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Coexistence of directed momentum current and ballistic energy diffusion
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We numerically investigate the quantum transport in coupled kicked rotors with PT -symmetric potential.
We find that spontaneous PT -symmetry breaking of wave functions emerges when the amplitude of the
imaginary part of the complex potential is beyond a threshold value, which can be modulated by the coupling
strength effectively. In the regime of PT -symmetry breaking, the particles driven by the periodical kicks move
unidirectionally in momentum space, indicating the emergence of a directed current. Meanwhile, with increasing
the coupling strength, we find a transition from the ballistic energy diffusion to a kind of modified ballistic energy
diffusion where the width of the wave packet also increases with time in a power law. Our findings suggest that
the decoherence effect induced by the interplay between the interparticle coupling and the non-Hermitian driving
potential is responsible for these particular transport behaviors.
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I. INTRODUCTION

Directed transport and quantum diffusion in both real and
momentum space have attracted much interest in diverse fields
of physics, ranging from condensed matter physics [1] to
quantum chaos [2,3] and biological physics [4]. It is found that
a seminal phenomenon of directed transport, namely, quantum
ratchet [5], has practical applications in the design of electron
pumps [6], in enhancing the efficiency of photovoltaic cells
[7], and in the construction of molecular rotors [8]. In other
aspects, quantum diffusion is revelent for understanding the
conductivity of electronics [9], spin transport [10,11], energy
transport [12], as well as information scrambling [13,14], and
thus has been a subject of intense study in various areas of
physics. A landmark of the study on quantum diffusion is the
Anderson localization (AL) of electrons in disordered poten-
tial [9,15]. Its analog in momentum space is the dynamical
localization (DL) in the quantum kicked rotor (QKR), which
is a paradigmatic model of Floquet systems [16,17]. The QKR
model with incommensurable frequency can mimic the An-
derson model in two-dimensional (2D) or three-dimensional
(3D) disordered lattice, and is very convenient for theoretical
investigation and experimental realization [18–21].

Nowadays, the QKR and its variants have been accepted
as ideal systems for exploring rich physics, for instance,
Floquet-topological phase [22–26], dynamical phase tran-
sition [27], and quantum walk in momentum-space lattice
[28–30]. More recently, the study of the PT -symmetric ex-
tension of the kicked rotor (PTKR) shows the spontaneous
PT -symmetry breaking characterized by the emergence of
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the complex quasienergies of the Floquet operators [31,32].
Interestingly, the PT -symmetric kicking potential leads to
quantized acceleration of momentum current [33,34] and
quantized response of out-of-time ordered correlators [35] in
QKR model. The non-Hermiticity of Hamiltonians is now
widely accepted as a fundamental modification for the con-
ventional quantum mechanics [36–38]. It is known that open
systems which exchange particles or energy with environment
can be described by non-Hermitian Hamiltonians [39–41]—
for instance, ultracold atoms in dissipative optical lattice,
optical wave propagation in lossy media, and electrical cir-
cuits with virtual absorption, just to name a few.

Quantum transport in non-Hermitian many-body systems
has received intensive investigation [42,43], where the fate
of directed current (DC) and DL under the effects of inter-
particle coupling is still an open issue [44–52]. It is found
that in a system of coupled QKRs, the non-Hermitian driving
potential can protect the DL, which otherwise is destroyed
by interparticle coupling in the Hermitian case [53]. In this
paper, we investigate thoroughly the effects of interparticle
coupling on quantum transport via a non-Hermitian system
of coupled PTKRs. Interestingly, we find the emergence of
spontaneous PT -symmetry breaking when the imaginary part
of the complex kicking potential is beyond a threshold value
which can be effectively modulated by the coupling strength.
In the regime of PT -symmetry breaking, the DC in mo-
mentum space emerges, and more interestingly, there are two
different kinds of energy diffusion: one is ballistic diffusion,
and another is modified ballistic diffusion (MBD). The coexis-
tence of DC and MBD is an intrinsic phenomenon in coupled
non-Hermitian systems. We further numerically obtain the
growth rates of DC and MBD in time for a wide regime
of system parameters, which is helpful to guide the Floquet
engineering of transport in momentum-space lattice [54,55].
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Our investigation suggests that the coexistence of DC and
MBD results from the intrinsic decoherence effects in non-
Hermitian chaotic systems. We also investigate interparticle
entanglement due to the interplay between coupling and non-
Hermitian parameters.

