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Komal Kumar* and Nirman Ganguly†

Department of Mathematics, Birla Institute of Technology and Science Pilani, Hyderabad Campus,Telangana-500078, India

(Received 25 January 2023; accepted 28 February 2023; published 10 March 2023)

Quantum steering is an asymmetric correlation which occupies a place between entanglement and Bell
nonlocality. In the paradigmatic scenario involving the protagonists Alice and Bob, the entangled state shared
between them is said to be steerable from Alice to Bob if the steering assemblage on Bob’s side does not admit
a local hidden state (LHS) description. Quantum conditional entropies, on the other hand, provide for another
characterization of quantum correlations. Contrary to our common intuition, conditional entropies for some
entangled states can be negative, marking a significant departure from the classical realm. Quantum steering and
quantum nonlocality, in general, share an intricate relation with quantum conditional entropies. In the present
contribution, we investigate this relationship. For a significant class, namely the two-qubit Weyl states, we show
that negativity of conditional Rényi 2-entropy and conditional Tsallis 2-entropy is a necessary and sufficient
condition for the violation of a suitably chosen three settings steering inequality. With respect to the same
inequality we find an upper bound for the conditional Rényi 2-entropy, such that the general two-qubit state
is steerable. Moving from a particular steering inequality to local hidden-state descriptions, we show that some
two-qubit Weyl states which admit a LHS model possess nonnegative conditional Rényi 2-entropy. However,
the same does not hold true for some non-Weyl states. Our study further investigates the relation between
nonnegativity of conditional entropy and LHS models in two-qudits for the isotropic and Werner states. There
we find that, whenever these states admit a LHS model, they possess a nonnegative conditional Rényi 2-entropy.
We then observe that the same holds true for a noisy variant of the two-qudit Werner state.
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I. INTRODUCTION

The study on correlations unachievable within the classical
paradigm has been an integral constituent of theoretical [1]
and experimental [1] probes in quantum information pro-
cessing. Entanglement [2] is the supreme contributor to such
studies. However, entanglement, although a form of quantum
nonlocality, is not the strongest among such correlations. Bell
nonlocality [3] constitutes a stronger correlation significant
both from a foundational [4] and pragmatic perspective [4].
The recent spurt in device-independent security protocols [5]
provided for a driving force to studies on Bell nonlocality.

Quantum steering [6], on the other hand, lies between these
two forms of correlations and is usually asymmetric in nature.
Schrödinger was the first to notice this phenomenon [7,8]
and considered it to be intriguing that the first party can, by
choosing a measurement, steer the state on the other side
into an eigenstate of position or momentum. However, apart
from being a thought-provoking fundamental question this
phenomenon did not receive much attention till the work of
Wiseman, Jones, and Doherty [9]. Although Schrödinger first
employed the term “steering” in this context, it did not refer
to the modern and precisely defined notion of quantum steer-
ing. The authors in [9] formulated steering in the language
of quantum information processing and gave an operational
interpretation to it [9]. In the modern perspective steering
denotes the impossibility to describe the conditional states at
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one party by a local hidden state (LHS) model. Much like Bell
nonlocality, quantum steering also has gained prominence
recently due to its significance in semi-device-independent
communication scenarios [10]. An interesting observation
here is that, although entanglement is necessary for steering
and Bell nonlocality, it is not sufficient.

In any theory of information processing, entropies [11]
play a key role as they prove to be efficient quantifiers of
information content. The Shannon entropy [12] in classi-
cal information theory and its quantum counterpart, the von
Neumann entropy [13], are the paradigmatic examples. How-
ever, these are not the only versions of entropy to be used.
Rényi α entropies [14], Tsallis α entropies [15], and their
quantum analogues [16] are used in different scenarios. In
quantum information theory, we broadly distinguish tasks as
falling into two regimes: (i) the asymptotic regime, where
many identically and independently distributed quantum sys-
tems appear and (ii) the single shot regime, where scenarios
involve only a single quantum system. While in (i) von Neu-
mann entropies play a significant role, in (ii) it is the Rényi
α entropy that takes center stage [16]. Quantum entropies
have not only played their part in information processing,
but also have been used in the establishment of entropic Bell
inequalities [17], entropic steering inequalities [18,19], and
entropic uncertainty relations [20], which, in turn, is at the
heart of quantum cryptography [21].

