ̂z while
the system is inside the interferometer is insensitive to the
relative phase. In fact, writing ρ̂S ≡ |ψ0(θ )〉〈ψ0(θ )| and ob-
serving that �σ̂z (ρ̂S ) = 1/2, we obtain Rσ̂z (ρ̂S ) = 0. This is
not a surprise since, in our analysis, σ̂z is associated with

local properties on each arm (its eigenstates correspond to the
particle being in a given arm) and the relative phase, as the
name already says, is a nonlocal property, in the sense of being
a relative quantity between the arms.

However, the realism of, say, σ̂x is sensitive to the relative
phase. In fact, as shown in Appendix A, it is given by Eq. (7)
with λ = {1 + cos[ f (θ )]}/2.

More generally, we can define the operator

σ̂g(θ ) ≡ e−ig(θ )|0〉〈1| + eig(θ )|1〉〈0| (8)

for an arbitrary real function g. In this case, Appendix A shows
that Rσ̂g (ρ̂S ) is given by Eq. (7) with λ = {1 + cos[ f (θ ) −
g(θ )]}/2, which generally is also a function of the relative
phase. Observe that g ≡ 0 gives σ̂x and g ≡ π/2 gives σ̂y.

Also, if g = f + δ, where δ is a constant, the realism does
not depend on the relative phase f . It is constant inside the
interferometer. The case δ = 0 leads to Rσ̂ f (θ )(ρ̂S ) = 1. In
Fig. 2(a), this behavior is juxtaposed with the realism of σ̂x, σ̂y,
and σ̂z for f (θ ) = θ/3. In Ref. [36] an operator corresponding
to σ̂ f (θ ) was called a wave operator in contrast to σ̂z, which
was named a particle operator.

Moreover, it is notable that, in a sense, each operator in
the family σ̂g(θ ) indexed by functions g is a counterpart of the
modular momentum [28,29] (see also Sec. II of Ref. [54] for
a short introduction to the concept), which is an example of
an observable associated with dynamical nonlocality, briefly
mentioned in the Introduction. Simply put, this quantity is
defined as P̂mod ≡ P̂ modh̄/L for a certain length L ∈ R+.
However, periodic functions of it with periods associated with
its modularity, which are also modular variables, are the most
commonly studied modular operators because they are mathe-
matically simpler since they allow the replacement of P̂mod by
P̂ in their argument. For instance, eiP̂modL/h̄ = eiP̂L/h̄ and its real
and imaginary parts are Hermitian modular variables. Then,
even in the standard treatment of these variables, a multitude
of modular operators can be associated with modular momen-
tum (or functions thereof), similarly to the family σ̂g(θ ).

Modular variables were introduced in a search for opera-
tors whose expectation values are a function of relative phases
of the wave function [28,29]. Modular momentum, in particu-
lar, is suitable to the study of interference phenomena because,
if L corresponds to the separation between two wave packets
in superposition, its expectation value is a function of the
relative phase accumulated by them [55]. Because operators
in the family σ̂g(θ ) satisfy this central property, we refer to
them as counterparts of the modular momentum.

IV. THE AB EFFECT WITH A CLASSICAL
MAGNETIC FLUX

Consider now the scenario just studied with two key differ-
ences: The system traveling in the interferometer is assumed
to be a charge and, moreover, a solenoid perpendicular to the
interferometer plane is placed at its center, as represented in
Fig. 1(b). In this case, the AB effect adds a contribution to
the relative phase between the superposed wave packets of the
charge in such a way that its state after the wave packets are
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FIG. 2. Realism of selected observers in the standard and Aharonov-Bohm interferometers. (a) In a standard interferometer, relative phases
can be acquired along the way. The state of the system after its wave packets traveled an angle θ on each arm is (|0〉 + ei f (θ ) |1〉)/

√
2. In this

case, the realism of σ̂z, which is associated with the definiteness of position, vanishes. Also, the realism of σ̂x , σ̂y, and combinations thereof
generally depends on the relative phase f (θ ). However, special combinations, like the operator σ̂ f +δ (θ ), where δ ∈ [0, π/2], constructed from
the definition in Eq. (8), are associated with a constant realism throughout the interferometer. The graph shows the behavior of the realism of
these observables as a function of θ for the case where f (θ ) = θ/3 and δ = 0. (b) In the AB interferometer with a classical flux, the relative
phase gains an extra gauge-dependent term. As a result, the realism of σ̂x , σ̂y, and their combination is typically a quantity without physical
meaning. However, the realism of σ̂

	A
g (θ ) defined in Eq. (11) is gauge independent. Notably, there is a discontinuous change in the realism of

operators of this type once the (virtual) line connecting the center of both wave packets crosses the localized flux. The graph shows the realism
of σ̂z, σ̂

