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and finite-bandwidth effects of frequency-entangled photons
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We investigate the relation between indistinguishability and quantum entanglement in Hong-Ou-Mandel inter-
ference experiments theoretically and relate these quantum mechanical principles to the theorem of entanglement
monogamy. Employing Glauber’s theory of quantum coherence we compute the detection statistics in HOM
interference of frequency-entangled photons and find an additional term in the coincidence detection probability,
which is related to the spectral indistinguishability of the considered photons that arises from finite-bandwidth
effects and therefore is relevant in the limit of low-frequency separations or large single-photon bandwidths.
Compared to previous work in that context we treat all photonic degrees of freedom on equal footing.
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I. INTRODUCTION

Indistinguishability of physical systems is one of the im-
portant defining features of quantum systems without classical
analogs. For example, the exchange interaction in metals,
which arises as a consequence of the indistinguishability
between the electrons in the conduction band, can change
the magnetic properties of the system completely [1]. In the
case of bosons in particular, indistinguishability leads to in-
triguing phenomena, such as Bose-Einstein condensation or
photon bunching within interference experiments. The latter
was witnessed in the pioneering Hong-Ou-Mandel (HOM)
experiment [2], and today it is one of the celebrated results
of quantum optics that the phenomenon of photon bunching
can be used to measure time intervals in a sub-picosecond
regime. This accuracy can even be enhanced in the presence
of spectral entanglement [3], giving rise to the yet more
counterintuitive and interesting phenomenon of photon anti-
bunching, which is very uncharacteristic for photons as these
naturally follow bosonic statistics. Needless to say, quantum
entanglement is one of the most important physical phe-
nomena which cannot be explained by means of a classical
theory, and moreover, its existence has wide consequences
in our interpretation of the nonlocal behavior of matter and
the probabalistic character of nature. Since neither photon
bunching nor photon antibunching can be explained without
considering the particle character of photons, and since their
occurrence is ultimately related to nonclassical features such
as indistinguishability and entanglement, which are heralded
in a particular way in HOM interference, these experiments
today constitute one of the most important methods to test
and study quantum mechanical principles. It is, therefore, of
fundamental interest to precisely understand the role of in-
distinguishability and entanglement on the detection statistics

*Corresponding author: roy.barzel@zarm.uni-bremen.de

of HOM experiments, and the reader is referred to Ref. [4]
and references therein for an extensive overview on recent
progress and advances in the field and to Refs. [5,6] for a
modern mathematical formulation of the phenomenon in the
broader context of multiparticle interference.

In addition, the opportunity to provide highly accurate
time measurements with HOM interference adds to the prac-
tical appeal of these experiments. Only recently it was
demonstrated that HOM interference can be used to enhance
the accuracy of clock synchronization [7,8], a feature that
was already predicted theoretically [9]. Therefore, HOM-like
schemes are also candidates for space-based implementations,
such as the Global Positioning System (GPS), the installation
of a global time standard, or, in a broader context, high-
precision metrology in general.

Recently, the possibility to resolve time intervals below
(100 THz)−1 (i.e., in the inverse optical regime) with HOM in-
terference of frequency-entangled photons was recognized to
bare the potential of conducting fundamental tests of physics
by addressing the interplay between gravity and quantum me-
chanics [10–12].

In the present paper we employ Glauber’s theory of optical
coherence [13] and extend previous work on multiphoton
quantum interference [14] to incorporate all photonic degrees
of freedom on equal footing. As a result, we obtain a conve-
nient formalism, which on the one hand enables us to compute
the detection statistics of multiphoton interference experi-
ments from a general wave function and on the other hand
heralds the role of quantum mechanical principles such as
indistinguishability and quantum entanglement in a particular
way.

We apply our formalism to compute the detection statistics
of HOM interference with frequency-entangled photons [15],
and we find an additional term in the corresponding interfer-
ence pattern of coincidence detection compared to established
results [3,15,16] and provide a physical interpretation for
this term.
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By contrasting the interference behavior of spectrally in-
distinguishable frequency-entangled photons with the one
of spectrally distinguishable frequency-detuned photons, we
draw conclusions on the relation between entanglement and
indistinguishability in HOM interference and relate these con-
cepts via the theorem of entanglement monogamy.

This work is organized as follows. In Sec. II we revise the
basics of HOM interference, and we present our formalism
and apply it to frequency-entangled photons. In Sec. III we
relate the previously obtained results to former work and pro-
vide physical interpretation. Sections V and IV are dedicated
to concluding our work and providing an outlook.

II. HONG-OU-MANDEL INTERFERENCE

Sections II A and II B of this paper are dedicated to
developing the theoretical formalism to characterize HOM in-
terference based on Glauber’s theory of coherence. In Sec. II C
we show one of the main results of the present paper that is the
HOM interference pattern of frequency-entangled photons,
where we find an additional term related to the finite band-
width of the employed photons, which was not mentioned in
the literature [3,15,16] before.