Quantum entropies generalizes classical entropies in a way
and thus it is a function of the density matrix. In this perspec-
tive, consider a bipartite system shared between Alice and Bob
and ask the question “What amount of information Bob has
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to learn in addition to the knowledge he already possesses
to know the whole system?”. The answer to this question
is provided by conditional entropies. In the classical realm,
conditional entropies are always nonnegative in consonance to
our intuition. However, in the quantum situation conditional
entropies can be negative [22] marking a radical departure
from classical notions. In fact, certain entangled states possess
negative conditional entropy. An operational interpretation to
quantum conditional von Neumann entropy was given by the
authors in [23] akin to the classical Slepian-Wolf theorem
[24]. Recently, the negativity of conditional von Neumann
entropy was identified as a resource [25–27]. In another recent
work [28], it was noted that in any axiomatic characterization
of conditional entropy, this negativity is inevitable.

The present work investigates the relation between these
two extremely significant measures of quantum correlations,
namely, steering and conditional entropies. Probes were made
to see this in case of Bell–Clauser, Horne, Shimony, and
Holt (CHSH) inequalities [29] and conditional von Neumann
entropies in two-qubit systems [30]. The relation of Bell’s in-
equalities with quantum α entropies were investigated in [31].
As noted before, entropies were also used to form entropic
Bell’s inequalities [17] and entropic steering inequalities [18].
However, to the best of our knowledge, these studies have not
been done in the framework of steering and LHS models. Our
work tries to bridge this gap.

We start with two-qubit systems and probe the relation
of conditional entropies with the violation of a three-
settings steering inequality, quite prominently known as the
Cavalcanti, Jones, Wiseman, Reid (CJWR) inequality [32].
We show that, for the Weyl states (states with maximally
mixed marginals), the negativity of conditional Rényi 2-
entropy is necessary and sufficient for the violation of the
CJWR inequality. Upper bounds to the conditional entropy
of generic two-qubit quantum states are also provided which
guarantees the violation of the inequality. We then move from
a particular steering inequality to LHS models. We use a suf-

ficient criteria for unsteerability [33] and find that, whenever
Weyl states are unsteerable due to the criteria, they possess
a nonnegative conditional Rényi 2-entropy. However, some
non-Weyl states present a different picture. We extend our
study to two-qudit systems and observe the behavior of LHS
models of the isotropic and Werner states [34] vis a vis con-
ditional Rényi 2-entropies. We observe, whenever the states
admit a LHS model, they have nonnegative conditional Rényi
2-entropy. We then introduce white noise in the Werner states
and note that the LHS model of the transformed state exhibits
the same characteristic.

The paper is arranged as follows. In the next section we
revisit some key notions important for our work and fix the
notations. In Sec. III, we study the relation between violation
of the CJWR inequality and conditional entropy of two-qubit
systems. In Sec. IV, we proceed to investigate the LHS mod-
els in two-qubit systems. We then explore the relation with
LHS models in two-qudits in Sec. V. We then end with the
concluding remarks.

II. NOTATION AND PRELIMINARIES

In this section we fix the notations and recapitulate some
notions important for the study. Our work is done in finite-
dimensional Hilbert spaces. Quantum states are described
by density operators ρ, i.e., a positive-semi-definite (ρ � 0),
Hermitian (which also follows from positivity) with unit trace.
ρ ∈ B(HA ⊗ HB), where B(HA ⊗ HB) (also known as the
Hilbert-Schmidt space) represents the bounded linear opera-
tors acting on HA ⊗ HB. HX , X = A, B denote the underlying
Hilbert space. S(.), Sα (.), ST

α (.) denote, respectively, the von
Neumann, Rényi α entropy and Tsallis α entropy of the quan-
tum state being discussed.

A. Bloch-Fano decomposition of density matrices

For bipartite quantum systems, the density matrices can be
represented as [30]

ρdA⊗dB = 1

dAdB

[
IA ⊗ IB +

d2
A−1∑

m=1

amgA
m ⊗ IB +

d2
B−1∑
n=1

bnIA ⊗ gB
n +

d2
A−1∑

m=1

d2
B−1∑
n=1

tmngA
m ⊗ gB

n

]
, (1)

where dimHA = dA and dimHB = dB. The Hermitian op-
erators gi

m for i = A, B are generalizations of the Pauli
matrices, i.e., they are orthogonal Tr[gi

mgi
n] = 2δmn and trace-

less, Tr[gi
m] = 0 and for single-qubit systems they coincide

with the Pauli matrices. The coefficients am, bn ∈ R are the
components of the generalized Bloch vectors �a, �b of the sub-
systems A, B, respectively. The real coefficients tmn are the
components of the correlation tensor. For two-qubit systems
the density matrices can be represented as

ρ2⊗2 = 1

4

[
I2 × I2 + �a.�σ ⊗ I2 + I2 ⊗ �b.�σ

+
3∑

m=1

3∑
n=1

tmnσ
A
m ⊗ σ B

n

]
. (2)

Here �σ refers to the vector of qubit Pauli matrices.