The paper is organized as follows. In Sec. II, we describe
the system. In Sec. III, we show the transport behaviors in our
system with an emphasis on the coexistence of the DL and
MBD. A summary is presented in Sec. IV.

II. MODEL

The Hamiltonian of the coupled PTKRs reads

H = H1 + H2 + HI, (1)

with H j ( j = 1, 2) of the individual particle

H j = p2
j

2
+ V (θ j )

∞∑
n=0

δ(t − tn), (2)

and the interparticle coupling

HI = ε cos(θ1 − θ2)
∞∑

n=0

δ(t − tn). (3)

Here, our consideration of the temporal delta modulation of
the coupling is just for the convenience of numerical simula-
tion. This kind of coupling has been widely used in previous
investigations [49,56]. In our system, the kicking potential
is PT symmetric, i.e., V (θ j ) = K[cos(θ j ) + iλ sin(θ j )], with
K being the kick strength while λ controls the strength of
the imaginary part of V (θ j ). The p j = −ih̄eff∂/∂θ j is the
angular momentum operator and θ j is the angle coordinate of
each subsystem. The h̄eff indicates the effective Planck con-
stant, and the parameter ε is the coupling strength. The time
tn(= 0, 1, . . .) is an integer indicating the number of kicks.
All variables are properly scaled and thus in dimensionless
units.

The eigenequation of pj has the expression p j |φ j
m〉 =

pj
m|φ j

m〉, with pj
m = mh̄eff and 〈θ j |φ j

m〉 = eimθ j /
√

2π . On the
basis of the product states |φ1

m, φ2
n〉 = |φ1

m〉 ⊗ |φ2
n〉, an ar-

bitrary quantum state |ψ〉 can be expanded as |ψ〉 =∑
m,n ψm,n|φ1

m, φ2
n〉. One period evolution of the quantum state

from tn to tn+1 is given by |ψ (tn+1)〉 = U |ψ (tn)〉. The Floquet
operator U can be separated into two fractions,

U = UfUK , (4)

where the free evolution operator of the kinetic term takes the
form

Uf = exp

⎛
⎝− i

h̄eff

2∑
j=1

p2
j

2

⎞
⎠, (5)

and the evolution operator of the kicking term is

UK = exp

⎧⎨
⎩− i

h̄eff

⎡
⎣

2∑
j=1

V (θ j ) + ε cos(θ1 − θ2)

⎤
⎦

⎫⎬
⎭. (6)

FIG. 1. Schematic diagram for DC and quantum diffusion in
the parameter space (λ, ε). The solid curve of λc is the boundary
of the spontaneous PT -symmetry breaking. Both the dashed and
dashed-dotted lines indicate nonsingular crossover between different
diffusion phenomena. Here εg denotes the threshold value of cou-
pling strength for the crossover from phase I to phase II. It is slightly
dependent on λ.

In our investigations, the initial state is set to be the product of
the ground states, i.e., |ψ (t0)〉 = |φ1

0, φ
2
0〉.

Numerical simulation for one period evolution splits into
two steps, namely, the free evolution and the kicking evolu-
tion. The kicking evolution is evaluated in angle coordinate
space, i.e., 〈θ1, θ2|ψ ′〉 = UK (θ1, θ2)〈θ1, θ2|ψ (t j )〉. Then, the
fast Fourier transform is exploited to change the state |ψ ′〉
to angular momentum space, yielding its component ψ ′

m,n

in the eigenstate |φ1
m, φ2

n〉. Finally, one can conduct the free
evolution in angular momentum space, i.e., ψm,n(t j+1) =
Uf (pm, pn)ψ ′

m,n. With such a high-efficiency method, one can
get the quantum state at arbitrary time [16–19].

