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Unbounded quantum backflow in two dimensions
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Quantum backflow refers to the counterintuitive fact that the probability can flow in the direction opposite
to the momentum of a quantum particle. This phenomenon has been seen to be small and fragile for one-
dimensional systems, in which the maximal amount of backflow has been found to be bounded. Quantum
backflow exhibits dramatically different features in two-dimensional systems that, in contrast to the one-
dimensional case, allow for degenerate energy eigenstates. Here we investigate the case of a charged particle that
is confined to move on a finite disk punctured at the center and that is pierced through the center, and normally
to the disk, by a magnetic flux line. We demonstrate that quantum backflow can be unbounded (in a certain
sense), which makes this system a promising physical platform regarding the yet-to-be-performed experimental
observation of this fundamental quantum phenomenon.
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I. INTRODUCTION

The principle of quantum superposition is at the heart
of quantum theory. Some of its best known manifestations
include the double-slit interference, Schrodinger’s-cat states,
and entanglement [1]. Quantum backflow (QB) is another, far
less known manifestation of the superposition principle. The
gist of the QB effect is the counterintuitive possibility for a
quantum particle to move, in a certain sense, in the direction
opposite to its momentum.

Originally, the QB problem was formulated for a free non-
relativistic particle on a line [2]. The formulation proceeds as
follows. A particle of mass u moves freely along the x axis,
and its time-dependent wave function v (x, t) comprises only
positive-momentum plane waves:

W(.x,t) - dpi;(p)eipx/hiipzt/zml’ (1)

1 oo
V2rh /0
where J is the initial (r = 0) momentum-space wave function
of the particle. Equation (1) guarantees that the outcome of
any momentum measurement performed on v is bound to be
positive. The wave function is normalized to unity,

/ dx|w<x>|2=/0 dply(p)P? = 1.
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Surprisingly, even though the momentum of the particle is
(with certainty) positive, the corresponding probability cur-
rent j(x, 1), given by

h 9
Jot) = o m (1//* w>, 2

ox
can be negative at some x and ¢: this fact is the essence of the
QB effect. A natural way to quantifying the strength of the
effect is to consider the total probability transfer A through a

fixed spatial point, say, x = 0, over a fixed (but arbitrary) time
interval, say, —T7/2 <t < T/2:

T/2
A =/ dt j(0,1). 3)
)
Numerical investigations have shown [2—4] that A admits a
lower bound, namely,

inf A = A = ~0.0384517, 4)

commonly referred to as the Bracken-Melloy bound. As of
today, the exact value of Ay, remains unknown (lower and
upper bounds for Ay, were obtained very recently [5]).

Equation (4) shows that the effect of QB is relatively weak
for a particle on a line: only a tiny fraction, less than 4%,
of the total probability can potentially be transported in the
“wrong” direction. This limitation is exacerbated by the fact
that quantum states exhibiting probability transfer close to
Ajine are characterized by infinite spatial extent and infinite
energy [6]. Due to such factors, a laboratory demonstration of
QB remains an open challenge [7].

QB becomes more pronounced and more amenable to ex-
perimental observation when considered in a ring, rather than
on a line [14]. More concretely, one considers a particle of
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mass p and electric charge ¢ moving in a ring of radius R. The
ring is pierced (normally to the plane of the ring) by a constant
uniform magnetic field B. The (normalized) wave function ¥
is here assumed to have a non-negative angular momentum:
in this context, QB then manifests itself as the possibility for
the probability current

h d R’B
ij)z——gbm<w*¢)——q |wﬂ} 5)
UR

96 2hc

to be negative, at some 6 and ¢, despite the particle’s angular
momentum being, with certainty, non-negative. The probabil-
ity transfer A through a fixed point on the ring, say, 6 = 0,
over a time interval —7/2 <t < T /2 is still given by Eq. (3)
but now with the current (5). A numerical analysis has shown
that [14]

ir!;fA = Agipg > —0.116816 (6)

and that the backflow-optimizing state is achieved for
AT /4uR* ~ 1.163635 and B = 0. Thus, QB in a ring can
be over three times more pronounced than QB on a line.
In addition to this, the backflow-optimizing state in a ring
appears to have a finite energy (and, in view of the system’s
geometry, a finite spatial extent) [14].

Therefore, an important question is whether there are phys-
ical systems characterized by a probability transfer A smaller
than Ay,. Most of the attention to date has been focused
on one-dimensional systems, where the probability transfer A
has always been found to be bounded from below [2—4,6,14—
20]. In this work, we rather consider a two-dimensional
system.

Two-dimensional QB has been studied for a charged parti-
cle moving in a uniform vertical magnetic field in the infinite
(x,y) plane in both the commutative [21] and noncommuta-
tive [22] cases. As was noted by Strange [21], a noteworthy
feature of such a system compared to one-dimensional sys-
tems is that it allows for degenerate energy eigenstates,
namely, Landau levels in [21]. In turn, superpositions of de-
generate Landau levels yield time-independent local currents
Jj. Furthermore, by carefully tuning the coefficients of such su-
perpositions, negative azimuthal currents can be seen to arise
from superpositions of positive-angular-momentum Landau
levels, which is thus a manifestation of QB for such a system.
Therefore, Landau levels allow for time-independent back-
flow currents. This feature is in stark contrast to the transient
backflow currents obtained in one-dimensional systems and
is potentially promising regarding the yet-to-be-performed
experimental observation of the elusive effect of QB.