An interesting class of states is the locally maximally mixed
states or Weyl states which in the two-qudit systems (up to
local unitaries) is given by

ρ
weyl
d = 1

d2

[
IA ⊗ IB +

d2−1∑
n=1

wngA
n ⊗ gB

n

]
. (3)

The reduced marginals of such states are maximally mixed,
i.e., TrA[ρweyl

d ] = IA/d and TrB[ρweyl
d ] = IB/d.

B. Quantum entropies

The von Neumann entropy of a quantum state ρ is defined
as

S(ρ) = −Tr[ρ log2 ρ], (4)

where the logarithms are taken to the base 2. The von
Neumann entropy has a special association with the eigen-
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values of the density matrix, i.e., it is a function of the
eigenvalues. The corresponding conditional von Neumann en-
tropy (CVNE) is given by S(A|B) = S(ρ) − S(ρB).

The Rényi α entropy is given by

Sα (ρ) = 1

1 − α
log2[Tr(ρα )], α > 0, α �= 1. (5)

The von Neumann entropy is the limiting case of the Rényi
α entropy as α → 1. The corresponding conditional Rényi α

entropy (CRAE) is given by Sα (A|B) = Sα (ρ) − Sα (ρB).
Tsallis α entropy is given by

ST
α (ρ) = 1

1 − α
[Tr(ρα ) − 1], α > 0, α �= 1. (6)

The corresponding conditional Tsallis α entropy (CTAE) is
given by [35]

ST
α (A|B) = Tr

(
ρα

B

) − Tr(ρα )

(α − 1)Tr
(
ρα

B

) .

C. Quantum nonlocality

1. Bell nonlocality

Consider two parties, Alice and Bob to be spatially
separated, sharing some quantum state ρAB. They perform
measurements denoted by Ax, By, respectively, on their par-
ticles, the inputs being labeled by x and y. The corresponding
outcomes at Alice’s and Bob’s side are labeled as a and b.
Now, for some hidden variable λ and probability distribution
q(λ), if all joint probabilities p(a, b|x, y) can be expressed as

p(a, b|x, y) =
∫

λ

dλq(λ)p(a|x, λ)p(b|y, λ), (7)

then we say that the state is local or has a local hidden variable
(LHV) model. Here, p(a|x, λ) & p(b|y, λ) are said to be the
local response functions of Alice and Bob, respectively, and
q(λ) is the probability distribution of the hidden variable λ. If
Eq. (7) does not hold, we say that it is nonlocal and hence will
violate a suitably chosen Bell’s inequality [3].

2. Bell-CHSH Criterion

The Bell-CHSH criterion [29] gives a Bell’s inequality in
the two-qubit scenario when there are two parties performing
measurements in a two input-two output scenario. A neces-
sary and sufficient condition for its violation was provided in
[36]. Let ρ be a two-qubit density operator and its correlation
tensor be given by T = [tmn]. Suppose that the largest two
eigenvalues of matrix T †T are λ1 and λ2. Then the state ρ

violates the CHSH inequality iff their sum is greater than
1, i.e., λ1 + λ2 >1 [36]. One should note here that a state
may satisfy the Bell-CHSH criterion, however, it may still be
nonlocal (through the violation of any other Bell’s inequality).

3. Quantum Steering

Quantum steering is an asymmetric form of nonlocality,
counted on the ability of Alice to steer the state on Bob’s
side with a choice of measurement on her side. Although the
concept of steering is not new, dating back to the contributions
of Schrödinger [7,8], the operational formulation was pro-
vided only in [9]. The notion of steering can be conveniently
expressed in the language of steering assemblages. Suppose

that there are two parties Alice and Bob spatially separated,
sharing quantum state ρAB. Now Alice performs some type of
measurement, say x on her part of the state and the outcome
obtained is a. Bob remains with unnormalized conditional
state ρa|x (steering assemblage) for each measurement of
Alice. Now if Bob’s conditional state ρa|x can be expressed as

ρa|x =
∫

λ

dλp(λ)p(a|x, λ)σλ, (8)

where σλ is the hidden state (on Bob’s side) with probability
p(λ) and p(a|x, λ) is the local response function of Alice, then
we say that the state ρAB is unsteerable or has local hidden
state (LHS) model. Otherwise, the state ρAB is steerable from
Alice to Bob. Steerability is an asymmetric trait. A state
which is steerable from Alice to Bob might not be steerable
from Bob to Alice.