We make thorough investigations on the effects of inter-
play between the non-Hermiticity (i.e., λ) and interparticle
coupling (i.e., ε) on the quantum transport behavior with
addressing mean current 〈p〉 and energy diffusion 〈p2〉. As
the two particles are identical, we concentrate on the dy-
namics of one of the particles (say, particle 1), for which
〈p1〉 = Tr(ρ1p1) and 〈p2

1〉 = Tr(ρ1p2
1). Here, the reduced den-

sity matrix of particle 1, i.e., ρ1 = 1
N Tr2(|ψ〉〈ψ |), is evaluated

by tracing out the other degree of freedom from the density
matrix of the total system ρ = |ψ〉〈ψ | with N being the norm
of quantum state. Hereafter, we drop the subindex “1” in 〈p1〉
and 〈p2

1〉 for brevity.
The general phase diagram has been investigated and

demonstrated schematically by Fig. 1. It is known that, in
the unbroken phase of PT symmetry, i.e., λ < λc, there are
two different classes of transport behaviors without DC, i.e.,
〈p〉 ∼ 0, analogous to that of Hermitian systems [57]. Phase
I at ε < εg displays DL with 〈p2〉 ∼ C, while phase II at
ε > εg demonstrates the chaotic diffusion with 〈p2〉 ≈ γ t .
These two classes of energy diffusions are essentially similar
to the coupling-induced quantum-classical transition in Her-
mitian systems [50,58,59]. Here, εg denotes the critical value
of coupling strength for the nonsingular crossover between the
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FIG. 2. Time evolution of 〈p〉 (a), 〈p2〉 (b), and M (c) with ε = 0
(circles), 0.2 (triangles), 1 (squares), and 5 (diamonds). Red lines
in (a), (b), and (c) indicate 〈p〉 = Dt in Eq. (7), 〈p2〉 ≈ D2t2 + ηtα

in Eq. (8), and M = ηtα in Eq. (9) with α = 1. (d) Momentum
distributions |ψ (p)|2 at time t = 100 (circles) and 500 (triangles) for
ε = 5. Red lines indicate the fitting functions of the Gaussian form
|ψ(p)|2 ∝ e−(p−pc )2/σ . Inset: Same as in the main plot but on a loga-
rithmic y scale. The parameters are K = 5, h̄eff = 1, and λ = 0.01.

two different classes. We find that it is slightly dependent on
the non-Hermitian parameter λ.

There are two additional phases in the regime of PT -
symmetry breaking, i.e., λ > λc. In phase III, the system
displays the DC 〈p〉 = Dt and ballistic diffusion 〈p2〉 ≈ D2t2,
in which the quantum state in momentum space moves uni-
directionally while keeping almost a constant wave packet’s
width. It is similar to that of the PTKR system for a single
particle [33–35]. However, with increasing the interparticle
coupling further, we find a striking energy diffusion behavior,
termed as MBD, in which 〈p2〉 ≈ D2t2 + ηtα with α < 2.

To our knowledge, this kind of energy diffusion behavior has
not been reported before. It unveils the interparticle coupling
induced quantum fluctuation effects on the well-known bal-
listic energy diffusion. Our finding of the coexistence of DC
and MBD in phase IV thus completes the phase diagram of
quantum diffusions in non-Hermitian coupled systems.

III. DIRECTED CURRENT AND ENERGY DIFFUSION

A. Time evolution of 〈p〉, 〈p2〉, and M
In the regime of the unbroken phase of PT symmetry with

a real spectrum of quasienergies, the transport behavior of this
system has no essential differences from that of the Hermitian
case. In our numerical investigations, we choose very small
λ, so the PT -symmetry breaking does not occur with ε = 0.
Indeed, our numerical results with ε = 0 show that there is
neither momentum current, i.e., 〈p〉 ∼ 0 [see Fig. 2(a)], nor
energy diffusion, i.e., 〈p2〉 ∼ C [see Fig. 2(b)], correspond-
ingly the width of the wave packet M = 〈p2〉 − (〈p〉)2 ∼ C
[see Fig. 2(c)], which is clear evidence of the appearance of
DL.

In the regime of the PT -symmetry breaking, the system
exhibits exotic transport behaviors. We find that the mean
value 〈p〉 increases linearly with time,

〈p〉 = Dt, (7)

which demonstrates the emergence of DC [e.g., ε = 1 in
Fig. 2(a)]. Meanwhile, the energy diffusion increases in a way
of MBD [e.g., ε = 1 in Fig. 2(b)],

〈p2〉 ≈ D2t2 + ηtα with α < 2. (8)

The corresponding width of the time-evolved wave packet
grows as

M = ηtα, (9)

indicating the fact that unbounded spreading of the wave
packet occurs [e.g., ε = 1 in Fig. 2(c)]. Our results, therefore,
present solid evidence of the coexistence of DC and MBD due
to the interplay between non-Hermitian driving and coupling.
After extensive investigations on the energy diffusion for dif-
ferent λ, we find that α varies with λ, which demonstrates the
influences of the non-Hermitian driven potential on the energy
diffusion.