	A
x (θ ) ≡ σ̂

	A
f (θ ), and σ̂

	A
y (θ ) ≡ σ̂

	A
f +π/2(θ ) in the case where the AB phase is φAB = π/5. (c) Analysis of the difference of the realism of

each σ̂
	A
f +δ (θ ) after the line crosses the flux by its value before that reveals the pattern associated with these jumps.

separated by an angle θ is

|ψ (θ )〉 = 1√
2

(|0〉 + ei[ f (θ )+w(θ )]|1〉), (9)

where

w(θ ) ≡ q

h̄

(∫
γ1(θ )

	A · d	s −
∫

γ0(θ )

	A · d	s
)

, (10)

with γ0 and γ1 the paths associated with the left and right
arms, respectively. The phase w, however, depends on the
choice of gauge. Then, based on the discussion of the preced-
ing section, it is immediate that the realism of σ̂z still vanishes.
Moreover, the realism of σ̂g is given by Eq. (7) with λ =
{1 + cos[ f (θ ) + w(θ ) − g(θ )]}/2 and therefore is generally a
gauge-dependent quantity. This leads to the conclusion that
this observable does not provide a realism that has a physical
meaning, which can be understood as the operator itself not
having physical meaning.

However, consider the operator

σ̂
	A

g (θ ) ≡ exp

[
−i

(
g(θ ) − q

∫
τ (θ )

	A · d	s
h̄

)]
|0〉〈1|

+ exp

[
i

(
g(θ ) − q

∫
τ (θ )

	A · d	s
h̄

)]
|1〉〈0|, (11)

where τ (θ ) is a line connecting the wave packet on the right-
hand side to the wave packet on the left-hand side when they
are separated by an angle θ . The dependence of σ̂

	A
g (θ ) on the

vector potential is analogous to the fact that, in the presence
of electromagnetic systems, the kinematic momentum also
depends on this quantity.

We can also justify the choice of path τ . As already men-
tioned in the case of interferometers without the AB effect,
the family of operators σ̂g(θ ) indexed by g is analogous to

the modular (canonical) momentum in the standard treatment
of the problem with continuous variables. In this scenario,
the canonical momentum has a clear physical meaning be-
cause it coincides with the kinetic momentum. However, in
scenarios where the AB effect is manifest, this equivalence no
longer holds. Then the modular kinetic momentum, associated
with 	P − q 	A(	r), where 	P = P̂xx̂ + P̂yŷ in our two-dimensional
study, becomes the relevant quantity.

An operator typically considered in this case is
ei[ 	P−q 	A(	r)]·	L/h̄, where 	L = 	r1 − 	r0 is the distance between
the wave packet located at 	r1 and the wave packet located
at 	r0. The real and imaginary parts of this modular variable
are Hermitian operators, but the exponential form is used to
simplify calculations. Then, noting that

exp

(
iq

∫
γ (	r)

	A · d	s
h̄

)
( 	P · 	L) exp

(
−iq

∫
γ (	r)

	A · d	s
h̄

)

= [ 	P − q 	A(	r)] · 	L
h̄

(12)

for an arbitrary curve γ , it follows that [25]

ei[ 	P−q 	A(	r)]·	L/h̄ = exp

(
−iq

∫
τ(	r)

	A · d	s
h̄

)
ei 	P·	L/h̄, (13)

where τ(	r) is a line connecting 	r to 	r + 	L. In other words,
in a generic scenario with continuous variables, the modular
kinetic momentum of interest becomes the product of the
standard modular canonical momentum by exp(−iq

∫
τ(	r)

	A ·
d	s/h̄). Importantly, the line τ originates from the identity in
Eq. (13).

Now that our choice of path τ has been explained,
we can proceed to the analysis of the realism of σ̂

	A
g (θ )

for the system of interest. For this, we can again use the
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results of Appendix A to conclude that R
σ̂ 	A

g (θ )(ρ̂S ) reduces
to the expression in Eq. (7) with λ = {1 + cos[ f (θ ) − g(θ ) +
q�enc/h̄]}/2, where

�enc ≡
∫

γ1(θ )

	A · d	s −
∫

γ0(θ )

	A · d	s +
∫

τ (θ )

	A · d	s (14)

refers to the flux encircled by the closed path τ + γ1 − γ0.
Observe that, before τ crosses the solenoid, i.e., for

θ < π/2, �enc = 0. Hence, λ = {1 + cos[ f (θ ) − g(θ )]}/2.
However, for θ > π/2, λ = {1 + cos[ f (θ ) − g(θ ) + φAB]}/2.
This means that in general there exists a discontinuous change
in R

σ̂ 	A
g (θ )(ρ̂S ) once the line connecting the center of the wave

packets crosses the solenoid, as illustrated in Fig. 2(b).
Like in the study of the standard interferometer, the subset

of {σ̂ 	A
g (θ )} characterized by g = f + δ is of special interest.