4. CJWR inequality for steering

Cavalcanti, Jones, Wiseman and Reid (CJWR) derived a
series of correlators based inequalities [32] for verifying steer-
ability of ρ :

Fn(ρ, ν) = 1√
n

∣∣∣∣∣
n∑

l=1

〈Al ⊗ Bl〉
∣∣∣∣∣ � 1, (9)

with

Al = ûl · −→σ , Bl = v̂l · −→σ, (10)

where ûl ∈ R3are unit vectors whereas v̂l ∈ R3 denote or-
thonormal vectors. ν = {û1, û2, . . . , ûn, v̂1, v̂2, . . . , v̂n} stands
for the collection of measurement directions, 〈Al ⊗ Bl〉 =
Tr[ρ(Al ⊗ Bl )]. Violation of Eq. (9) ensures both way
steerability of ρ in the sense that it is steerable from A to
B and vice versa. In particular, for n = 3, CJWR inequality
[Eq. (9)] for three settings takes the form

F3(ρ, ν) = 1√
3

∣∣∣∣∣
3∑

l=1

〈Al ⊗ Bl〉
∣∣∣∣∣ � 1, (11)

In [37], the analytical expression for the violation of the
linear inequality [Eq. (11)] was given. Any two-qubit state
shared between A and B is both-way F3 steerable if√

Tr(T †T ) > 1, (12)

with T being the correlation tensor. One must note here that
entanglement is only a necessary criterion for Bell nonlocality
and steering.

III. CONDITIONAL ENTROPIES AND STEERABILITY
FOR TWO-QUBIT STATES

In this section we investigate the relation between condi-
tional entropies and F3 steerability for two-qubit Weyl states.
We start our discussion with the Werner state, which is a
special kind of Weyl state.

A. Werner states

1. Relation with conditional von Neumann entropy

Consider the two-qubit Werner state ρwer
2 (p) = 1

4 [I2 ⊗
I2 − ∑3

i=1 p(σi ⊗ σi )]. Conditional von Neumann entropy is
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given by

S(A|B)ρwer
2 (p) = −3

(
1 − p

4

)
log2

(
1 − p

4

)
−

(
1 + 3p

4

)
log2

(
1 + 3p

4

)
− 1. (13)

CVNE is negative for p > 0.747614. The Werner state is
F3 steerable for p > 0.57735. Thus, if the Werner state has
negative CVNE then it is three-steerable.

2. Relation with other α-conditional entropies

We see here the relation between F3 steerability and CRAE
for the two-qubit Werner state. The Table I below notes nega-
tivity of CRAE for α = 2, 3, 4, 5.

Note that the Werner state is F3 steerable iff the conditional
Rényi 2-entropy is negative, a fact that we prove to be true
for all two-qubit Weyl states in the next subsection. Since
ST

α (A|B) � 0 ⇔ Sα (A|B) � 0 [35], we arrive at the same con-
clusion for the conditional Tsallis 2-entropy.

B. Weyl states

We consider the Weyl states in two-qubits given by

ρ
weyl
2 = 1

4

[
I2 ⊗ I2 +

3∑
i=1

ti(σi ⊗ σi )

]
. (14)

The conditional Rényi 2-entropy of ρ
weyl
2 is given by

S2(A|B)
ρ

weyl
2

= 1 − log2(1 + t2
1 + t2

2 + t2
3 ) and F3(ρweyl

2 ) =√
t2
1 + t2

2 + t2
3 . A simple algebraic calculation shows

that S2(A|B)
ρ

weyl
2

< 0 ⇔ F3(ρweyl
2 ) > 1. We thus have the

following theorem,
Theorem 1. The two-qubit Weyl state is F3 steerable iff its

conditional Rényi 2-entropy is negative.
The same conclusion follows for the conditional Tsal-

lis 2-entropy due to its equivalence with conditional Rényi
2-entropy.

C. Two-qubit general state

We now consider the general two-qubit state ρ
g
2

whose decomposition is given in Eq. (2). Its condi-
tional Rényi 2-entropy (CR2E) is given by S2(A|B)ρg

2
=

log2[ 2+2||�b||2
1+||�a||2+||�b||2+|| �T ||2 ], where ||.|| denotes the Euclidean

norm, ||T ||2 = Tr(T †T ), and it is F3 steerable if ||T || =√
Tr(T †T ) > 1. An algebraic calculation shows that the state

is F3 steerable ⇐⇒ S2(A|B)ρg
2
< log2[ 1+||�b||2

1+ ||�a||2+||�b||2
2

].

We thus have the following theorem.
Theorem 2. The two-qubit general state is F3 steerable iff

its CR2E< log2[ 1+||�b||2
1+ ||�a||2+||�b||2

2

].

TABLE I. Negativity of CRAE.