The Landau levels that arise for a charged particle in the
infinite (x, y) plane [21] are infinitely degenerate. However, in
an actual experiment the particle would be confined within a
finite region of space, hence typically alleviating the degener-
acy of the energy spectrum. Therefore, this naturally prompts
the question, Can superpositions of degenerate energy eigen-
states still allow for time-independent backflow currents in
other, possibly finite, two-dimensional systems?

To answer that question, in the present work we consider a
two-dimensional system where a charged particle is confined
to move on a disk of finite radius R that is punctured at the
center and pierced through the center and normally to the disk
by a magnetic flux line. That is, we assume that the particle

is subjected to an Aharonov-Bohm potential. This particular
system allows us to analytically compute the eigenenergies
and corresponding eigenstates. We demonstrate the existence
of superpositions of degenerate eigenstates that yield time-
independent local backflow currents that, in addition, appear
to be unbounded. Furthermore, since actual measurements
typically correspond to some kind of space and time aver-
ages, we show the existence of time-independent spatially
integrated backflow currents as well. Finally, we also show
that our system allows for an unbounded dimensionless prob-
ability transfer A, which is in stark contrast to the bounded
probability transfers [such as (4) or (6)] obtained for one-
dimensional systems. Our work hence extends the range of
available physical platforms that can offer a practical advan-
tage regarding the experimental observation of QB.

This paper is organized as follows. We first set up the
problem in Sec. II and then formulate QB in Sec. III. We
then discuss in Sec. IV how both the local current and the
probability transfer are unbounded from below: this can be
done by considering superpositions of two degenerate energy
eigenstates. Concluding remarks are finally drawn in Sec. V.

II. PUNCTURED DISK PIERCED BY A MAGNETIC FLUX

We consider a nonrelativistic structureless quantum parti-
cle of mass u and electric charge g confined on the punctured
disk D, with the center being the origin O and radius R > 0,
defined by

D={reR} O<r<Rand 0<0 <27}). (7)

The particle is subjected to the vector potential

AD) ="Te, (8)
where 1 is a fixed parameter whose dimension is (length
x energy)/(electric charge). The magnetic field correspond-
ing to this vector potential, B(r) =V x A(r), vanishes for
any r # 0. Therefore, the particle on the punctured disk is
subjected to zero magnetic field but to the nonzero vector
potential (8). This scenario is thus reminiscent of the cele-
brated Aharonov-Bohm effect [23]. Such a situation can be
realized by an ideal infinite solenoid, oriented along the z axis,
that has a vanishing radius (see, e.g., [24]). The dynamical
state |W(¢)) of the particle at any time ¢ is, in the position
representation, described by a wave function W(r, 0,t) that
obeys the time-dependent Schrodinger equation

3
iho W(r.0.1) = HU(r,0.1). )

where the Hamiltonian H is given by

=l ]

2 32+1a+1 3 _ﬂz o)
= —-— — —_—— _— _— 1
2ulorr  ror  r2\ 00

in terms of the dimensionless parameter 8 defined by

qn
= —, 11
e (1T)

with ¢ denoting the speed of light (in vacuum).
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Owing to the time independence and azimuthal symmetry
of the Hamiltonian (10) and imposing periodic boundary con-
ditions ¥ (r, 0) = ¥ (r, 27r) in the azimuthal direction as well
as Dirichlet boundary conditions lim,_,o ¥ (r, 8) = ¥ (R, 0) =
0 in the radial direction, the normalized eigenstates that satisfy
the time-independent Schrodinger equation are given by

wmn(r, 0) = ¢mn(r) eime’ (128.)
with

1 Jig (v g)
R 11 Vi)l

where m is an arbitrary integer, n is a positive integer, and M
is an arbitrary nonzero real number, defined by

M=m-—B.

Gun(r) = (12b)

13)

The function Jjy in (12b) is the Bessel function of the first
kind of positive order |M| (hence irrespective of whether M
itself is positive or negative), while y|3), denotes the nth zero
of Jjy, that is,

JuVimin) =0 (14)

for any n > 1. The eigenstates (12) correspond to the eigenen-
ergies E,,, given by

o,
Epn = WVW\”- (15)
The complete set of eigenstates (12) is orthonormal,
/ ds W:m(ra@)lﬁm'n'(h 9) = 8mm’ ann’v (16)
D

where the asterisk (x) denotes complex conjugation and §
is the Kronecker delta. The dynamical state W(r, 0, t) of the
particle at any time ¢ can thus, in full generality, be expanded
in terms of the eigenstates V,,, as

V(0,60 =D > Com Y1, 0) e F /",

m#p n>1

a7
where the complex coefficients ¢, must satisfy the normal-

ization condition
Z Z 2
|Cmn| =1

m#p n>1

(18)
but are otherwise arbitrary.