A. Two-photon states

The theory for describing N-photon states has been exten-
sively developed [17], and we leave details to the interested
reader. A general two-photon state in the context of HOM
interference is given by [14]

|ψ (τ1, τ2)〉 = Nψ

∫
dω1dω2 �(ω1,ω2)eiω1τ1 eiω2τ2 â†

ω1
â†

ω2
|0〉 ,

(1)

where the bold ω denotes the set of parameters that charac-
terize all degrees of freedom (DOFs) of a single photon, e.g.,
its frequency, orbital momentum, polarization, spatial mode,
and so forth. In the case that a discrete DOF is considered (for
instance, the polarization DOF) the integral in Eq. (1) has to be
evaluated as a sum. We call �(ω1,ω2) the two-photon wave
function. The slim ω denotes the photon frequency, which
we treat separately from the other photonic DOFs σ. Thus, we
can write all photonic DOFs as ω = {ω, σ}. Depending on the
context we alternatively denote the photonic wave function as
�(ω1,ω2) = �(ω1, σ1, ω2, σ2) = �σ1σ2 (ω1, ω2).

The operators âω and â†
ω are bosonic annihilation and

creation operators, respectively, which satisfy the canonical
commutator relations [âω, â†

ω′ ] = δωω′ , while all other com-
mutators vanish. Here δωω′ is the multidimensional delta
function of the considered photonic DOFs. For each contin-
uous DOF (for instance, the frequency) δωω′ contains a Dirac
δ distribution and for each discrete DOF it contains a Kro-
necker symbol as a factor. For instance, if we consider only
the photon’s polarization P = H and V [horizontal (H) and
vertical (V ) polarization] and the photon’s frequency ω (i.e.,
ω = {ω, P}), the delta function reads δωω′ = δ(ω − ω′)δPP′ .

Expression (1) depends on two times, τ1 and τ2, that de-
scribe optical delays that can be applied independently to
wave packets in HOM interferometry [14] (see Fig. 1). From
an experimental point of view, these delays are typically

FIG. 1. Hong-Ou-Mandel (HOM) experiment with frequency-
entangled photons. PBS, polarizing beam splitter; BS, beam splitter;
M, mirror; CC, coincidence count logic.

realized via a variation of the optical path of the respective
photons. In practice, this can be achieved, for instance, by a
variation of the refractive index of the respective transmission
path. The normalization constant Nψ has to be chosen in order
to fulfill 〈ψ |ψ〉 = 1. However, the procedure that is described
in the following to compute the detection statistics of HOM
interference is independent of the normalization constant as
we show further below. For this reason, we omit it for the rest
of this work.

B. Photon detection

Photon detection is described within Glauber’s quantum
theory of coherence [13]. The electric field operators are de-
fined as

Ê (+)
σ (t ) = i

∫
dω Eωe−iωt âω, (2a)

Ê (−)
σ (t ) = [Ê (+)

σ (t )]†, (2b)

where Eω = √
[h̄ω/(4πε0c)] is the frequency-dependent elec-

tric field per photon. The electric field operators are character-
ized by the parameter set σ.

Analogously we may define creation (annihilation) opera-
tors, which create (annihilate) a photon at time t , which are
characterized by a parameter set σ as

âσ (t ) =
∫

dωe−iωt âω, (3a)

â†
σ (t ) =

∫
dωe+iωt â†

ω. (3b)

The temporal creation (annihilation) operators (3) are basi-
cally Fourier transforms with respect to the frequency DOF
of the spectral creation (annihilation) operators â†

ωσ (âωσ).
Note that for the remaining DOFs, σ are not integrated out
in Eq. (3).

In Glauber’s theory of optical coherence [13], the expec-
tation value of a joint detection of two electric field quanta
characterized by σ1 and σ2 at times t1 and t2 in the quantum
state (1) reads

	σ1σ2 (t1, t2) = 〈ψ |Ê (−)
σ1

(t1)Ê (−)
σ2

(t2)Ê (+)
σ2

(t2)Ê (+)
σ1

(t1)|ψ〉 , (4)

and the probability pσ1σ2 (t1, t2, τ1, τ2) of a joint
detection of two photons characterized by σ1

and σ2 at times t1 and t2 is proportional to
〈ψ (τ1 , τ2) |â†

σ1
(t1) â†

σ2
(t2) âσ2

(t2) âσ1
(t1)|ψ (τ1, τ2)〉 ≡ 〈ϕ|ϕ〉,
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where |ϕ〉 := âσ2
(t2)âσ1

(t1) |ψ (τ1, τ2)〉. Using Eqs. (1) and
(3), together with some algebra, we find that the detection
probability pσ1σ2 (t1, t2, τ1, τ2) ∝ 〈ϕ|ϕ〉 reads

pσ1σ2 (t1, t2, τ1, τ2) ∝ |�̃σ1σ2 (t1 − τ1, t2 − τ2)

+ �̃σ2σ1 (t2 − τ1, t1 − τ2)|2, (5)

where we have introduced the Fourier transform of the pho-
tonic wave function

�̃σ1σ2 (T1, T2) =
∫

dω1dω2 �σ1σ2 (ω1, ω2)e−iω1T1 e−iω2T2 .