α 2 3 4 5

Negative CRAE 1√
3

< p 1
2 < p 0.45786 < p 0.432041 < p

D. Absolute nonviolation of the CJWR inequality by the Weyl
states for a certain purity threshold

An interesting class of states, which we denote by AF3, is
the collection of states which preserve F3 unsteerability even
under global unitary operations. In [38], the authors proved
that a quantum state will remain F3 unsteerable under arbitrary
global unitary operations iff its purity � 1

2 . Therefore, we have

Tr
[(

ρ
weyl
2

)2] � 1

2

⇔ 1 + t2
1 + t2

2 + t2
3 � 2

⇔ S2(A|B)
ρ

weyl
2

� 0. (15)

In fact, the preceding shows that whenever the Weyl states
are F3 unsteerable, the unsteerability is robust even against
global unitary operations. However, this observation does not
hold true for a generic two-qubit state, for which we have the
following result.

The purity for a general two-qubit state is given by
Tr[(ρg

2 )2] = 1
4 [1 + ||�a||2 + ||�b||2 + || �T ||2] and CR2E is given

by S2(A|B)ρg
2
= log2[ 2+2||�b||2

1+||�a||2+||�b||2+|| �T ||2 ]. Now, Tr[(ρg
2 )2] �

1
2 ⇒ S2(A|B)ρg

2
� 0. We thus have the following theorem.

Theorem 3. If ρ
g
2 ∈ AF3 then CR2E is nonnegative.

E. Non-Weyl state

We now consider the state ρθ
2 = β|ψθ 〉〈ψθ | + (1 −

β )I2/2 ⊗ I2/2, where |ψθ 〉 = cos θ |00〉 + sin θ |11〉 and β ∈
[0, 1]. The state is F3 steerable and its conditional Rényi
2-entropy is negative when cos 4θ <

2β2−1
β2 for θ ∈ (0, π

2 ) ∪
( π

2 , π ) ∪ (π, 3π
2 ) ∪ ( 3π

2 , 2π ) and β ∈ ( 1√
2−cos 4θ

, 1]. Thus, the
state violates the CJWR inequality if and only if it possesses
a negative conditional Rényi 2-entropy, for the above restric-
tions on θ and β.

IV. CONDITIONAL ENTROPIES AND LHS MODELS IN
TWO-QUBITS

The CJWR inequality being a particular steering in-
equality, satisfaction of it does not imply that the state is
unsteerable. There may be other steering inequalities that the
state violates. Therefore, it is worthwhile to see the relation
between unsteerability (in terms of admitting LHS models)
and conditional entropies.

In [33], a sufficient condition for the unsteerability of states
was proposed, which is stated below. A two-qubit state of
the form ρ0 = 1

4 [I2 ⊗ I2 + �a.�σ ⊗ I2 + ∑
i=x,y,z Tiσi ⊗ σi] is

unsteerable if maxx̂[(�a · x̂)2 + 2‖T x̂‖] � 1, where x̂ is a unit
normal vector and ‖.‖ corresponds to Euclidean norm [33].
We now present below our findings for some categories of
states admitting LHS model.
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A. Weyl states admitting local hidden-state models

For the Weyl states in two qubits, the sufficient con-
dition for unsteerability reads maxx̂[2‖T x̂‖] � 1. Without
loss of generality we take the singular values of T as t1 �
t2 � t3. The condition thus gives, t1 � 1

2 . Since the con-
ditional Rényi 2-entropy for the Weyl state is given by
S2(A|B)

ρ
weyl
2

= 1 − log2(1 + t2
1 + t2

2 + t2
3 ), we have that t1 �

1
2 implies S2(A|B)

ρ
weyl
2

� 0. Thus, whenever Weyl states obey
the sufficient criteria for unsteerability, they have a nonnega-
tive conditional Rényi 2-entropy.

B. LHS models for non-Weyl states

Consider a two-qubit non-Weyl state [33], ρnl
2 = p|ψx〉〈ψx|

+ (1 − p)[ρA
x

⊗ I
2 ], where |ψx〉 = cos x|00〉 + sin x|11〉,

ρA
x = TrB(|ψx〉〈ψx|); 0 < x � π

4 , 0 � p � 1. Sufficient
condition for unsteerability of the state is given by

[cos(2x)]2 � 2p − 1

(2 − p)p3
. (16)

Here, we observe that S2(A|B)ρnl
2

< 0 for some parame-

ter in the above range, one instance being p = 1√
2
, x =

1
2 arccos[

√
1
7 (12 − 4

√
2)].

However, on mixing white noise with the state we arrive at
a different observation, which we note below.