III. FORMULATION OF THE QUANTUM
BACKFLOW PROBLEM

The kinetic angular momentum L is defined by

L=rx |:p—gA(r):| (19)
C

and is purely vertical in the present case,

d
L=Le, = —h(i o5t ,B)ez. (20)

It admits the energy eigenstates (12) as eigenstates, with
L = MEYy,,. The sign of M hence allows us to assign

a precise direction of motion (counterclockwise or clockwise)
to the eigenstates .

The latter fact can also be viewed from the current. The
probability current j corresponding to W is given by

jr )= &Re {\I’*(r,t)[p — %]A(r)]\ll(r, z)}, Q1)

which in polar coordinates, and in view of Eq. (8), reads

j(raeat):jr(rvgvt)er+ja(r595t)e95 (22)
with
h v
jr(r» ert) = ——Re (l‘l[*_)’ (233)
w ar

o = = e (15 + v
Ja(r,0,t) = —— | Re [ iV* — | + B|V| (23b)
ur 20

being the radial and azimuthal components, respectively, of
the current. It is then easy to check that evaluating the current
for ¥ = v, yields

Je(r, 0, Dlg=y,, =0, (24a)

. Mh 2
Ja(r 0, Dlw=y,,, = — P (r)I". (24b)
ur

This shows that the probability current j for the eigenstates
(12) is purely azimuthal and independent of the angle 6.
Furthermore, this ensures that j|y_,, ~is oriented along +eq
when M > 0 and along —ey when M < 0.

Similar to the case of a charged particle in a one-
dimensional ring [14] or in the infinite (x, y) plane [21,22], our
formulation of QB is based on considering quantum states W
that contain only eigenstates ,,, with positive kinetic angular
momentum; that is, we include only m > § in the expansion
(17). Therefore, in the following we restrict ourselves to the
class of states given by

V(0,0 = Con Yn(r, 0) e Fmt /" (25)
m>p n=>1
with the normalization condition (18) now reading
Z Z |cmn|2 =1 (26)

m>p n>1

In view of (24), states of the form (25) hence correspond
to superpositions of states ,,, that all individually exhibit a
positive azimuthal current, j,|y_y,, > 0.

QB then occurs whenever the azimuthal component j, of
the probability current associated with the state (25) takes on
negative values. In fact, there are three (closely related) quan-
tities that can be used to quantify QB. Due to the rotational
symmetry of the system, it is sufficient to introduce these
quantities only for the points of the disk that lie on the ray
6 =0.

First, the azimuthal probability current j, quantifies the
strength of QB locally in space and time. Thus, QB occurs at
a spatial point (7, 0) and a time r whenever j,(r, 0,7) < 0, and
the smaller j, is, the more pronounced QB is at this particular
space-time point.
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Second, the spatially integrated current

r
Jrrn = [ o @7)
n
is the rate of probability transfer through the straight radial
section of the disk connecting the points (r;, 0) and (r,, 0),
with 0 < r; < r; < R, at a fixed time ¢. Clearly, the condition
J(ry, 2, 1) < 0 is stronger than the condition j,(r,0,¢) <0
for some r; < r < rp; indeed, the former implies the latter,
but not the other way around.
Third,
T/2

A(rl,rz,T)=/ dt J(ri,1,1) (28)

-T/2

is the total probability transfer through the straight section be-
tween (r1,0) and (7, 0) over the time interval —T/2 <
t < T/2. The condition A(ry,r,T) <0 is stronger than
J(r1,r,t) < 0forsome —T/2 <t <T/2.

The dimensionless quantity A defined by (28) is a
two-dimensional analog of the probability transfer typically
addressed in QB studies in one-dimensional settings [see
Eq. (3)]. Remarkably, it behaves dramatically differently than
its one-dimensional counterparts: while, in one dimension, the
latter appear to be bounded from below [2—4,6,14-20], the
two-dimensional probability transfer (28) is unbounded from
below. This can be seen by considering a state that exhibits a
time-independent backflow current, as we now discuss.

IV. TIME-INDEPENDENT BACKFLOW CURRENT

An important facet of QB in one-dimensional systems is
the fact that the probability current j [given, e.g., by Eq. (2) in
the line case and Eq. (5) in the ring case] can stay appreciably
negative only for a finite time. The situation appears to be
drastically different in two dimensions: indeed, as was noted
by Strange for an electron in a constant magnetic field [21],
the local current j, can remain negative indefinitely.