(6)

The probability Pσ1σ2 (τ1, τ2) to detect two photons irrespec-
tively of the instance of time, when they are detected, is
proportional to

P̃σ1σ2 (τ1, τ2) :=
∫

dt1dt2 pσ1σ2 (t1, t2, τ1, τ2). (7)

We employ the convolution theorem from Fourier analysis and
obtain

P̃σ1σ2 (τ1, τ2) =
∫

dω1dω2 [|�σ1σ2 (ω1, ω2)|2

+ |�σ2σ1 (ω2, ω1)|2]

+ 2Re

{ ∫
dω1dω2�σ1σ2 (ω1, ω2)

× �∗
σ2σ1

(ω2, ω1)e−i(ω1−ω2 )(τ1−τ2 )

}
, (8)

which can be further simplified to the compact form

P̃σ1σ2 (τ1, τ2) =
∫

dω1dω2

∣∣S[
�(τ1,τ2 )

σ1σ2
(ω1, ω2)

]∣∣2
, (9)

where �(τ1,τ2 )
σ1σ2

(ω1, ω2) = �σ1σ2
(ω1, ω2)eiω1τ1 eiω2τ2 is the time-

dependent photonic wave function, which depends on the
optical delays τ1,2, and S is the symmetrization opera-
tor, which acts as S[�(τ1,τ2 )

σ1σ2
(ω1, ω2)] = �(τ1,τ2 )

σ1σ2
(ω1, ω2) +

�(τ1,τ2 )
σ2σ1

(ω2, ω1). Finally, to obtain the normalized probabilities
to detect one photon characterized by σ1 and another charac-
terized by σ2, we have to compute

Pσ1σ2 (τ1, τ2) = P̃σ1σ2 (τ1, τ2)∫
dσ1dσ2 P̃σ1σ2 (τ1, τ2)

. (10)

From the last expression it is seen that the normalization con-
stant Nψ from Eq. (1) cancels out in the calculation because
its square appears in the nominator and the denominator of
Eq. (10).

Note the symmetries of the probabilities Pσ1σ2 (τ1, τ2) =
Pσ2σ1 (τ1, τ2) = Pσ1σ2 (τ2, τ1) and that the probabilities are al-
ways a function of the difference �τ := τ1 − τ2 as can be
seen from Eq. (8).

Equation (9) is a central result of the paper as we can
use it to easily compute the joint detection statistics of
HOM interference for any given two-photon wave function
�σ1σ2 (ω1, ω2), and it moreover highlights the interpretation
of the absolute square value of the (time-dependent) photonic
wave function as being the probability for certain detection

events. Moreover, Eq. (9) clearly shows that only the sym-
metrized part of the photonic wave function is of physical
relevance, which can be already inferred from Eq. (1), since
it can be written solely in terms of the symmetrized time-
dependent photonic wave function by use of the canonical
commutator relations.

Apart from that, Eq. (8) emphasizes the role of indis-
tinguishability between the two involved photons in HOM
interference. The first two terms of Eq. (8) do not depend on
the delays, in contrast to the last third term, the interference
term. This term can be interpreted as the overlap of the joint
photonic wave function at the interfering beam splitter (BS)
with itself under an exchange of the function arguments, i.e.,
ω1 ↔ ω2, i.e., under particle exchange, and thus can serve
as a measure of indistinguishability. If this overlap vanishes,
the particles are considered as entirely distinguishable and
HOM interference does not occur, and we show this in some
concrete examples in the later sections.

Moreover, in the absence of entanglement, which is dis-
tinguished by the factorization of the two-photon wave
function into two single-photon wave functions [18] [i.e.,
�σ1σ2 (ω1, ω2) = �σ1 (ω1)�σ2 (ω2)], the interference term of
Eq. (8) results in a positive value for σ1 = σ2. This increased
detection probability for equally behaved (σ1 = σ2) photons
implies that the factorization of the joint photonic wave func-
tion leads to the exclusive occurrence of photon bunching
and thus certifies the occurrence of photon antibunching as a
sufficient validation for the presence of entanglement, which
was already recognized before in Ref. [19] and was also used
in Ref. [20].

Furthermore, we want to add that using the same tech-
niques as in the derivation of Eq. (9) we obtain for the single-
particle detection statistics which is characterized by the
probability Pσ (τ1, τ2) = ∫

dt 〈ψ (τ1, τ2)|â†
σ (t )âσ (t )|ψ (τ1, τ2)〉

to detect a single photon in state σ the intuitive result

Pσ =
∑

σ̄

1

2
(Pσσ̄ + Pσ̄σ ) =

∑
σ̄

Pσσ̄ (11)

for all τ1 and τ2, which we omitted as function arguments in
Eq. (11).