While the realism of these operators still depends on the
relative phase of the charge’s state, they depend only on the
portion added by the AB effect. Then they do not change
inside the interferometer, except when the line connecting
the wave packets crosses the flux. In particular, in the case
δ = 0, for which we define σ̂

	A
x (θ ) ≡ σ̂

	A
f (θ ), it follows that

R
σ̂ 	A

x (θ )(ρ̂S ) = 1 for θ < π/2 and the expression in Eq. (7)
with λ = [1 + cos(φAB)]/2 for θ > π/2. In other words, the
realism of σ̂

	A
x (θ ) starts with maximal value before the line τ

crosses the solenoid and generally drops after that. Moreover,
if δ = π/2, the realism operator σ̂

	A
y (θ ) ≡ σ̂

	A
f +π/2(θ ) has an

opposite (but not complementary) behavior of the realism of
σ̂

	A
x (θ ). In fact, it vanishes for θ < π/2 and has a sudden

increase to the value in Eq. (7) with λ = [1 − sin(φAB)]/2
after that. These behaviors are represented in Fig. 2(b) for
φAB = π/5.

We can also compute the change associated with the real-
ism jump of each operator {σ̂ 	A

f +δ (θ )}:

�R
σ̂ 	A

f +δ
(θ )(ρ̂S ) = h

(
1 + cos(δ)

2

)
− h

(
1 + cos(φAB − δ)

2

)
.

(15)

This quantity, graphed in Fig. 2(c), consists of the difference
between the realism after θ = π/2 and before that. Observe
that it vanishes for δ = φAB/2.

V. THE AB EFFECT WITH A QUANTUM MAGNETIC FLUX

Now we consider the scenario depicted in Fig. 1(c), which
corresponds to the AB effect with a quantized source of mag-
netic field. This type of study, where the source or the field
gets a quantum treatment, is of vast interest in the literature
[14–16,20–22,24,56–59]. We follow the approach introduced
in Ref. [57] and studied in postselected scenarios in Ref. [60],
where the source of the magnetic field is an infinitely long
cylindrical shell with a moment of inertia Ic and angular
momentum L̂z (associated with the Hilbert space HR). Thus,
in this configuration, the cylinder is analogous to an infinite
solenoid.

The Hamiltonian of such a cylinder and a charge q with
mass m and moment of inertia Iq moving in the xy plane can

be furnished as [57]

Ĥ = 1

2m
P̂2

r + 1

2Iq

(
P̂θ − qK

2π
L̂z

)2

+ 1

2Ic
L̂2

z , (16)

where K is a constant inversely proportional to Ic and Pr and
Pθ are, respectively, the canonical radial and angular momen-
tum of the charge. Observe that the standard vector potential
is replaced by an interaction term that contains the operator
vector potential 	A = (K/2πr)L̂zθ̂ , which is similar in form to
the Coulomb or Lorenz gauge. Also, the associated magnetic
flux is �̂B = KL̂z. In these expressions, r is the distance be-
tween a point and the center of the cylinder and θ̂ is the unit
vector in the angular direction and not an operator.

One may ask how this Hamiltonian transforms under the
choice of a different gauge. This was the main question inves-
tigated in Ref. [57]. For completeness, we briefly summarize
the authors’ approach and results. Starting with a classical
Lagrangian treatment, they observed that nontrivial changes
of gauges add a term to the Lagrangian that depends on the
second time derivative of the angular variable η of the cylin-
der. Because of this and in order to obtain the Hamiltonian
of the joint system, a new variable corresponding to the first
time derivative of η is introduced. This new variable and η

are treated as independent in the Legendre transform. The
resultant Hamiltonian then should satisfy a constraint. This
constraint can be solved either before the quantization of
the system (with a process known as reduced quantization)
or after that (with a method known as Dirac quantization)
[61–63]. The authors used reduced quantization and observed
that, in the final version of the Hamiltonian, the charge and
the cylinder are not separable systems. More specifically, the
momentum of the cylinder turned out to be the momentum
conjugated to a coordinate resultant from a linear combina-
tion of η and θ . Then different gauges should be associated
with different choices of classical coordinates to describe the
system. With this in mind, we assume the usual coordinates
in our treatment, i.e., η and θ , which lead to a mathematically
simpler Hamiltonian with the operator vector potential written
in the Coulomb gauge.