To show that the latter fact remains true in our (finite)
system it is sufficient to consider states W composed of only
two eigenstates, ¥,,, and v,,,,y, with, in accordance with (25),
m> B,m > pB,n>1,n >1,and (m, n) # (m', n'). Further-
more, hereinafter we assume that v,,,, and ¥,,/,, have the same
energy, i.e.,

Emn = Lwm'n - (29)
J

In view of Eq. (15) [and remembering the definition (13)],
this degeneracy condition is equivalent to the requirement that
the nth zero of the Bessel function J,,_g coincides with the
n'th zero of J,v_pg (which is not forbidden as long as m — f is
irrational; see, e.g., [25]), i.e.,

Ym—pn = Vm'—B.n' - (30)

In view of (25) and (29), the state W that we consider in the
following hence reads

W(r, 0. 1) = [Coun Youn (1, 0) + Cort Y (r, )™ F/7 - (31)
subject to the normalization condition

|cmn|2 + |cm/n’|2 =1 (32)
The degeneracy conditions (29) and (30) are the crucial dif-
ference that distinguishes the two-dimensional system studied
here from all the previous (one-dimensional) systems that
have been considered to date regarding the maximal QB,
for which degeneracy is not possible. We also note that the
degeneracy condition (30) requires the presence of an external
magnetic flux: indeed, if 8 = 0, the orders m — 8 and m’ — B
of the Bessel functions become integers, and distinct Bessel
functions of integral orders are known to have no zeros in
common (which is the so-called Bourget hypothesis; see, e.g.,
[25]).

A. Spatially local current j,

Substituting Egs. (31) and (12a) into Eq. (23b) imme-
diately shows that the azimuthal local current j, is time
independent, and we have

. h /
Ja(r,0) = E[|cmn|2M¢3m,(r) + lemw |1PM sy (1)

+Re {C;k,mcm/n’}(M + M,)(pmn(r)(bm’n’(r)]v (33)

where, by definition, M = m — S [see Eq. (13)] and, similarly,
M =m' — B.

Our aim is now (i) to find the smallest possible value of
the azimuthal current (33) and (ii) to demonstrate that this
smallest value can be arbitrarily negative. The minimum of
Ja over the space of all normalized expansion coefficients ¢,
and ¢,y is given by (see Appendix A for the derivation)

min j, = i{qu,%,n(r) + MGy, (r) — \/ (Mo

2ur

(V) + M’¢31rn/(r)]2 + (M - M/)2¢r2nn(r)¢31’n’(r)}

(34a)

h
=5 {Md)rznn(r) + M/qbr%l’n’(r) - \/[M2¢n21n(r) + M/2¢31’n’(r)] [45,%"1(}’) + ¢r2n’n/(r)]}‘

2ur

First, it is clear from (34a) that min j, < 0 for any r: the
azimuthal current (33) can thus, indeed, be negative for states
of the form (31). This is illustrated in Fig. 1 for a particular
set of parameters, namely, (m,n) = (1,3), (m’,n’) = (6, 1),
and B = 0.69 [this value of 8 has been taken to satisfy the
degeneracy condition (30) for the chosen values of m, n, m’,
and n'].

(34b)

(

Furthermore, we now argue that min j, is unbounded from
below (technical details can be found in Appendix B). To
this end, let us consider some particular value(s) of r for
which

G (1) ~ @i (1) ~ O(1). (35)
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(m,n) = (1,3)
(m/,n’) = (6,1)

B = 0.691169346793

—0.90
0.0 0.5 1.0

r/R

FIG. 1. (Dimensionless) minimum current (uR>//i)min j,, as
given by (34), as a function of the (dimensionless) radial
coordinate r/R for the set of parameters (m,n,m',n’,B)=
(1,3,6,1,0.691169346793). The indicated value of 8 ensures the
validity of the degeneracy condition (30).

Then, if we write M’ = uM, we get upon combining (34b)
with (35)

M 2
min j, ~ %(r)[l +u—+/2(1 +u?)]. (36)
ur
In the limit # — oo we then clearly see that
M2
%[1 + (1 =v2u] - —oco. (37
r

u— 00

min j, ~

This hence demonstrates that, by properly choosing the two
degenerate eigenstates ¢,,,(r) and ¢,,,/(r), one can engineer
an arbitrarily small current locally. (We note that the local
backflow current has also been found to be unbounded in the
one-dimensional case of a free particle on a line [2,17].)

B. Spatially integrated current ;7

We now construct the spatially integrated current J, as
defined by (27), that is associated with the (time-independent)
azimuthal current (33), and we get

h
._7(}"1, r2) = m“cmnFMSmnmn + |Cm’n’|2M/Sm’n’m’n’

+Re {Cj;mcm’n’}(M + M/)Smnm’n’]v (38)

where

, [ dr

Smnm’n’ =R [ 7¢mn(r)¢m’n’(r)- (39)
r

Following the method outlined in Appendix A, we can here

again find the smallest possible value min [ of (38) over the

space of all normalized expansion coefficients ¢,,, and ¢,

and we get

min \7 = (MSmnmn + M/Sm’n’m’n’

2LR?

- \/[MSmnmn - ju/Sm’n’m’n’]2 + (M + M/)ZSZ )

mnm'n’

(40a)

(MSmnmn + M,Sm’n/m/n’

T 2uR?
—IMS i+ M Syt 12+ D), (40b)
where p is defined by
o=M+M)S2 . — dMM'SpmnSuiwmn - (41)

Note that the quantity p given by (41) can take on both
positive and negative values depending on the values of
the parameters (m,n,m’,n’, B, ry, ) (as we explicitly ob-
serve numerically). Therefore, as is clear from (40b), min J
is negative only when p is positive: this is, for instance,
thecaseform=1,n=3,m' =6, = 1,8~ 0.69117,r, =
3R/10,r, = 7R/10, for which we indeed get minJ < 0.
However, we have not been able to find an argument that
would allow us to conclude on either the boundedness or
unboundedness of min 7.