The probability density distributions of particle 1 in mo-
mentum space are shown in Fig. 2(d). One can see that the
momentum distribution can be well described by the Gaus-
sian function, i.e., |ψ(p, t )|2 ∝ e−[p−pc (t )]2/σ (t ). Interestingly,
the center pc(t ) of the Gaussian wave packet increases with
time, which reveals the emergence of the DC in momentum
space. Moreover, its width σ (t ) also increases with time, cor-
responding to the unbound growth of M(t ). The appearance
of Gaussian distribution is usually regarded as a signature of
the loss of quantum coherence [48,58] which results in the
exponentially localized quantum states, namely, a character of
DL [16,17,19], in momentum space. Previous investigations
on Hermitian systems have reported that the coupling induces
the spreading of the Gaussian wave packet with time, while its
center pc is fixed, thus no DC. Our finding of the coexistence
of the increase of both σ and pc is an unusual kind transport
phenomenon due to the quantum decoherence effects in non-
Hermitian chaotic systems.

We further numerically investigate the directed transport
and energy diffusion for different λ when the coupling ε is
sufficiently strong so that the PT -symmetry phase break-
ing easily emerges for very small λ. Figure 3(a) shows
that the momentum current linearly increases with time, i.e.,
〈p〉 = Dt . Meanwhile, the energy diffuses in a kind of MBD
〈p2〉 ≈ D2t2 + ηtα , for which both η and α vary with λ [see
Fig. 3(b)]. Correspondingly, the width of the wave packet
increases unboundedly M = ηtα [see Fig. 3(c)]. The mo-
mentum distributions are shown in Fig. 3(d). One can see
that for weak non-Hermitian driving [e.g., λ � 1 in Fig. 3(d)]
the momentum distribution can be well described by the
Gaussian function. However, for sufficiently large λ [e.g.,
λ = 5 in Fig. 3(d)], the quantum state is clearly different
from the Gaussian wave packet with irregular distribution in
momentum space. It is reasonable to believe that the interplay
between non-Hermiticity and coupling dramatically affects
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FIG. 3. Time dependence of 〈p〉 (a), 〈p2〉 (b), and M (c) for
ε = 5 with λ = 10−4 (squares), 10−3 (circles), 0.01 (up triangles),
0.1 (down triangles), 1 (diamonds), and 5 (pentagrams). Red lines
in (a), (b), and (c) indicate 〈p〉 = Dt in Eq. (7), 〈p2〉 ≈ D2t2 + ηtα

in Eq. (8), and M = ηtα in Eq. (9) with α < 2. (d) Momentum
distributions |ψ(p)|2 for t = 500 and ε = 5 with λ = 0.01 (up tri-
angles), λ = 0.1 (down triangles), λ = 1 (diamonds), and λ = 5
(pentagrams). Red lines indicate the fitting function of the Gaussian
form |ψ (p)|2 ∝ e−(p−pc )2/σ . Other parameters are the same as in
Fig. 2.

the decoherence effects, which leads to the irregular form of
the momentum distribution.

B. Growth rate of 〈p〉 and M
The growth rates of the momentum current and the width

of quantum state are separately defined by D = 〈p(t f )〉/t f and
η = M(t f )/tα

f . In numerical simulations, the t f on the scale
of hundreds of kicking periods is enough to assure the high
precision of numerical results. Figure 4(a) shows that the D
increases rapidly from a very small value to saturation with
increasing ε. Note that the nonzero value of D for ε = 0 is due
to the finite time t f in numerical calculations. The saturation
value of D increases with the increase of λ, which reveals
that the acceleration of momentum current is only determined
by the non-Hermitian driving with no relation to coupling.
As a further step, we numerically investigate the acceleration
rate D for various λ. Figure 4(b) shows that the value of D
increases linearly with λ, i.e., D ∝ λ, up to saturation. More-
over, the D is almost not dependent on the variation of ε if the
coupling strength is strong enough. The growth rate η of the
M for a wide regime of ε and λ is shown in Fig. 4(c). One
can find that the η exponentially increases with ε, but without
dependence on the variation of λ. Therefore, the spreading of
the wave packet in momentum space is mainly determined by
the interparticle coupling. Since the MBD 〈p2〉 ≈ D2t2 + ηtα