A state ρ ′
2 admits LHS model if there exists a unit trace

operator OAB such that OAB admits LHS model and ρ ′
2 =

rOAB + (1 − r) I
d ⊗ OB [39]. Consider now OAB = ρnl

2 .
S2(A|B)ρ ′

2
is nonnegative for

cos 4x � r2 + 4r2 p2 − p2 − 2

2p2 − r2 − p2(1 − 2r2)
. (17)

and ρ ′
2 is unsteerable for

cos 4x � 2(2p − 1) − (2 − p)p3

(2 − p)p3
. (18)

Let h(r, p) = 2(2p−1)−(2−p)p3

(2−p)p3 − r2+4r2 p2−p2−2
2p2−r2−p2(1−2r2 ) for x ∈

(0, π
4 ], r ∈ [0, 1], p ∈ [0, 1].

Then, h(r, p) is nonnegative, some instances being
r = 0, p ∈ [2 − √

3, 1]; r ∈ [0.132151, 0.981434], p ∈
(
√

r2

1+2r2 , 1]; r = 1, p = 1. Thus, implying that whenever the
state ρ ′

2 admits an LHS model its conditional Rényi 2-entropy
is nonnegative for the above restrictions on r and p.

V. LHS MODELS IN d ⊗ d SYSTEMS AND CONDITIONAL
ENTROPIES

A. Isotropic states

For the isotropic state in d ⊗ d dimensions, given
by ρ iso

d = η|ψd〉〈ψd | + (1 − η) Id ⊗ I
d , where |ψd〉 =

1√
d

∑d−1
i=0 |ii〉, the conditional Rényi 2-entropy is nonnegative

for η ∈ ( 1
d+1 , 1√

d+1
].

The isotropic state admits an LHS model for projec-
tive measurements when η � Hd −1

d−1 [9] where Hd = 1 +
1/2 + 1/3 + · · · + 1/d . Since, Hd � ln(1 + 2d ), after sim-

plifying the aforementioned upper bound we obtain η ∈
( 1

d+1 , ln(1+2d )−1
d−1 ] where ln is the logarithm taken in base e.

In the above intervals, the state is also entangled. Now if
we consider the function f (x) = 1√

x+1
− ln(1+2x)−1

x−1 , then f is

positive for x � 3. Further in the case d = 2 since 1√
3

> 1
2

whenever the isotropic states admit an LHS model its condi-
tional Rényi 2-entropy is nonnegative. Thus, in this case the
isotropic states admitting LHS model forms a subset of the
states having nonnegative conditional entropy.

B. Werner states

If dA = dB = d then the state in Eq. (1) denoted by ρ
g
d has

its CR2E given by

S2(A|B)ρg
d

= log2

⎡
⎣ d + 2||�b||2

1 + 2||�a||2+2||�b||2
d + 4||T ||2

d2

⎤
⎦. (19)

We have S2(A|B)ρg
d

is nonnegative iff ||T || �
1
2 [

√
d2(d − 1) − 2d||�a||2 + 2d (d − 1)||�b||2]. Therefore,

for the Werner state ρwer
d = d−1+η

d−1
I

d2 − η

d−1
V
d where V is the

flip operator and given by V |i j〉 = | ji〉, CR2E is given by

S2(A|B)ρwer
d

= log2

(
d3

d2 + 4||T ||2
)

. (20)

Here, ||T ||2 = 1
4 [ η2d2(d+1)

d−1 ].
CR2E is nonnegative for the Werner state when

||T || � d
√

d − 1

2
, (21)

and it admits the LHS model, when η � 1 − 1
d [9]. After

solving the above inequality we obtain

||T || �
√

d2 − 1

2
. (22)

Define a function g(d ) = d
√

d−1
2 −

√
d2−1
2 for d � 2. Then

g(d ) � 0 for d � 2. Thus, if the Werner state has LHS model
then its CR2E is nonnegative ∀d � 2. Consider now, ρ ′

d =
rOAB + (1 − r) Id ⊗ OB, with OAB = ρwer

d .
So, ρ ′

d admits LHS model for

η � 1 − 1

d
, (23)

and the CR2E of ρ ′
d is nonnegative for

η � d − 1

r
√

d + 1
. (24)

Let F (r, d ) = d−1
r
√

d+1
− (1 − 1

d ); 0 � r � 1; d � 2. Then
F (r, d ) is nonnegative for 0 < r � 1; d � 2. Thus, if the state
ρ ′

d has the LHS model then its CR2E is nonnegative.

VI. CONCLUSION

The work here studies the relation between conditional
entropies of quantum systems and their steerability. We ob-
serve that, in the two-qubit scenario, states with maximally
mixed marginals violate the CJWR steering inequality (a
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particular three-settings steering inequality) iff they have neg-
ative conditional Rényi 2-entropy. For the general two-qubit
state, an upper bound to its conditional Rényi 2-entropy is
given which guarantees violation of the CJWR inequality.
Using a pertinent sufficiency criteria, we show that whenever
Weyl states in two-qubits are unsteerable (irrespective of any
particular inequality), they have a nonnegative conditional
Rényi 2-entropy. We extend our study to include LHS mod-
els in two-qudit systems, particularly for the isotropic and
Werner states, and find that whenever they admit LHS models,
they possess a nonnegative conditional Rényi 2-entropy. A
noisy variant of the two-qudit Werner state exhibits the same
trait.