C. Probability transfer A

Finally, we now show that the probability transfer A is
unbounded from below. Since the integrated current (38) is,
by construction, time independent, we hence readily get from
the definition (28) of A that

A(r1,rn, T)=TJ(r1, ). (42)

We now choose the parameters (m,n,m’,n’, B, ry, r;) such
that 7 (r;, r») < O (which, as mentioned in Sec. IV B, can
occur form = 1,n=3,m' =6, =1,8~0.69117,r =
3R/10, r, = 7R/10). It is then immediately clear that

lim A(ry, 1, T) = —o0. (43)
T—o0

Therefore, it is clear from (42) and (43) that A can be
arbitrarily negative: as soon as [J (r1, ;) < 0, one then simply
has to wait for a long enough time 7. This is, in particular, a
drastic difference from the (one-dimensional) ring case [14],
where QB becomes weaker at large T'.

V. CONCLUSION AND OUTLOOK

We formulated and studied QB for a charged particle on a
punctured disk. We saw that for such a finite two-dimensional
system two quantifiers of QB, namely, the local azimuthal
current (23b) and the dimensionless total probability transfer
(28), are unbounded from below. This is, in particular, in
stark contrast to the bounded probability transfers obtained
to this date for one-dimensional systems. Similar to what
Strange noticed for Landau levels in [21], this remarkable
feature is seen to arise from the existence of superpositions
of degenerate energy eigenstates [Eq. (31)] that give rise to
time-independent backflow currents. Such time-independent
backflow currents never arise in one-dimensional systems,
where backflow currents are transient. Therefore, we believe
that this makes two-dimensional systems in general, and the
punctured disk studied in this work in particular, promising
physical platforms that present a distinct practical advantage
in view of the yet-to-be-performed experimental observation
of the elusive phenomenon of QB.

While we have seen that degeneracy allows for an un-
bounded probability transfer A as T — oo [Eq. (43)], it
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would be interesting to study whether A remains unbounded
even for finite times 7. Another possible follow-up question
could be to investigate whether the unboundedness of A actu-
ally requires degeneracy: in other words, is A still unbounded
for superpositions of eigenstates of different energies and thus
for time-dependent currents?

Finally, we also point out that the punctured disk that we
studied in this paper is an idealization. Indeed, in practice, the
solenoid that creates the vector potential (8) necessarily has
a finite radius €. Therefore, one would have to consider an
annulus (rather than a disk) of finite inner radius € and outer
radius R > €. It would thus be interesting to study how such a
finite ¢ would influence QB: for instance, what would be the
impact of € on degeneracy?
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APPENDIX A: DERIVATION OF EQUATIONS (34a)
AND (40a)

Both the spatially local and spatially integrated currents,
Egs. (33) and (38), respectively, have the same dependence on
the expansion coefficients ¢, and ¢,,:

f = lewn* A+ leww|* B+ Re {c, cww}C, (Al

mn

where A, B, and C are constants. In order to find the minimum
of f over the space of all normalized expansion coefficients,
we parametrize the latter as
% iy . @
Cn = COS 5 Cory = €7 sin 5 (A2)
with ¢ € [0, 7] and y € [0, 27). This yields

f:Acoszg—i—Bsinz%—}—Ccosgsingcosy

A+B . A—-B n C .
= — cos —singcosy.
) ) ¢ T 5 singcosy
Minimizing f with respect to y, we find
in A+B n A-B IC| .
min f = —— + ———cos¢ — — sing.
v 2 p R e

In order to minimize the last expression with respect to ¢, we
perform the following transformation:

(A —B)cosg — |C|sing
= /(A — B)? + C2%(cos ¢ cos @y — sin ¢ sin @)
= v/(A — B)?> 4 C?cos(¢ + o),

where ¢, € [0, 7] is defined by

A—B . IC]
— sing= ———.
V(A —B)*+C? VA —B)*+C?

Then, the function

1
min f = Z[A+ B+ /(A B +C cos(y + )]

cos @y =

has a minimum at ¢ = & — ¢y, and

A+B—/(A-—B?+C?
5 .

min f =
@,y

(A3)

Inserting adequate values of A, B, and C into (A3) and per-
forming a few straightforward algebraic manipulations then
readily yield expressions (34a) and (40a) of min j, and min 7,
respectively.