has two parts, it is clear that the first part of quadratic growth
originates from the non-Hermitian driving, while the second
part, i.e., ηtα , is dominated by the competition between cou-
pling and non-Hermitian driving potential. Accordingly, this
opens an opportunity for the experimental engineering of the
transport behaviors in momentum-space lattice [28–30].

FIG. 4. (a) Growth rate D versus ε with λ = 10−4 (triangles),
λ = 10−3 (circles), and λ = 10−2 (squares). (b) The value of D
versus λ for ε = 1 (squares), 2 (circles), and 5 (triangles). Red dashed
line indicates the fitting function of the form D ∝ λ. (c) Dependence
of η on ε with λ = 10−4 (triangles), λ = 10−3 (circles), and λ = 10−2

(squares). Red dashed line indicates the exponential fitting, i.e.,
η ∝ eβε with β = 0.1. Other parameters are the same as in Fig. 2.

C. Spontaneous PT -symmetry breaking

It is known that without interaction (i.e., ε = 0) there is
a threshold value for the imaginary part of the kicking po-
tential, i.e., λc, beyond which the system is in the regime
of the PT -symmetry breaking phase. For convenience, the
norm N (tn) = ∑

m,n |ψm,n(tn)|2 [60–62] is applied to quan-
tify the PT -symmetry phase transition. Figure 5(a) shows

FIG. 5. (a) Norm N versus time with λ = 0.01 for ε = 0
(circles), 0.2 (triangles), 0.5 (pentagrams), 1 (squares), and 5 (di-
amonds). Red solid lines indicate the fitting function of the form
N = eγ t with γ = 0.0023, 0.0035, and 0.0051 for ε = 0.5, 1, and 5,
respectively. Green dashed line marks N = 1. (b) The time-averaged
value of norm N̄ in the parameter space (λ, ε). The red (blue) area
indicates the breaking (unbreaking) phase of PT -symmetry. Other
parameters are the same as in Fig. 2.
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that, for ε = 0, the N remains at unity as time evolves,
which demonstrates the maintenance of the PT -symmetry
phase. It is interesting that, for a nonzero value of ε (e.g.,
ε = 0.2), the norm increases with time. Exponential growth
of the norm, i.e., N (t) ∝ eγ t , arises for sufficiently strong
coupling (e.g., ε = 1), which is solid evidence of the spon-
taneous PT -symmetry breaking. Therefore, the interparticle
coupling dramatically alters the phase transition point λc. To
investigate the dependence of λc on ε, we numerically calcu-
late the time-averaged value of norm N̄ = (1/tM )

∑M
n=1 N (tn)

in the parameter space (λ, ε). Figure 5(b) shows that there
are clearly two different regimes, corresponding to N̄ > 1
and N̄ = 1, respectively. Detailed observations show that the
phase transition point λc decreases with the increase of ε,
which reveals the fact that the interaction is helpful to as-
sist breaking the PT -symmetry phase. By comparison with
Fig. 1, one can find that classes III and IV of quantum trans-
port are in the region of the breaking phase of PT symmetry.

D. Time evolution of the linear entropy

In the decoherence theory, the unavoidable coupling be-
tween system and environment leads to the formation of
entanglement. After tracing out the degree of freedoms of the
environment, the quantum coherence in the state of the system
is destroyed, resulting in a mixed state [63,64]. To quantify
entanglement, we numerically investigate the time evolution
of the linear entropy S = 1 − Tr(ρ2

1 ) [65–67]. Figure 6(a)
shows that, for a specific ε (e.g., ε = 0.2), the S increases
monotonically with time until saturation, which demonstrates
the formation of entanglement. The saturation value of S
increases with ε up to the maximum value Smax ≈ 1, repre-
senting the growth of entanglement with coupling strength.
Furthermore, we numerically calculate the time-averaged
value of the linear entropy, i.e., S̄ = (1/tM )

∑M
n=1 S(tn), for a

wide regime of ε and λ. Figure 6(c) shows that for a specific λ

the S̄ increases from zero to almost unity with the increase
of ε, which is a solid confirmation of the enhancement of
entanglement by coupling.