A generic angular momentum state of the cylinder can
be written as |ξ 〉 = ∑

m�∈��
cm�

|m�〉, where �� ≡ {−�,−� +
1, . . . , 0, . . . , � − 1, �}, cm�

are complex coefficients, and
|m�〉 is an eigenstate of Lz with eigenvalue m�h̄. Then the
state of the joint system while the charge is inside the
interferometer is

|�(θ )〉 =
∑

m�∈��

cm�
eigm�

(θ )

√
2

(|0〉 + ei[ f (θ )+Kqm�θ/π] |1〉) ⊗ |m�〉 ,

(17)

where gm�
is related to a global phase due to the AB effect

associated with m� and, moreover, the free evolution of the
cylinder. We also define ρ̂ ≡ |�(θ )〉 〈�(θ )|. Then the reduced
state of the charge can be written as

ρ̂S = 1

2

(
1S +

∑
m�∈��

|cm�
|2(e−i[ f (θ )+Kqm�θ/π] |0〉 〈1|

+ ei[ f (θ )+Kqm�θ/π] |1〉 〈0|)
)

, (18)
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FIG. 3. Lack of coherence of the charge’s reduced state in the
eigenbases of selected observables. Since this quantity corresponds
to the realism of these observables had only information about the
charge been known, we refer to it as the realism of the charge. The
solid line represents the scenario with a classical flux �B = 5Kh̄/2
and φAB = π/5. The other curves correspond to scenarios with a
quantized flux, associated with the angular momentum L̂z of a cylin-
der with � � 6. While the average initial flux in all cases is also �B,
each preparation is given by distinct even superpositions of the indi-
cated subset of eigenstates of L̂z. For instance, m� = 2, 3 corresponds
to the cylinder being prepared in the state (|2〉 + |3〉)/

√
2. (a) Entan-

glement between the particle and the cylinder increases the realism
of σ̂z, i.e., the realism of σ̂z after the cylinder is traced out. The same
analysis holds for the realism of (b) σ̂x and (c) σ̂y. (d) Furthermore, in
the case with a quantized flux, it is not possible to find local operators
that are analogous to the σ̂

	A
f +δ (θ ) previously considered. Instead,

one can only construct a similar operator associated with each m�

or linear combinations of them. The graph shows the realism of the
operator associated with m� = −1 as a function of θ .

which corresponds to a proper statistical mixture of a sys-
tem affected by vector potentials 	Am�

= (Kh̄m�/2πr)θ̂ , which
have an associated magnetic flux �

m�

B = Kh̄m�.
Since �σ̂z (ρ̂S ) = 1S/2, the realism1 associated with σ̂z,

when ignoring the cylinder, is Rσ̂z (ρ̂S ) = h(λ0), with

λ0 ≡ 1

2

⎛
⎝1 −

∣∣∣∣∣∣
∑

m�∈��

|cm�
|2e−i[ f (θ )+Kqm�θ/π]

∣∣∣∣∣∣
⎞
⎠. (19)

1Strictly speaking, this quantity is the incoherence of ρ̂S in a given
basis. However, since it equates to the realism of the associated
operator had only system S been known, we simply refer to it as
realism of the associated operator for ρ̂S .

Observing that the entanglement entropy of ρ̂ is E(ρ̂) =
h(λ0), we note that the realism of σ̂z for ρ̂S reduces to this
quantity. In other words, due to correlations between the
charge and the cylinder, there is an increase in the realism
of σ̂z associated with ρ̂S relative to the interferometer the AB
effect with a classical flux. This is represented in Fig. 3(a).

Observe that this realism has a dependence on a phase that
is related to the Coulomb gauge. In fact, as we have men-
tioned, the choice of coordinates fixed the electromagnetic
gauge. This result is consistent with the fact that entanglement
is reference-frame dependent [64–66].

Similarly, we conclude that the realism associated with σ̂x

is Rσ̂x (ρ̂S ) = 1 + h(λ0) − h(λ), with

λ = 1

2

⎡
⎣1 −

∑
m�∈��

|cm�
|2 cos

(
f (θ ) + Kqm�θ

π

)⎤⎦. (20)

Neglecting the term h(λ0), this is closely related to the result
we obtained with a classical source. However, here, we repeat,
the choice of coordinates fixed the electromagnetic gauge.
This is illustrated in Fig. 3(b). See also Fig. 3(c) for the realism
of σ̂y.

Moreover, it can be verified that∫
τ (θ )

	Am�
· d	s = Kh̄m�π

−1
[
π�

(
θ − π

2

)
− θ

]
, (21)

where � denotes the Heaviside step function. As a result, for
each m�, the counterpart of the operator σ̂

	A
x (θ ) is

σ̂
	Am�

x (θ ) = e−i{ f (θ )−Kqm�[π�(θ−π/2)−θ]/π} |0〉 〈1|
+ ei{ f (θ )−Kqm�[π�(θ−π/2)−θ]/π} |1〉 〈0| . (22)

An example of realism of this class of operators can be seen
in Fig. 3(d).