APPENDIX B: UNBOUNDEDNESS OF min j,

In this Appendix we demonstrate the unboundedness of
the spatially local current j,, as described by Egs. (35)—-(37).
We recall that we consider here couples of integers (m, n)
and (m',n’) such that m> B8, m' > B, n>1, n > 1, and
(m, n) # (m', n'): therefore, we have here

M=m—-8>0, M=m—-8>0. (B1)
Furthermore, we assume the degeneracy condition (29), i.e.,
Eyn = Epw, (B2)
that is, for the zeros y,,—g , and y,y_g » [Eq. (30)],
Ym—Bn = Ym'—B,n' (B3)

For completeness, we also recall that we have [Eq. (12b)]

1 Ju(Yang)

¢mn(r) = Rﬁ |JM+1(VMn)|

(B4)

and
L Iy (Y )
RYT It (Yl

as well as the minimal current [Eq. (34b)]

G (r) =

(BS)

. h /
min j, = Z_W{M¢'2""(r) +M'$2,, (r)

—V[M202,0) + W22, O)[82,0) + 82, (D))
(B6)
We first introduce the parameter u defined through
M = uM, (B7)
as well as the function v(r) defined by
Do (1) = V() (7). (BS)

We then rewrite (B6) in terms of these parameters « and v, and
we get

M,
min j, = mqﬁmn("){l +uv(r) — VI + w2+ v()]).
(B9)

We now derive a relevant upper bound for min j,. Since we

know from the definitions (B1), (B7), and (B8) that [the case
v(r) = 01is ruled out since in this case min j, = 0]

u>0 v>0, (B10)
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we then clearly have
VI + w2+ v()]
=1+ v(r) + u2v(r) + 12v2(r) > Vilv(r) + u2v2(r)

/ 1
=uv(r) 1+ m,

that is,

—Ju+u%onu+vun<—wu)H+-l:
v(r)

and thus

14+ uv(r) — \/[1 + u2v(H][1 + v(r)]

< 14 uv(r)y—uv(r), /1 + L
\ v(r)

Therefore, combining (B9) with (B11) yields the following
inequality:

min j, < —¢,,, (M1 +uv@)[1 - [14+—=1|;, (Bl2)
2ur \ v(r)

which we emphasize is valid for any r where v(r) # 0.

Our aim is now to demonstrate that the right-hand side
of inequality (B12) can achieve arbitrarily negative values at
some well-chosen values of r. To this end, we first note that in
view of (B10) we have

(B11)

1
14+ — > 1,
+v(r)>

/ 1
uv(r)|:1— 1+mi| < 0.

Therefore, this a priori allows the right-hand side of (B12)
to indeed be negative. A possible route could thus be to take
the limit u — oo: this could make the right-hand side of (B12)
decrease to —oo, at least at some particular well-chosen values
of r. However, demonstrating that this is, indeed, the case
requires us to be careful about two things: (i) the value that

2 (r) [which is a global factor on the right-hand side of
(B12)] takes on at these particular values of r that we choose,
which must be a finite (i.e., non-negligible) value for the right-
hand side of (B12) to possibly go to —oo, and (ii) the value of
v(r)[1 — +/1 + 1/v(r)] at these particular values of r, which
must also be finite so as not to compensate the eventual growth
of u.

Our strategy is thus as follows. First, we identify the values
of r where ¢2, (r) reaches a local maximum, hence ensuring
in particular that ¢2 (r) takes on finite values. This task can be
tackled analytically by considering the regime u > 1, which
allows us to rewrite ¢2, (r) by means of asymptotic expan-
sions of Bessel functions: this is discussed in Appendix B 1.
We then argue in Appendix B2 that v(r)[1 — /1 + 1/v(7)]
remains finite at these particular values of r. We conclude in
Appendix B 3.

so that

(B13)

TABLE 1. Values of (m,n) and (m',n’) yielding increasing
values of u. The indicated values of S ensure the validity of
both the degeneracy condition (30) and M’ = uM. The first set
of parameters that we consider here, namely, (m,n,m',n’,8) =
(1, 3,6, 1,0.691169346793), corresponds to the set of parameters
that we use in Fig. 1.

m n m' n B u

1 3 6 1 0.691169346793 17
1 9 23 1 0.8494862493541 147
1 28 80 1 0.957622423454 1865
1 102 308 1 0.973770549551 11705

1. Asymptotic expansion of ¢,,,(r)

From now on, we assume that the parameter u is very large,

u> 1. (B14)

Table I contains numerical evidence that it is, indeed, a priori
possible to find values of the parameters (m, n, m’, n’, 8) that
(i) satisfy the degeneracy condition (B3) and (ii) yield values
of u of increasing orders of magnitude, namely, from 10 to
10* here. Here we restricted our attention to m = n’ = 1:
this allowed us to perform a systematic search for all the
corresponding parameters n, m’, and S that yield common
zeros [i.e., such that (B3) is satisfied]. In this case, we ob-
served that for any given n at most a unique couple of values
(m', B) allows to satisfy the degeneracy condition. We have
searched for all integers n between 3 and 164 and identified
all the corresponding relevant values of m’ (which take values
between 6 and 501). Since such a numerical search is funda-
mentally bound to identify finite values, we hence assume that
it remains possible to find arbitrarily large values of n and m’
that will still satisfy the degeneracy condition (B3): this then
ensures the validity of the regime (B14).