Finally, we want to remark that the presented formalism
here naturally extends to multiphoton interference experi-
ments, where more than two photons are involved (see, for
instance, Ref. [21]). In these cases an analog result to Eq. (9)
is obtained for the multiphoton detection statistics where one
has to symmetrize over the various DOFs of the involved
photons. This also includes the special case of single-photon
interference experiments like the Mach-Zehnder interferome-
ter. Furthermore, also extending our formalism to mixed states
is straightforward. However, we leave the concrete documen-
tation of the extension of our formalism to mixed states for
future work.

C. Frequency-entangled photons

The generation of frequency-entangled photons and their
subsequent measurement within a HOM interference exper-
iment is shown in Fig. 1; this was first demonstrated in
Ref. [3] and was recently analyzed in more detail in Ref. [15].
For this, one first generates two polarization-entangled and
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frequency-detuned photons which originate from a sponta-
neously down-converting periodically poled KTiOPO4 crystal
(ppKTP crystal). These photons render (up to normalization)
the state

|ψf.d.〉 =
∫

dω1dω2 φf.d.(ω1, ω2)eiω1τ1 eiω2τ2

× (
â†

Hh1ω1
â†

Hh2ω2
+ â†

V h1ω1
â†

V h2ω2

) |0〉 , (12)

where the spectral wave function in this case reads

φf.d.(ω1, ω2) = δ(ωp − ω1 − ω2) sinc

(
ω1 − ω2 − μ

ξ

)
.

(13)

The subscript f.d. means frequency detuned, ωp is the pump
frequency of the down-converting process, μ is the frequency
separation or detuning of the photons (which can be adjusted
by tuning the ppKTP crystal’s temperature), and ξ is the
single-photon bandwidth.

The spectral wave function (13) is not square integrable
due to the occurrence of the delta distribution δ(ωp − ω1 −
ω2). This constitutes a problem in the evaluation of Eq. (8) [or
rather Eq. (9)] due to the occurrence of squared delta func-
tions δ2(ωp − ω1 − ω2) under the integrals to evaluate. One
approach to treat this problem stems from scattering theory.
There, one uses the identity δ(ω) = limT →∞

∫ T
−T dt exp(iωt )

to rewrite squares of delta distributions as δ2(ω) = T δ(ω),
where T is the time over which the various detection events in
an experiment are integrated. To obtain particle fluxes instead
of particle numbers one has to divide expectation values by T .
Thus, particle fluxes remain finite, also in the limit T → ∞.
The probability of a certain detection event is then recovered
through division of the corresponding particle flux of the
respective detection event by the sum of particle fluxes of all
possible detection events.

After generation, the two polarization-entangled
frequency-detuned photons interfere on a polarizing
beam splitter (PBS), a process that transfers polarization
entanglement onto the frequency DOF. The resulting
(un-normalized) state after the PBS therefore reads

|ψf.e.〉 =
∫

dω1dω2 φf.d.(ω1, ω2)

× (
â†

Dh1ω1
â†

Dh2ω2
eiω1τ1 eiω2τ2

+ eiϕ â†
Dh1ω2

â†
Dh2ω1

eiω2τ1 eiω1τ2
) |0〉 , (14)

where the subscript f.e. means frequency entangled and the
operator â†

Dsω = (â†
Hsω + â†

V sω )/
√

2 creates a photon in the di-
agonal polarization state with frequency ω in the spatial mode
s. Diagonal polarization of both photons has been achieved by
a postselective measurement in Ref. [15] (not shown in Fig. 1).
The polarization state of the photons is neither manipulated
nor filtered or measured after the generation of the frequency-
entangled photons in the experiment [15]. This is why we may
discard it from here on, i.e., apart from the frequency we have
only the spatial mode as the only left photonic DOF. Thus, we
have σ = s ∈ {U, L}.

We also included the additional parameter ϕ in the state
(14). This parameter controls the symmetry of the photonic

wave function in the frequency DOF. The value ϕ = 0 cor-
responds to a symmetric spectral wave function, while ϕ = π

corresponds to an antisymmetric spectral wave function as can
be seen in Eq. (16).

We can rewrite the state (14) as

|ψf.e.〉 =
∫

dω1dω2 φ
ϕ
f.e.(ω1, ω2)eiω1τ1 eiω2τ2 (15)

× â†
h1ω1

â†
h2ω2

|0〉 ,

where we have defined the frequency-entangled spectral wave
function

φ
ϕ
f.e.(ω1, ω2) = φf.d.(ω1, ω2) + eiϕφf.d.(ω2, ω1). (16)

The state (15) then passes through the 50 : 50 BS and it
transforms into

|ψf.e.〉 =
∫

dω1dω2 φ
ϕ
f.e.(ω1, ω2)eiω1τ1 eiω2τ2

× (
â†

Uω1
â†

Uω2
eiθ − â†

Lω1
â†

Lω2
e−iθ

+ â†
Uω1

â†
Lω2

− â†
Lω1

â†
Uω2

) |0〉 . (17)