However, when restricted to the state of system S alone,
it is not possible to prepare an operator whose realism does
not depend on the choice of coordinates. In fact, this is only
possible in the case of weak interactions. This scenario refers
to cases where the charge and the cylinder remain at least ap-
proximately separable throughout their interaction and hence∑
m�∈��

|cm�
|2e±iKqm�[π�(θ−π/2)−θ]/π ≈ e±iKq〈L̂z〉[π�(θ−π/2)−θ]/π h̄,

(23)

where 〈L̂z〉 = h̄
∑

m�∈��
|cm�

|2m�. This allows us to define an

analog of σ̂
	A

x (θ ) independent of m�. It includes, in particular,
the case in which the cylinder is prepared in an eigenstate of
L̂z. A more detailed analysis of the weakly interacting scenario
can be found in Ref. [60]. For the present work, it is important
to note that h(λ0) = 0 in this case, which makes every realism
identical to their expression in the study of the AB effect with
a classical source with magnetic flux �B = K〈L̂z〉.

In the general case, however, we can define a counterpart
of σ̂

	A
x (θ ) as an operator that acts on both systems S and R.

More precisely,

�̂x(θ ) ≡
∑

m�∈��

σ̂
	Am�

x (θ ) ⊗ |m�〉 〈m�| . (24)
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FIG. 4. Realism of �̂x (θ ) and �̂y(θ ) for the joint state of the
charge and cylinder in the case of � = 6 and qK = 2π/25. The
shaded area represents the region where the realism of observables
of the charge alone may lie if considered on the same scale as the
realism of observables that are nontrivial in both systems. Their mini-
mum value is log26 13 in the illustrated example. The operators �̂x (θ )
and �̂y(θ ) are analogous to σ̂

	A
x (θ ) ≡ σ̂

	A
f (θ ) and σ̂

	A
y (θ ) ≡ σ̂

	A
f +π/2(θ ),

respectively, in the case of a classical flux.

The realism of this and other similar operators
can be computed using base-(4� + 2) logarithms as
RÔ(ρ̂ ) = 1 − IÔ(ρ̂). Then, following the derivation
in Appendix B, we conclude that, for θ < π/2,
R�̂x (θ )(ρ̂) = 1 − h( 	C), where 	C = (|cm�

|2). Moreover, for

θ > π/2, R�̂x (θ )(ρ̂) = 1 − h( 	C) − ∑
m�∈��

|cm�
|2h(λm�

),
where λm�

= [1 + cos(q�
m�

B /h̄)]/2. This is illustrated in
Fig. 4(a).

Similarly, we can define �̂y(θ ) as

�̂y(θ ) ≡
∑

m�∈��

σ̂
	Am�

y (θ ) ⊗ |m�〉 〈m�| . (25)

Then a simple adaptation of the computation in
Appendix B leads to R�̂y (θ )(ρ̂) = 1 − log4�+2 2 − h( 	C) if

θ < π/2 and R�̂x (θ )(ρ̂) = 1 − h( 	C) − ∑
m�∈��

|cm�
|2h(λm�

)
with λm�

= [1 − sin(q�
m�

B /h̄)]/2 if θ > π/2. See Fig. 4(b)
for an explicit example.

Finally, since σ̂z is insensitive to the presence of the mag-
netic flux, its analog for the joint system is simply σ̂z ⊗ 1R.
Then, for completion, we can also compute the realism of
σ̂z associated with the whole ρ̂. As shown in Appendix C,
when calculated in the same scale used to calculate the real-
ism of �̂x(θ ) and �̂y(θ ), it can be concluded that Rσ̂z (ρ̂) =
log4�+2(2� + 1) for every θ , which is the minimum value for
a realism of a local observable in this scale, as discussed in
Fig. 4. Moreover, when computed in the same scale used in
Sec. IV, i.e., with base-2 logarithms, we obtain Rσ̂z (ρ̂) =
0 for every θ , just like in the AB effect with a classical
flux.

VI. REALISM AND MODULAR VARIABLES

As we have already discussed, the operators σ̂g(θ ) intro-
duced in Sec. III are counterparts of the modular variable
of (canonical) momentum. This coincides with the modular

kinetic momentum when magnetic fields are not taken into
consideration. However, when a classical source of magnetic
field is at play, the analogs of the modular kinetic momentum
become the operators σ̂

	A
g (θ ) presented in Sec. IV.

The report of the sudden change in the realism of the
latter observed here is unusual for this type of behavior in
the literature of realism. While, on the one hand, this is a
surprising result, it is, on the other hand, a generic feature
of topological effects. In fact, discontinuous changes of some
relevant quantities are not uncommon to topological effects.
Moreover, this characteristic is in line with a previous study
of the expectation value of the modular kinetic momentum
presented in Ref. [25].

It should be noted that, although modular variables
find applications in continuous-variable quantum information
processing [67–69], they were first introduced to explain inter-
ference phenomena in the original description of Heisenberg
for quantum mechanics. In this description, a quantum particle
is assumed to always be localized, even if its location cannot
be known. This makes quantum interference a particularly
challenging phenomenon to explain. With modular variables,
however, an explanation is possible in terms of operators
whose Heisenberg dynamics presents some sort of nonlocal
dependence on remote points in space [28,55]. Even though
this interpretation is not necessary to work with these quan-
tities, we show that it can be conciliated with the analysis of
realism.