We further investigate the time evolution of the linear en-
tropy S for a wide regime of λ. Figure 6(b) shows that for
small λ (e.g., λ � 0.1) the S increases very rapidly from zero
to the saturation of almost unity, demonstrating the growth
of entanglement in the coupled PTKRs. In this situation, the
momentum distribution can be well described by the Gaussian
function [see Fig. 3(d)], which is a character of the onset of
the decoherence effects. Interestingly, the saturation value of
S decreases with the increase of λ. For instance, the saturation
of S with λ = 5 fluctuates around 0.5 as time evolves. The
corresponding wave packet differs clearly from the Gaussian
function [see Fig. 3(d)], which may imply that the quantum
coherence is partially protected by non-Hermitian driving.
For sufficiently large λ (e.g., λ = 10), the S remains almost
at zero with time evolution, which is clear evidence of the
disentanglement of the two particles due to the effects of the
non-Hermitian driving [53,68]. It is reasonable to believe that
the loss of quantum coherence is dramatically affected by the
interplay between coupling and non-Hermitian driven poten-
tial. This sheds light on the issue of the quantum-classical

FIG. 6. (a) Linear entropy S versus time for λ = 0.01 with ε = 0
(squares), 0.05 (pentagrams), 0.1 (down triangles), 0.2 (up triangles),
1 (diamonds), and 5 (circles). (b) Time dependence of S for ε = 5
with λ = 10−3 (squares), λ = 0.1 (circles), λ = 1 (triangles), λ = 5
(pentagrams), and λ = 10 (diamonds). (c) Phase diagram of decoher-
ence quantified by the time-averaged S̄ in the parameter space (λ, ε).
Other parameters are the same as in Fig. 2.

transition induced by quantum decoherence effects in non-
Hermitian chaotic systems.

IV. CONCLUSION AND DISCUSSION

In this work, we thoroughly study the quantum transport
behaviors in a non-Hermitian PTKR system with interparticle
coupling. We find unusual phases of quantum transport, i.e.,
the coexistence of directed momentum current and ballistic
energy diffusion in the regime of PT -symmetry breaking. In
particular, in the regime of strong interparticle coupling, we
find that quantum fluctuation leads to a modified ballistic dif-
fusion of energy, in which the wave packet’s width increases
with time in the power laws. Our investigations suggest that
the decoherence effect induced by the interplay between the
interparticle coupling and the non-Hermitian potential results
in these particular transport behaviors. In recent years, the
Floquet-driven systems [22,23] with periodical potential in
time domain provide ideal platforms for investigating novel
phenomena, such as quantum thermalization [69–71], many-
body quantum chaos [72–75], and topologically protected
transport [76–78]. The fate of DL and AL under the effects of
interaction has received extensive investigation in the fields of
quantum chaos and condensed matter physics. It is shown that
temporally periodical-modulated nonlinearity even induces
exponentially fast diffusion in momentum space [79–81]. Our
above finding of the coexistence of DC and MBD in coupled
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PTKRs serves as an intrinsic element of quantum transport in
non-Hermitian systems [82–84].

Our theoretical findings are expected to be observed in
the current atomic-optics experiments. Coupled Hermitian
kicked rotors have been experimentally realized by subjecting
ultracold atoms to two periodically pulsed, incommensurate
optical lattices [58], which observes the quantum-classical
transition of energy diffusion. The ultracold atoms have a
ground state with eigenenergy E1 and an exited state of hy-
perfine energy levels E+

2 and E−
2 . By introducing a decay

channel from the excited state with E+
2 to an additional energy

level Ei, the resonance laser gives rise to a strong decay from
excited state E+

2 to Ei, which mimics the non-Hermitian ef-
fects [85]. Meanwhile, the standing wave of the off-resonance
laser provides the dipole force on the atoms, hence playing
the role of the real part of the complex potential. Interestingly,

PT -symmetric driven potential can be realized by tuning
the relative phase between the off-resonance and resonance
standard wave. Therefore, our system is within the research of
the state-of-art experiments of atomic-optics.
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