From this we can read off the photonic wave function
after the beam splitter �σ1σ2 (ω1, ω2) = �s1s2 (ω1, ω2), which
is characterized by four scalar functions in ω1 and ω2 (since
s1 and s2 respectively can take two values, U and L). We can
arrange the wave function in a 2 × 2 matrix:

�s1s2 (ω1, ω2) = φ
ϕ
f.e.(ω1, ω2)

(
eiθ +1
−1 −e−iθ

)
. (18)

The row and column numbering of Eq. (18) is U,V .
We now employ Eqs. (18), (9), and (10) to compute the

joint detection probabilities Ps1s2 (τ1, τ2), and we find

Ps1s2 (τ1, τ2) = 1
4 [R + d (τ1, τ2)C], (19)

where the matrices R and C are given in the (s1, s2) basis by

R =
(

1 1
1 1

)
, C =

(
1 −1

−1 1

)
, (20)

while the functional dependence on the delays τ1 and τ2

appears only in the function d (τ1, τ2), which we specify im-
mediately.

Note that we have chosen the bold font for Ps1s2 (τ1, τ2)
in Eq. (19) to emphasize the fact that it has to be read as a
matrix. The different entries are equal to the probabilities of
the various detection events. The row and column numbering
of Eq. (19) is the same as in Eq. (18). For instance, the
entry of row 2 and column 2 in Eq. (19) means that the
probability of detecting both photons at detector L (see Fig. 1)
is equal to PLL(τ1, τ2) = 1/4[1 + d (τ1, τ2)].

The probability Pc(τ1, τ2) := PUL + PLU for a coincidence
measurement (i.e., to detect one photon at one detector U or L
and the other photon at the other detector L or U ) is given by

Pc(τ1, τ2) = 1
2 [1 − d (τ1, τ2)], (21)

with

d (τ1, τ2) = Rϕ
μξ (τ1, τ2) + Sμξ (τ1, τ2)

1 + cos(ϕ)sinc(2μ/ξ )
, (22)

032205-4



ROLE OF INDISTINGUISHABILITY AND ENTANGLEMENT … PHYSICAL REVIEW A 107, 032205 (2023)

0 1 2 3 4 5
Frequency Separation = /2  (THz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

|
P

c (
m

ax
)|

0

0.5

1

1.5

2

m
ax

 (
ps

)

-3 -2 -1 0 1 2 3
Delay  (ps)

0

0.2

0.4

0.6

0.8

1

C
oi

nc
id

en
ce

 P
ro

ba
bi

lit
y 

P
c

Eq. (22)
Ref. [15]

-3 -2 -1 0 1 2 3
Delay  (ps)

0.2

0.4

0.6

0.8

1

C
oi

nc
id

en
ce

 P
ro

ba
bi

lit
y 

P
c

(a)

(c)

(b)

=1.7 THz

Pc(
max

)

=0 THz

FIG. 2. Hong-Ou-Mandel interference experiment with frequency-entangled photons [see Eq. (16) for joint spectral profile]. Coincidence
probability for a frequency separation of (a) ν = μ/2π = 1.7 THz and (b) ν = μ/2π = 0 THz. Note that our correction leads to a
qualitative different behavior of the coincidence probability. The red curve in panel (b) predicts photon antibunching (Pc > 0.5) for all delays,
where the black curve predicts photon bunching (Pc < 0.5) for some delays around �τ ≈ ±1.5 ps. In panel (c) the blue curve shows the
absolute value of the maximum discrepancy |�Pc(�τmax)| in the coincidence probability between our result [Eq. (22)] and the result that was
obtained in Ref. [15] in dependence of the frequency separation ν = μ/2π . The green curve shows the delay �τmax at which this discrepancy
is maximized. The single-photon bandwidth ξ = 4/τc = 1.356 THz was taken from Ref. [15], where the coherence time from the mentioned
reference was approximately τc ≈ 0.3/0.885 THz. The delay is �τ = τ1 − τ2. All computations were done for ϕ = π in our evaluation of
Eq. (22).

where we have introduced the functions

Rϕ

μξ (τ1, τ2) = cos[μ(τ1 − τ2) − ϕ]tri

(
ξ (τ1 − τ2)

2

)
, (23a)

Sμξ (τ1, τ2) =
sin

[ 2μ

ξ
tri

(
ξ (τ1−τ2 )

2

)]
2μ

ξ

, (23b)

and

tri(x) =
{

1 − |x| if |x| � 1
0 if |x| > 1 (24)

is the triangular function.