To start, we first discuss a form of self-consistency in the
study of modular variables. In fact, these variables satisfy a
principle known as the complete uncertainty principle [29,55],
which states that a (continuous and dimensionless) modular
variable �̂ is maximally uncertain if and only if the expec-
tation value of ein�̂ vanishes for every n ∈ N. This implies
that, when information about, say, the position of a particle is
obtained, its modular momentum becomes completely uncer-
tain, which can be seen as the reason for the destruction of the
interference pattern later on.

This result has an analog for the operators considered
here: The expectation value of every operator in the family
σ̂

	A
g (θ ) [or σ̂g(θ )] vanishes if and only if they are maximally

uncertain. In fact, the uncertainty of an operator Ô is �Ô ≡√
〈Ô2〉 − 〈Ô〉2 and in the case of the operators we are consid-

ering Ô2 = 1. As a result, �Ô =
√

1 − 〈Ô〉2, which reaches
its maximal value if and only if 〈Ô〉 = 0. Observe that the
latter is the case for the operators of the families σ̂

	A
g (θ ) or

σ̂g(θ ) if and only if �σ̂z (ρ̂) = ρ̂.
Now, realism measures the degree of definiteness of a

property of the system. Then, in a way, it also quantifies the
amount of disturbance that is induced by a measurement of the
observable under scrutiny: The greater the realism, the smaller
the disturbance [38,70–72]. As a result, the complete uncer-
tainty principle for the scenario of interest in this work can be
understood as an association between the degree of knowledge
about the position of a particle inside an interferometer (i.e.,
the realism of σ̂z) and the vanishing of the realism of the
corresponding modular variable [i.e., σ̂g(θ ) or σ̂

	A
g (θ )]. This

in turn can be seen as a consequence of the complementarity
between the realism of σ̂z and σ̂g(θ ) [or σ̂

	A
g (θ )]. In fact, using
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base-2 logarithms, Eq. (4) leads to

Rσ̂z (|ψS〉 〈ψS|) + R
σ̂ 	A

g (θ )(|ψS〉 〈ψS|) � 1 (26)

for an arbitrary pure state |ψS〉 of a system traveling the
interferometer. This means that the realism of both σ̂z and
σ̂

	A
g (θ ) cannot be simultaneously maximal. Observe that in the

particular state of the system we considered, this relation is
trivial since Rσ̂z vanishes. A similar relation holds for the
realism of σ̂z and σ̂g(θ ).

Nevertheless, we note that the usual perspective that is
taken in the literature of realism is that, whenever irrealism
vanishes, there is an element of reality associated with the
observable for the system of interest. If this perspective is
assumed, the results presented here can be read as a statement
that the AB effect implies a discontinuous change in physi-
cal reality. However, it should be pointed out that this view
implies a philosophical departure from the original picture of
Heisenberg for quantum theory, which was the original moti-
vation for the introduction of modular variables. Moreover, it
would be interesting to understand how this notion relates to
other results on the reality of quantum states. For instance,
does the Pusey-Barrett-Rudolph theorem [73], which states
that quantum states cannot be purely epistemic, have any im-
plications to the usual interpretation of realism? This type of
question deserves a deeper analysis in a future investigation,
with possible interpretational implications for this work and
the entire literature of realism. However, we emphasize that
the main results presented here are independent of choices of
interpretation.

An aspect that has not been previously highlighted in
the literature but is noteworthy is that the complementarity
principle, a cornerstone in the study of realism, is one of
the consequences of entropic uncertainty relations [74]. In
particular, Eq. (26) follows from the fact that S(�σ̂z (ρ̂S )) +
S(�

σ̂ 	A
g (θ )(ρ̂S )) � 1.

More generally, the entropic uncertainty relation associ-
ated with an arbitrary pair of observables Ô and Ô′ can be
written as S(�Ô(ρ̂S )) + S(�Ô′ (ρ̂S )) � log(1/c), where c ≡
max j,k |〈o j |o′

k〉|2, with |o j〉 and |o′
k〉 denoting eigenstates of Ô

and Ô′, respectively [75–77]. In the case of bipartite systems,
this relation becomes [78]

S(�Ô(ρ̂ )) + S(�Ô′ (ρ̂)) � log

(
1

c

)
+ SS:R(ρ̂), (27)

where SS:R(ρ̂) ≡ S(ρ̂ ) − S(ρ̂R) is the conditional entropy.
This implies that

RÔ(ρ̂) + RÔ′ (ρ̂) � log
(
d2

S c
) + S(ρ̂ ) + S(ρ̂R), (28)

which can be seen as a generalization of Eq. (4) for an
arbitrary pair of observables (and not only pairs associated
with MUBs). However, for MUBs, this bound is not as tight
as the one in Eq. (4) since, in this case, Eq. (28) gives
RÔ(ρ̂ ) + RÔ′ (ρ̂) � log dS + S(ρ̂ ) + S(ρ̂R).