We observe that the relation between quantum conditional
entropies and Bell-type inequalities is intricate where the
present work suggests that no direct relation exists for a

generic quantum state. However, we find that states with max-
imally mixed marginals do have a special role to play here
pertaining to the establishment of a direct relationship. Thus,
a significant area of future research could be to explore the
relation between local hidden-state models and conditional
entropy for states with maximally mixed marginals in arbi-
trary d ⊗ d dimensions apart from the states already discussed
here. Another direction that warrants attention is to explore the
relation for multipartite systems.

ACKNOWLEDGMENTS

N.G. acknowledges support from the project grant received
from SERB under the MATRICS scheme, vide file number
MTR/2022/000101.

[1] P. Zoller et al., Quantum information processing and communi-
cation, Euro. Phys. J. D 36, 203 (2005).

[2] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).

[3] J. S. Bell, On the Einstein Podolsky Rosen paradox, Phys. Phys.
Fiz. 1, 195 (1964).

[4] B. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.
Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014); V.
Scarani, Bell Nonlocality (Oxford University Press, New York,
2019).

[5] A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V.
Scarani, Device-Independent Security of Quantum Cryptogra-
phy against Collective Attacks, Phys. Rev. Lett. 98, 230501
(2007).

[6] R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, Quantum
steering, Rev. Mod. Phys. 92, 015001 (2020).

[7] E. Schrödinger, in Mathematical Proceedings of the Cambridge
Philosophical Society, Vol. 31 (Cambridge University Press,
Cambridge, England, 1935), p. 555.

[8] E. Schrödinger, in Mathematical Proceedings of the Cambridge
Philosophical Society, Vol. 32 (Cambridge University Press,
Cambridge, England, 1936), p. 446.

[9] H. M. Wiseman, S. J. Jones, and A. C. Doherty, Steering,
Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen
Paradox, Phys. Rev. Lett. 98, 140402 (2007).

[10] M. Pawłowski and N. Brunner, Semi-device-independent se-
curity of one-way quantum key distribution, Phys. Rev. A 84,
010302(R) (2011).

[11] A. Wehrl, General properties of entropy, Rev. Mod. Phys. 50,
221 (1978).

[12] C. E. Shannon, A mathematical theory of communication, The
Bell System Technical journal 27, 379 (1948).

[13] J. von Neumann, Mathematical Foundations of Quantum Me-
chanics (Princeton University Press, Princeton, NJ, 2018).

[14] A. Rényi, On measures of entropy and information, in
Proceedings of the Fourth Berkeley Symposium on Mathematical
Statistics and Probability Vol. 1 (University of California Press,
Berkeley, CA, 1961), p. 547.

[15] C. Tsallis, Possible generalization of Boltzmann-Gibbs statis-
tics, J. Stat. Phys. 52, 479 (1988).

[16] M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M.
Tomamichel, On quantum Rényi entropies: A new generaliza-
tion and some properties, J. Math. Phys. 54, 122203 (2013).

[17] N. J. Cerf and C. Adami, Entropic Bell inequalities, Phys. Rev.
A 55, 3371 (1997).

[18] J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti,
and J. C. Howell, Einstein-Podolsky-Rosen steering inequalities
from entropic uncertainty relations, Phys. Rev. A 87, 062103
(2013).

[19] A. C. S. Costa, R. Uola, and O. Gühne, Entropic steering crite-
ria: applications to bipartite and tripartite systems, Entropy 20,
763 (2018).

[20] S. Wehner and A. Winter, Entropic uncertainty relations-a
survey, New J. Phys. 12, 025009 (2010); P. J. Coles, M.
Berta, M. Tomamichel, and S. Wehner, Entropic uncertainty
relations and their applications, Rev. Mod. Phys. 89, 015002
(2017).

[21] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum
cryptography, Rev. Mod. Phys. 74, 145 (2002).

[22] N. J. Cerf and C. Adami, Negative Entropy and Information in
Quantum Mechanics, Phys. Rev. Lett. 79, 5194 (1997).

[23] M. Horodecki, J. Oppenheim, and A. Winter, Quantum state
merging and negative information, Commun. Math. Phys. 269,
107 (2006).

[24] D. Slepian and J. Wolf, Noiseless coding of correlated informa-
tion sources, IEEE Trans. Inf. Theory 19, 471 (1973).