III. DISCUSSION

A. Relation to previous experiments

Our result (22) for the HOM effect extends the scope
of application of the one obtained in previous work [15].
There, the expression d (τ1, τ2) = Rϕ

μξ (τ1, τ2) was obtained,
which coincides with our result in the limit μ/ξ � 1
since limμξ →∞ Sμξ (τ1, τ2) = 0. Let us call d0(τ1, τ2) :=
d (τ1, τ2)|μ/ξ→∞. Since the previous experiment [15] was car-
ried out in a parameter regime where one has μ/ξ > 10, the
discrepancy with our result was not measured. A qualitative
difference between our result and the aforementioned result
in the literature would have been revealed if the authors had
driven the ppKTP crystal at lower temperatures, but they

started their measurement series from the lowest crystal tem-
perature of T = 33.7 ◦C, which corresponds to a frequency
separation of ν = μ/2π = 1.7 THz [see Fig. 2(a)]. Never-
theless, also at this frequency separation a slight difference
between our result and the one mentioned before can be seen.
Our result (22) predicts slightly lower interference fringes.
This tendency was already seen in the original investigation
of frequency-entangled photons by Ou and Mandel [3], where
this lower fringe visibility was attributed to an imperfect align-
ment of the measurement apparatus. However, we suggest
that this discrepancy might originate, at least in part, due to
our correction term �Pc(τ1, τ2) = d0(τ1, τ2) − d (τ1, τ2). In
the original derivation [15] this lower fringe visibility was ex-
plained by imperfect frequency entanglement of the photons.

A clear discrepancy between the approximation formula
from the result found in the literature [15] and our result
for the coincidence probability (22) would have been ob-
served if the ppKTP crystal would have been driven only
10 ◦C lower at a room temperature of about T ≈ 20 ◦C, which
would correspond to a frequency separation of ν = μ/2π ≈
0.265 THz. This would lead to a discrepancy of the coinci-
dence probability to our result of |�Pc(�τmax)| ≈ 0.2 at a
delay of �τmax ≈ 1 ps as seen in Fig. 2(c).

It is also worth noting that in the parameter regime of
low-frequency separations, the additional term Sμξ (τ1, τ2)
predicts physics qualitatively different than those previously
obtained via the approximation formula [15], as can be seen
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in Figs. 2(b) and 2(c). For a delay of �τmax ≈ ±1.5 ps, our re-
sult shows the occurrence of photon bunching (i.e., Pc < 0.5)
where the approximation formula d0(τ1, τ2) = Rϕ

μ�(τ1, τ2)
here predicts photon antibunching (i.e., Pc > 0.5).

B. Physical interpretation

The additional term �Pc(τ1, τ2) ∝ Sμξ (τ1, τ2), which was
not yet documented in the literature [15,16], has a concrete
physical meaning as it quantifies the contribution of the spec-
tral indistinguishability related to finite-bandwidth effects to
the coincidence interference pattern, which becomes more
dominant for lower values of μ/ξ and, in particular, in the
limit μ → 0 of vanishingly small frequency separations.

To see this, it is illusive to repeat the calculation of the
coincidence detection probability with the spectrum (13) of
frequency-detuned photons in place of the spectrum (16) of
frequency-entangled photons. This yields

Pc(τ1, τ2) = 1
2 [1 − Sμξ (τ1, τ2)], (25)

which precisely coincides with the corresponding result of
coincidence detection probability of frequency-detuned pho-
tons found in the literature [20]. Contrasting this result with
the interference pattern (22) of frequency-entangled photons
shows up the meaning of spectral distinguishability in HOM
interference and moreover relates this to the presence of en-
tanglement between the spectral DOF and other DOFs of the
considered photons, as we explain further below.

One can regard the spectral wave function (13) of
frequency-detuned photons in the ω1ω2 plane in the limit
μ � ξ as a distribution peaked around the point [(ωp +
μ)/2, (ωp − μ)/2], meaning one photon is emitted at fre-
quency ω1 ≈ (ωp + μ)/2 and the other at frequency ω2 ≈
(ωp − μ)/2. As can be seen in state (12), the photon of
frequency ω1 is emitted in mode h1 and the photon of fre-
quency ω2 is emitted in mode h2, meaning that here we
face a state in which the spatial modes of the photons are
entangled with their frequencies. This is why the photons
of state (12) are spectrally distinguishable from each other.
The spectral distinguishability increases with increasing val-
ues of μ/ξ , i.e., with increasing entanglement between the
spectral and the spatial DOF of each photon. This sup-
presses the tendency of frequency-detuned photons to bunch
or antibunch [15], which is reflected in the vanishing of the
interference term Sμξ (τ1, τ2) in Eq. (25) for increasing values
of μ/ξ .

This emphasizes the role of distinguishability in the con-
text of second quantization, in which no particle can be
addressed individually by means of a “label” of the parti-
cle. This is the reason why it is often stated that in the
second quantization formalism the involved particles are al-
ways considered as being indistinguishable. However, the
second quantization formalism also carries a notion of distin-
guishability of particles, which is not encoded in the particle
“labels” but in their properties (e.g., DOFs), and the inter-
ested reader is referred to Refs. [22,23] for the original and
more detailed discussion on the topic, which was summarized
in Ref. [24].