Before concluding this section, it should be mentioned that
one of the objectives of approaches like the one presented here

is that they may lead to a connection between the dynamical
nonlocality associated with modular variables and the more
common kinematic nonlocality such as the one present in
Bell scenarios [79]. The latter has the benefit of admitting a
device-independent formulation leading to bounds that allow
their certification. The former, which explicitly depends on
the specific dynamical equations of motion, generates more
controversy. In our study, however, we have presented an
analysis involving modular operators and their relation with
other informational quantities. This may help to elucidate
their meaning. Moreover, in the case of a quantized flux, the
best analogs of the modular kinetic momentum consist of
operators of the type defined in Eqs. (24) and (25), which is
a joint property of the charge and the flux. Using an analogy
with controlled gates in quantum circuits, these operators are
like properties of the charge controlled by the flux source’s
state. Then it seems that there is an interplay between dynam-
ical nonlocality and the more common kinematic nonlocality.
Since the AB effect is what generates the entanglement be-
tween the systems, one could even state that, apparently,
dynamical nonlocality generates kinematic nonlocality in this
case. This suggests the possibility of a study on how the
former can be used as a resource to generate the latter (and,
potentially, vice versa [80]). This investigation is left for fu-
ture work.

VII. CONCLUSION

We have analyzed the AB effect before the charge com-
pletes a full loop from a quantum informational perspective,
mainly focusing on the realism measure. In the case of a
classical flux, we have shown that the operators σ̂z and the
family σ̂

	A
g (θ ) indexed by functions g are associated with

gauge-independent realism. The latter is particularly relevant
because these observables are sensitive to the presence of
magnetic flux. We have also considered the effect with a
quantized flux. In this case, an analog of σ̂

	A
g (θ ) can only

be found in the case of weak interactions or if the operator
includes degrees of freedom of the source. More specifically,
in the case of arbitrary interaction strength, the counterpart of
σ̂

	A
g (θ ) consists of operations controlled by the eigenstates of

the angular momentum of the cylinder, such as the operators
in Eqs. (24) and (25).

Still in the case of a quantized flux, we have observed that
the entanglement increases the realism of the local observers
that continue to be well defined in this scenario. This is the
case because the entanglement between the two systems is
associated with one having some information about the other.
In particular, measurements of the flux can partially define the
realism of the position of the charge. This is similar to the
complementarity between information and realism introduced
in Ref. [38].

This work promotes the study of modular variables and
the concept of dynamical nonlocality from the perspective
of quantities more familiar to quantum information theory.
This was done with an entropic analysis of counterparts of
these variables. Although realism was the chosen quantity,
various other coherence measures would lead to equivalent or
similar conclusions, as explained in Sec. II. We hope that this
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line of research will eventually lead to the establishment of a
connection or a systematic differentiation between dynamical
and kinematic nonlocality.

In principle, the results presented here can be experimen-
tally realized. In this regard, changes associated with modular
variables in interferometers were already observed in different
platforms [81–83]. Also, an experiment has been proposed to
measure the alteration in modular kinetic momentum in an AB
loop [84]. Furthermore, experimental assessment of realism
within interferometers in the study of wave-particle duality
has been recently conducted [36]. A similar approach, in an
appropriate platform, can be used to evaluate the results of
this article.

It is also noteworthy that other geometric and topological
phases [85–88], including, e.g., the Aharonov-Casher effect
[89], can also be analyzed using the same method as the one
in this work. However, as we have already seen, this approach
is particularly relevant in cases involving relative phases that
are gauge dependent.

Moreover, to focus on fundamental aspects, we have con-
sidered here a relatively simple scenario with the AB effect.
However, one may also extend these calculations to the case
where different amplitudes travel on each arm of the in-
terferometer. While this would generally modify the values
computed here, the abrupt change would remain a characteris-
tic of the realism of a charge in the AB scenario. Furthermore,
in experimental setups, it might be necessary to take into ac-
count the contribution of other effects at play in addition to the
AB effect. For instance, Ref. [90] investigated the tunneling
of a charge coupled to a vector potential. Then, in addition
to the AB effect, the contribution of the potential associated
with tunneling would be relevant to the analysis. However, the
main results we have obtained and in particular the conclusion
about the discontinuous change in realism will still hold. The
difference is that extra contributions should be added to the
computation of realism.

Finally, it would be interesting to consider how models
for the quantized electromagnetic field, investigated, e.g., in
Refs. [22,24], modify our conclusions about the realism of the
observables considered here. However, these models include
a Fock space and the framework of realism assumes finite-
dimensional systems. Nevertheless, special constructions by
means of coarse graining can be made to study the realism of
continuous-variable systems [35,47]. Then an investigation of
these models with quantized electromagnetic fields requires,
first, the development of an appropriate framework to analyze
realism in Fock spaces, which is beyond the scope of the
present work.