[25] M. Vempati, N. Ganguly, I. Chakrabarty, and A. K. Pati, Wit-
nessing negative conditional entropy, Phys. Rev. A 104, 012417
(2021).

[26] M. Vempati, S. Shah, N. Ganguly, and I. Chakrabarty, A-unital
Operations and Quantum Conditional Entropy, Quantum 6, 641
(2022).

[27] S. Brandsen, I. J. Geng, M. M. Wilde, and G. Gour, Quan-
tum conditional entropy from information-theoretic principles,
arXiv:2110.15330.

[28] G. Gour, M. M. Wilde, S. Brandsen, and I. J. Geng, Inevitability
of knowing less than nothing, arXiv:2208.14424.

[29] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Proposed Experiment to Test Local Hidden-Variable Theories,
Phys. Rev. Lett. 23, 880 (1969).

032206-6

https://doi.org/10.1140/epjd/e2005-00251-1
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/PhysRevLett.98.230501
https://doi.org/10.1103/RevModPhys.92.015001
https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1103/PhysRevA.84.010302
https://doi.org/10.1103/RevModPhys.50.221
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1007/BF01016429
https://doi.org/10.1063/1.4838856
https://doi.org/10.1103/PhysRevA.55.3371
https://doi.org/10.1103/PhysRevA.87.062103
https://doi.org/10.3390/e20100763
https://doi.org/10.1088/1367-2630/12/2/025009
https://doi.org/10.1103/RevModPhys.89.015002
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/PhysRevLett.79.5194
https://doi.org/10.1007/s00220-006-0118-x
https://doi.org/10.1109/TIT.1973.1055037
https://doi.org/10.1103/PhysRevA.104.012417
https://doi.org/10.22331/q-2022-02-02-641
http://arxiv.org/abs/arXiv:2110.15330
http://arxiv.org/abs/arXiv:2208.14424
https://doi.org/10.1103/PhysRevLett.23.880


QUANTUM CONDITIONAL ENTROPIES AND … PHYSICAL REVIEW A 107, 032206 (2023)

[30] N. Friis, S. Bulusu, and R. A. Bertlmann, Geometry of two-
qubit states with negative conditional entropy, J. Phys. A: Math.
Theor. 50, 125301 (2017).

[31] R. Horodecki, P. Horodecki, and M. Horodecki, Quantum
α-entropy inequalities: Independent condition for local realism?
Phys. Lett. A 210, 377 (1996).

[32] E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and
M. D. Reid, Experimental criteria for steering and the
Einstein-Podolsky-Rosen paradox, Phys. Rev. A 80, 032112
(2009).

[33] J. Bowles, F. Hirsch, M. T. Quintino, and N. Brunner,
Sufficient criterion for guaranteeing that a two-qubit
state is unsteerable, Phys. Rev. A 93, 022121
(2016).

[34] R. F. Werner, Quantum states with Einstein-Podolsky-Rosen
correlations admitting a hidden-variable model, Phys. Rev. A
40, 4277 (1989).

[35] K. G. H. Vollbrecht and M. M. Wolf, Conditional entropies and
their relation to entanglement criteria, J. Math. Phys. 43, 4299
(2002).

[36] R. Horodecki, P. Horodecki, and M. Horodecki, Violating Bell
inequality by mixed spin 1/2 states: Necessary and sufficient
condition, Phys. Lett. A 200, 340 (1995).

[37] A. C. S. Costa and R. M. Angelo, Quantification of Einstein-
Podolsky-Rosen steering for two-qubit states, Phys. Rev. A 93,
020103(R) (2016).

[38] S. S. Bhattacharya, A. Mukherjee, A. Roy, B. Paul, K.
Mukherjee, I. Chakrabarty, C. Jebaratnam, and N. Ganguly,
Absolute non-violation of a three-setting steering inequality by
two-qubit states, Quant. Info. Proc. 17, 3 (2018).

[39] D. Cavalcanti, L. Guerini, R. Rabelo, and P. Skrzypczyk, Gen-
eral Method for Constructing Local Hidden Variable Models
for Entangled Quantum States, Phys. Rev. Lett. 117, 190401
(2016).

032206-7

https://doi.org/10.1088/1751-8121/aa5dfd
https://doi.org/10.1016/0375-9601(95)00930-2
https://doi.org/10.1103/PhysRevA.80.032112
https://doi.org/10.1103/PhysRevA.93.022121
https://doi.org/10.1103/PhysRevA.40.4277
https://doi.org/10.1063/1.1498490
https://doi.org/10.1016/0375-9601(95)00214-N
https://doi.org/10.1103/PhysRevA.93.020103
https://doi.org/10.1007/s11128-017-1734-4
https://doi.org/10.1103/PhysRevLett.117.190401