In the case of two completely indistinguishable photons
of two frequencies, ω1 and ω2, it is impossible for an

experimenter to detect (i.e., to address) a photon of a cer-
tain frequency, say ω1. However, because the property of
the photon’s frequency (i.e., the photon’s frequency DOF) is
entangled with its transmission path (i.e., its spatial DOF) in
state (12), the experimenter can simply place a detector in
the transmission path h1 to detect and address the photon of
frequency ω1 with certainty (in the limit μ/ξ → ∞).

In contrast to this, the spectrum (16) of frequency-
entangled photons is invariant against the exchange of the
function arguments ω1 and ω2 for ϕ = 0. Operationally, this
means that an experimenter is unable to detect and address
a photon of a certain frequency, ω1 ≈ (ωp + μ)/2 or ω2 ≈
(ωp − μ)/2 thorough any measurement. This is because [in
contrast to the state (12)] the frequency of the photons is not
entangled with their spatial modes (or other DOFs). The only
information which is known with certainty is that at whatever
frequency ω1 or ω2 one photon of the state (15) is detected,
the other photon is detected at the other frequency ω2 or ω1.
In other words the two frequencies at which the two photons
are detected in state (15) are known, while the frequency of
each individual photon is completely unknown, which is the
essence of (spectral) entanglement [25].

This in turn shows up the relation between distin-
guishability and entanglement in second quantization. The
impossibility to address a certain DOF of single particles
(for instance, the frequency of a single photon) through any
measurement corresponds to the indistinguishability of the
considered particles with respect to this DOF, which is closely
related to the presence of entanglement of the considered par-
ticles with respect to this DOF. However, one should note that
the indistinguishability of two particles with respect to a cer-
tain property (DOF) is not equivalent but rather is a necessary
condition for the presence of entanglement in the considered
DOF. This means that two photons can be completely indistin-
guishable in their frequency DOF but nevertheless frequency
unentangled (like it is the case with photons from the original
HOM experiment [2]). However, the amount of frequency
entanglement in a two-photon state is limited by the spectral
indistinguishability of the considered photons.

This can be also seen as a consequence of the theorem
of entanglement monogamy, which states that any pair of
physical systems that are maximally entangled with each
other cannot be entangled with any other physical system and
that any entanglement with another, third, physical system
comes at the cost of shrinking the amount of entanglement
between the first two systems. This is why the interference
term Sμξ (τ1, τ2) of the coincidence detection probability (25)
of frequency-detuned photons vanishes in the limit μ → ∞,
because with growing frequency separation μ the photon
frequencies get stronger and stronger entangled with their
spatial DOF (i.e., their transmission path), thereby becoming
spectrally more and more distinguishable and thus imposing
an upper limit on the exploitable frequency entanglement cer-
tified by the occurrence of photon antibunching [19].

C. Further mathematical considerations

Finally, we want to provide some mathematical argu-
ments why the interference pattern d0(τ1, τ2), commonly
used in the literature, cannot characterize the coincidence
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detection statistics of frequency-entangled photons in its
whole generality. This can be best seen in the limit μ → 0.
In this limit the spectrum of frequency-detunded photons (13)
is invariant under the exchange of the function arguments
[i.e., φf.d.(ω1, ω2) = φf.d.(ω2, ω1)] and thus coincides [apart
from a prefactor (1 + eiϕ )] with the spectrum of frequency-
entangled photons (16). Thus, in the limit μ → 0 also the
corresponding interference patterns of frequency-detuned and
frequency-entangled photons should coincide and, in particu-
lar, be independent from the phase ϕ (because it only enters
the calculations as a prefactor of the photonic wave func-
tion). Note that ϕ = π [the case shown in Fig. 2(b)] is a
special case which we discuss further below separately; i.e.,
we first consider the case ϕ �= π . Indeed our results (21)
and (25) are identical for ϕ �= π and μ → 0, and both result
in limμ→0,ϕ �=π d (τ1, τ2) = tri(ξ�τ/2), where d0(τ1, τ2) does
not reproduce the interference pattern of frequency-detuned
photons (25) in the limit μ → 0 (except for ϕ = 0). For ϕ =
π/2 and μ → 0 the approximation formula even predicts the
absence of interference, i.e., d0(τ1, τ2) = 0. It is interesting to
see that for the special case ϕ = π our result for the inter-
ference terms in the limit μ → 0 is limμ→0,ϕ=π d (τ1, τ2) =
−�(ξ |�τ |/2)[(ξ |�τ |)3 − 6ξ |�τ | + 4]/4, which is shown
in Fig. 2(b), where �(x) is the Heaviside step function.
Despite ϕ = π being an interesting mathematical special case,
in the limit μ → 0 this special case is physically unstable,
since any deviation from the value ϕ = π forces the inter-
ference term to collapse to the triangular function. Moreover,
the special case ϕ = π is unphysical in the limit μ → 0 when
one considers frequency-entangled photons, since in this
case the corresponding spectral wave function of frequency-
entangled photons (16) vanishes. However, we wanted to
show this case here [see Fig. 2(b)].