In view of the definition (B7) of u, our assumption (B14)
is hence valid for

M fixed and M’ > 1. (B15)

Let us now quickly discuss the impact of our assumption
(B14) on the degeneracy condition (B3). In view of (B15), it
is clear that the zero y),,, is thus a zero of the Bessel function
Jy of a large order. Therefore, since it is well known (see
[25], pp. 485-486) that

Yuw > MV, (B16)
the degeneracy condition (B3) hence reads
Varw = Yan > M > 1. (B17)

The latter hence also requires, because M is fixed according
to (B15), that

n> 1. (B18)

The fact that M is fixed and y), > 1 now suggests that
we rewrite ¢,,,(r) [as given by (B4)] by means of asymptotic
expansions for Bessel functions of finite orders and large argu-
ments. While this can be done without further assumption for
Jvi+1(Vun), expanding Jys (Va7 /R) requires us to assume that
r/R is not negligible. Therefore, in the following we consider
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only the portion of the disk away from the direct vicinity of
the center of the disk; that is, we consider

r e (R, R), (B19)

where R is finite (for concreteness, we may, for instance, have
in mind R; = R/2). [The assumption (B19) is harmful for
what we want to do here. Indeed, our numerical investigations
strongly suggest anyway that min j, achieves its most negative
values for finite values of r and for values of r that are closer
and closer to R as we increase M'.]

We now use the well-known asymptotic expansion of a
Bessel function of a fixed, finite order and very large argument
[26,27], and we have

r 2R
Jul Yun= ) ~

r Mm T
cos (VMn— - — = —) (B20)

R T YMnt R 2 4
and
M+1Dr =n
JM-H(VMH) ~ CoOS |\ Vmn — —— — — |-
YMn 2 4
(B21)
Noting that
M+ = . Mr
cos n— ——— — — | =sin n—— — — |,
vu 2 4 R
we hence get for (B21)
. Mnr &
In1(Van) ~ sin| ypyy — ———— ). (B22)
YMn 2 4

Substituting the asymptotic expansions (B20) and (B22) into
(B4) hence yields the following asymptotic expansion of
Bin(r):

1 cos (yamf — %5 — §)

VRrr [sin (yun = 45 = §)|

Now, since our aim is to identify some convenient values
of r where ¢,,,(r) takes on finite values, we merely find
the location of the extrema of ¢,,. This is actually easily
done by using the asymptotic expansion (B23): indeed, since
Yun¥/R > 1 here, the extrema of ¢,,,(r) can be approximated
to be the extrema of the cosine function in the numerator in
(B23) [this can be, e.g., seen from the function cos(x)/+/x and
studying the equation that gives the stationary points of the
latter function for large x]. Therefore, let us denote by ry these
particular values of r where the numerator of ¢,,,(r) takes on
its extremal values. These are determined by the condition

Bun(r) ~ (B23)

nn Mn =&

)/MnE—T—ZZkT[, kGZ,
hence yielding
R M 1
= k+—+-|n, kelZ. (B24)
YMn 2 4

Of course, the integer k in (B24) cannot actually be arbi-
trary since in view of (B19) we must have

R k—i—M-i-] R
— [— < ,
YMn 2 4 g

R] <rg= (BZS)

that is,
YMn & M 1 YMn M

< — .
7 R 2 4 T 2 4

Therefore, for completeness we introduce the two integers
kmin and kn,x, defined by

(B26)

VMan M 1
knin = —_—— 1 B27
m Lr R 2 4J+ (B27)
and
v M1
kax = - — = -1, B28
‘ ’77( 2 41 (B28)

where |-| and [-] denote the floor and ceiling functions,
respectively. The condition 7, € (R;, R) hence constrains the
integer k in (B24) to take the values

k= kminv kmin +1, ..., kmax -1, kmax- (B29)

In the following, we will focus our attention on the values of
r that are close to the rim: that is, we will typically consider
k = kmax- The first advantage of doing this is that, compared to
kmin> kmax 18 independent of the (somehow artificial) parameter
R;. Another rationale for considering k = k. arises from the
numerical observation that for values of k close to kyax the par-
ticular positions r; given by (B24) also turn out to accurately
describe the locations of the local minima of the minimal
current (B9) itself. This is, indeed, illustrated in Fig. 2 for the
four sets of parameters (m, n, m’', n’, B) considered in Table 1.

Since these particular positions ry are the (approximate)
locations of the extrema of ¢,,,(r), they hence precisely corre-
spond to the (approximate) locations of the maxima of qb,z,m(r).
In particular, we hence have at the position r = r;

1 1

- Rrry sin? (J/M,, — Mz _ %)

max 2

max

G (Th) . (B30)

which is, indeed, finite [as the denominator in (B30) is
bounded, it cannot make the right-hand side of (B30) arbi-
trarily small]. Of course, this particular position ry actually
depends on n, which itself depends on M’ because of the
degeneracy condition (B17), and thus, ry,  also eventually
depends on the parameter u that we will eventually send to
infinity. But this is not an issue for what we want to do here:
the only important thing for us is that we can actually find
such a value of r for any set of parameters (m,n, m’,n’, B)
that satisfies the degeneracy condition (B3).