The code to generate the graphs presented here can be
found in Ref. [91].
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APPENDIX A: COMPUTATION OF REALISM OF σ̂g(θ)

In this Appendix we give details of the calculation of the
realism of σ̂x and σ̂g(θ ) associated with the state |ψ0(θ )〉 in
Sec. III. This result will also be useful for the analysis of the
realism of other quantities considered in Sec. IV.

To start, observe that σ̂x belongs to the family of σ̂g(θ )
indexed by functions g with g ≡ 0. Then our calculations can
be focused in the realism of σ̂g(θ ).

Since Rσ̂g(θ )(ρ̂S ) = 1 − S(�σ̂g(θ )(ρ̂S )), we need to compute
�σ̂g(θ )(ρ̂S ). For this, first note that the eigenvectors of σ̂g(θ ) are∣∣x0

g (θ )±〉 = 1√
2

(|0〉 ± eig(θ ) |1〉). (A1)

As a consequence,
|ψ0(θ )〉 = 1

2

[
(1 + ei[ f (θ )−g(θ )] )

∣∣x0
g (θ )+〉

+ (1 − ei[ f (θ )−g(θ )] )
∣∣x0

g (θ )−〉 ]
. (A2)

Therefore, S(�σ̂g(θ )(ρ̂S )) = h(λ) with λ = {1 + cos[ f (θ ) −
g(θ )]}/2 and Rσ̂g(θ )(ρ̂S ) = 1 − h(λ) as stated in Sec. III. Fi-
nally, we see that, in particular, Rσ̂x (ρ̂S ) = 1 − h(λ) with
λ = {1 + cos[ f (θ )]}/2.

APPENDIX B: COMPUTATION OF REALISM OF �̂x(θ)

Here we show the steps for the derivation of the realism
of �̂x(θ ), which is defined in Eq. (24). First, observe that, for
every m�, its eigenvectors can be written as∣∣X m�

f (θ )±〉 = ∣∣xm�

f (θ )±〉 ⊗ |m�〉 , (B1)

with∣∣xm�

f (θ )±〉
≡ 1√

2

{
|0〉 ± exp

[
i

(
f (θ ) − q

∫
τ (θ )

	Am�
· d	s

h̄

)]
|1〉

}
.

(B2)

Then

��̂x (θ )(ρ̂) =
∑

m�∈��

|cm�
|2ρ̂m�

S (θ ) ⊗ |m�〉 〈m�| , (B3)

where

ρ̂
m�

S (θ ) ≡ 1
2

{[
1 + cos

(
q�m�

enc/h̄
)] ∣∣xm�

f (θ )+〉 〈
xm�

f (θ )+∣∣
+ [

1 − cos
(
q�m�

enc/h̄
)] ∣∣xm�

f (θ )−〉 〈
xm�

f (θ )−∣∣ }.
(B4)

Using the joint entropy theorem [92], we conclude that
S(��̂x (θ )(ρ̂)) = h( 	C) + ∑

m�∈��
|cm�

|2h(λm�
(θ )), where 	C =

(|cm�
|2) and λm�

(θ ) = [1 + cos(q�m�
enc/h̄)]/2.
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Finally, we write R�̂x (θ )(ρ̂) = 1 − h( 	C) −∑
m�∈��

|cm�
|2h(λm�

(θ )). Observe that, if θ < π/2, the last
term vanishes since λm�

(θ ) = 1 for every m�. This changes if
θ > π/2 since, in this case, �m�

enc = �
m�

B .

APPENDIX C: COMPUTATION OF THE REALISM OF σ̂z

In this Appendix we calculate the realism of σ̂z for the joint
state ρ̂ of the charge and the cylinder, as discussed in Sec. V.
For this we need to use that

�σ̂z (ρ̂) = 1
2 (|0〉 〈0| ⊗ |ξ ′〉 〈ξ ′| + |1〉 〈1| ⊗ |ξ ′′〉 〈ξ ′′|), (C1)

where

|ξ ′〉 =
∑

m�∈��

cm�
eigm�

(θ ) |m�〉 (C2)

and

|ξ ′′〉 =
∑

m�∈��

cm�
ei[gm�

(θ )+Kqm�θ/π] |m�〉 . (C3)

Then, using the joint entropy theorem [92], we conclude
that S(�σ̂z (ρ̂ )) = log 2 and hence Rσ̂z (ρ̂) = log(4� + 2) −
S(�σ̂z (ρ̂)) = log(2� + 1) for every θ . With base-(4� + 2)
logarithms, this value is log4�+2(2� + 1) = 1 − log4�+2 2.
However, if base-2 logarithms are used, like in Eq. (2), we
conclude that Rσ̂z (ρ̂ ) = 0.
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