IV. OUTLOOK

There are several possible extensions to this work. First
of all, we think that our formalism can be easily ex-
tended to a much broader class of multiphoton interference
experiments [21] and moreover also to atom interference ex-
periments [26]. The analysis of many-particle interference
with bosons, fermions, or both would be covered by our
formalism by a generalized symmetrization operator S in
Eq. (9), accounting for the respective parity of the wave
function of the quantum system under consideration, and
similar results in this direction have already been reported
in combinatorial approaches in Refs. [27,28]. We think that
these considerations can be translated into our formalism
and vice versa. However, showing a strict mathematical anal-
ogy between these different formalisms remains a subject of
future work.

Moreover, a general theoretical framework for the en-
tanglement analysis in the second quantization formalism,
which was recognized [29] early to be fundamentally different
from the conventional entanglement analysis of distinguish-
able particles [30], would be desirable. However, despite
tremendous progress [24,31,32] it is still a subject of ongoing
research how to translate key concepts from standard quantum
mechanics such as the execution of partial traces [33–35]
and mixed states [32,36], various entanglement criteria

[18,37–39], or the separability problem in general [40,41] to
second quantization.

Furthermore, we want to emphasize that HOM experi-
ments are ruled by the spectral properties of the employed
light sources which are sensitive to one of the trademark
predictions from general relativity, namely, the redshift on
photons propagating through curved space-time. Moreover,
as constituting highly accurate entangled photonic clocks, the
study of frequency-entangled photons in HOM interference in
a relativistic setting is of great interest. We intend to cover
these aspects in a follow-up work.

Finally, we want to point out that the considerations of
the present work might be connected to recent experimental
advances in the study of the relation between entanglement
and indistinguishability [42–46]. For instance, the authors
of Ref. [42] conducted a direct measurement of the particle
exchange phase of fermions, bosons, and anyons (particles
with a mixed wave function parity) and showed that this
can be useful for quantum-enhanced phase estimation. As
frequency-entangled photons can reveal bosonic, fermionic,
or anyonic behavior represented through the occurrence of
photon bunching, photon antibunching, or a mixture of both
in HOM experiments, they could be interesting to be consid-
ered as resources for similar studies addressing the physics of
the wave-function parity. Other experiments recently demon-
strated that the indistinguishability of photons can be used as a
resource for various elementary processes in quantum techno-
logical applications, such as coherence generation [43], quan-
tum teleportation [44], and remote entanglement distribution
in quantum networks [45,46]. All these works suggest that the
degree of coherence and, in particular, entanglement correla-
tions are closely related to the indistinguishability of the in-
volved photons. The theoretical relation studied in this work,
between indistinguishability and quantum entanglement via
the theorem of entanglement monogamy (for photons in HOM
interference), might be used as an estimator for the exploitable
resources in quantum technological applications due to the in-
distinguishability of the involved particles and could possibly
constitute a step towards a better understanding and control of
these quantum qualities in future experiments.

V. CONCLUSIONS

Indistinguishability and entanglement are two of the most
important genuine quantum mechanical principles without
classical analogs. Both these principles play a crucial role
in HOM interference experiments which cannot be explained
without considering the particle character of single photons
which by itself can only be explained within an entirely quan-
tum mechanical theory of electromagnetism. Therefore, HOM
experiments are ideal candidates to study the quantum nature
of photons and, moreover, the relation between indistinguisha-
bility and quantum entanglement.

Using Glauber’s theory of optical coherence we developed
a formalism to predict the detection statistics of HOM inter-
ference experiments in a systematic way where we treated
all photonic DOFs on equal footing under the inclusion of
entanglement correlations. This formalism naturally extends
also to more complicated experimental setups and multiparti-
cle quantum states.
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We analyzed the role of indistinguishability and en-
tanglement in HOM interference in the example of two
fundamental two-photon sources: Sources which produce
spectrally distinguishable frequency-detuned photons [20]
and sources which produce spectrally indistinguishable
frequency-entangled photons [15].

The comparison between these sources showed that the
amount of entanglement which can be exploited in HOM
interference through the occurrence of photon antibunching
is limited by the spectral indistinguishability of the employed
photons, which by itself is limited by the amount of en-
tanglement between the spectral DOF of the photons with
other DOFs, for instance, the spatial one. Therefore, we could
relate the relation between indistinguishability and entangle-
ment in HOM interference to the theorem of entanglement
monogamy.

Apart from that, with our formalism we found an addi-
tional term in the interference pattern of frequency-entangled
photons. Because frequency-entangled photons seem to be

one of the most promising candidates to test fundamental
aspects of physics and, moreover, because they can be used
as a resource in quantum technological applications related
to high-precision metrology, it is important to accurately
characterize their spectral properties, also in the regime of
low-frequency separations.
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