2. The bracketed quantity in (B12)

Now that we have found the particular value r = ry at
which the global factor qﬁm(r) on the right-hand side of (B12)
reaches a local maximum (and is thus non-negligible), we now
setr =r,, in (B12) to get

M
2parigy, O (o)

X {1 +uu(rkm)[1 - [1+ ﬁ“

(B31)

min j,ly=p, <
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0.007

min j,

—0.45

pnR®
[

(m,n) = (1,3)

(m',n') = (6,1)

B = 0.691169346793

—0.90

0 Thoa 1 ~ 0.48 T & 0.83 1

He-min j,

nR®

.n) = (1,28)
') = (80,1)

(m.
(m/
B = 0.957622423454

386 T kimax—
r/R

1~ 0.95 T ~ 098 1

(b)
0,00 === === e = e e e e
S
8
£ _195
?il* 1.25
i
(myn) = (1,9) :
(m/,n') = (23,1) : |
B = 0.8494862493541 i i
—2.50 b i
0.6 Tl ~ 0.83 Thoo =094 1
r/R
(d)
O _____________________________________________________
S
g
E 14
TEJ@
(m,n) = (1,102) i t
(m/,n’) = (308,1) E E
B = 0973770549551 | i
) H !
$o67 Tl 1 ~ 0.985 Phow <0995 1
r/R

FIG. 2. (Dimensionless) minimum current («R? /%) min j,, as given by (B9), as a function of the (dimensionless) radial coordinate r/R for
the four sets of parameters (m, n, m’, n’, 8) considered in Table I. The corresponding values of the positions ;1 and ry,,, are also indicated.
(a) corresponds to the same set of parameters that we used in Fig. 1: we hence reproduced the latter here for completeness and for the purpose
of comparing the resulting minimum current («R> /%) min j, obtained for other sets of parameters (m, n, m’, n’, B).

We now argue that the term v(ry,, )1 — /1 + 1/v(rg,, )] in

(B31) cannot take negligible values as u — oo: this is, indeed,
necessary for our argument since, otherwise, the actual value
of the bracketed quantity on the right-hand side of (B31)
cannot be guaranteed to be arbitrarily negative even in the
limit u — oo.

To this end, we propose the following conjecture:

v(ry,,.) 2 1 however large u is. (B32)

Table II contains numerical evidence of the validity of this
conjecture. Similar to what we did above to numerically in-
vestigate the validity of the regime (B14), here again we

TABLE II. Values of v(r,,) for the four sets of parameters
(m,n,m', n’, B) considered in Table 1.

m n m' n B V(Fkya )

1 3 6 1 0.691169346793 1.48137242921629
1 9 23 1 0.8494862493541  1.88363945185356
1 28 80 1 0.957622423454 2.15503028356504
1 102 308 1 0.973770549551 2.32355819487647

restrict our attention to m = n’ = 1: we then also check the
validity of our conjecture (B32) for all the valid sets of values
of (n,m’, B) for n between 3 and 164 (the corresponding
valid values of m’' are between 6 and 501). Furthermore,
for these valid values of (m,n,m’,n’, ), we observe that
v(ry,,.) actually seems to increase with n (and thus also
with m’): this hence makes our conjecture (B32) indeed
reasonable.

Now, it is clear numerically that the function f(v)=
v[l — /1 + 1/v] is monotonically decreasing, with the
particular values f(0)=0, f(1)=1—+2~~ —0.41, and
f(o0) = —1/2. Therefore, we have, in view of our conjec-
ture (B32), that flv(rg, )] S f(1) = —0.41; that is, more
explicitly,

(B33)

v(rknm)[l -

< —0.41,
U(I"kmax)il ~

which hence indeed ensures that the term v(ry, )1 —

1+ 1/v(ry,,, )] on the right-hand side of (B31) cannot take

negligible values even in the limit # — oo, a limit that we can
now safely take.
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3. Unboundedness of min j,

In view of (B33) we readily have (since u > 0 by construc-
tion)

1+uv(rkm)[1— 1+—:|§1—0.41u. (B34)

v (rknm )

Taking the limit u — oo in (B34) hence yields

lim {l + uv(r )|:1 — 1+ ;:“
Uu—00 Kimax v (rknm)

< lim (1 — 0.41u) = —o0,

U—>00

(B35)

so that the left-hand side must tend to —o0, i.e.,

lim {1 +uu(rkm)[1 - 1+ ﬁ]} = —o00.

(B36)

u— 00

Therefore, we now take the limit u — oo in (B31); we get

[

< lim
U— 00 Zﬂrk

‘max

x {1 +uv(rkmax)[1 - 1+ ﬁ“

That is, in view of (B36) and precisely because we constructed

Tiy 1O ensure that the prefactor (AM/2ury,, )2, (P, ) in

(B37) remains finite,

lim min j,|

00 I =Tkmax

B37)

lim min j,|,_, < —oo, (B38)
00 max

finally,
lim min ja|,:,kmax = —00. (B39)

This hence demonstrates that the spatially local current j, is,
indeed, unbounded from below.
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