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Generation of spin squeezing via a fully quantum degenerate parametric amplifier
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Spin squeezing is one of the most attractive methods for realizing high-precision metrology. In this paper
we propose a protocol for generating spin squeezing in an atomic ensemble via a fully quantum degenerate
parametric amplifier. We discuss the properties of generating spin squeezing with and without driving the pump
cavity. Numerical simulation results show that the generated spin squeezing strength is sizable and is comparable
to that obtained using a two-axis twisting model. Moreover, we demonstrate that the protocol is experimentally
feasible by introducing the corresponding experimental parameters. Therefore, the proposed protocol provides a
promising approach to realize spin squeezing in photon-spin coupling systems.
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I. INTRODUCTION

Spin squeezing, which reduces the fluctuation noise of one
quadrature in phase space but increases the fluctuation noise
of the other quadrature, has shown its advantages in quantum
metrology [1–4]. Up to now, spin squeezing has been ap-
plied in many fields requiring high-precision measurements,
such as Ramsey spectroscopy [5–8], atomic clocks [9–11],
and gravitational-wave interferometers [12,13]. Due to these
promising applications, significant efforts have been devoted
to generating spin squeezing in many physical systems,
such as molecules [14,15] and atomic ensembles [16–33].
Among the proposed protocols for atomic ensembles, the
basic methods rely upon, e.g., quantum nondemolition mea-
surement (QNDM) [23,24] and nonlinear one-axis twisting
(OAT) [25,26] or two-axis twisting (TAT) [31–33] spin-spin
coupling. It has been shown that different methods have dif-
ferent suppression effects on quantum fluctuations. For an
ensemble with N atoms, the maximum amounts of squeezing,
obtained with QNDM, OAT, and TAT, scale as N−1/2, N−2/3,
and N−1(the ideal Heisenberg limit), respectively [1].

Due to the ability to reduce the quantum fluctuation noise
to the fundamental Heisenberg limit, TAT squeezing is consid-
ered superior to other methods. Thus, in the past few decades,
many protocols [30–33] have been proposed to generate
spin squeezing by constructing the TAT interaction. These
protocols include, e.g., exploiting the Raman processes in
Bose-Einstein condensates [30], transforming from the OAT
interaction [31], coupling the spin ensembles with a para-
metrically driven cavity [32], and modifying a phase-locked
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atom-photon coupling [33]. However, there are always some
difficulties in applying these theoretical protocols to exper-
imental implementations. Indeed, these difficulties include,
e.g., imperfect cooling [30], imprecise time control [31], intro-
duced squeezing noise [32], and complex pump drivings [33].
Recently, Macrì et al. [27] proposed an interesting protocol
for generating spin squeezing via an effective cavity-induced
TAT-like interaction constructed by one-photon–two-atom ex-
citation processes. This protocol paves a promising way to
construct the TAT model and seems to be able to generate
a significant amount of squeezing. However, this protocol
relies on a specific atom-cavity coupling (e.g., a transverse
coupling), which cannot be collectively enhanced in atomic
ensembles. This makes the strength of one-photon–two-atom
processes extremely weak in typical ensemble-cavity systems.

To address the problem, we propose a protocol for gen-
erating spin squeezing in atomic ensembles by using a fully
quantum degenerate parametric amplifier (DPA) [34]. Here
the DPA is represented by two parametrically coupled single-
mode cavities, i.e., a pump cavity and a signal cavity. An
effective Hamiltonian describing the cavity-induced TAT-like
interaction is obtained through tuning the system parameters.
The strength of the generated spin squeezing is determined
by the properties of the pump cavity, such as the initial state,
driving strength, and cavity decay. Specifically, we study the
generation of spin squeezing with and without driving the
pump cavity mode. Numerical simulations show that with
and without driving the pump cavity mode, a sizable spin
squeezing can be generated. In particular, for a strong driving
strength and a strong pump cavity decay, the resulting spin
squeezing strength is comparable to that of the TAT squeezing.
Meanwhile, we investigate the sensitivity of the generated
spin squeezing to the decoherence, including the decay of
the cavities, the spontaneous emission of the atoms, and the
collective dephasing of the atomic ensemble. The results show
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FIG. 1. Physical model of the protocol. Two single-mode cav-
ities, the pump cavity and the signal cavity, are coupled with a
parametric coupling of strength J . An ensemble of N identical two-
level atoms is located inside the signal cavity and is coupled to this
cavity with a single-photon single-atom coupling strength g. Here ωp

(ωs) is the resonance frequency of the pump (signal) cavity. A driving
field of frequency ωl and amplitude � is applied to the pump cavity.
In addition, ωq is the transition frequency of atoms, κp (κs) is the
single-photon dissipation rate of the pump (signal) cavity, γs is the
spontaneous emission rate of atoms, and γc represents the collective
dephasing of the atomic ensemble.

that the protocol is robust to the spontaneous emission of the
atoms and the decay of the signal cavity. Additionally, the
experimental feasibility of the protocol is also discussed using
current experimental parameters [35–46].

The rest part of the paper is organized as follows. In Sec. II
we give a brief description of the physical model and derive
its effective Hamiltonian. In Sec. III we study the generation
of spin squeezing in an atomic ensemble. In Sec. IV we
show the experimental feasibility of the protocol. The paper
is summarized in Sec. V.

II. PHYSICAL MODEL AND EFFECTIVE DYNAMICS

In this paper, as shown in Fig. 1, we consider a system
consisting of two parametrically coupled single-mode cavities
(a pump cavity and a signal cavity) and an ensemble of N
identical two-level atoms placed in the signal cavity. The
resonance frequencies of the pump cavity and the signal cavity
are assumed to be ωp and ωs, respectively. The parametric
coupling of strength J describes a nonlinear conversion be-
tween a single pump photon and a pair of signal photons. Note
that the strength J , which ranges from several tens of kilohertz
to several tens of megahertz, has been realized in recent ex-
perimental advances [35–38]. Therefore, the pump cavity and
the signal cavity constitute a fully quantum DPA. We apply a
classical driving field of frequency ωl and amplitude � to the
pump cavity. Meanwhile, the atoms of transition frequency ωq

couple to the signal cavity with a strength g. The Hamiltonian
of the system can accordingly be written as (in units of h̄) [47]

Ĥsys = ωsâ
†
s âs + ωpâ†

pâp + ωqŜz + g(âsŜ+ + â†
s Ŝ−)

+
(

�∗

2
âpeiωl t + �

2
â†

pe−iωl t

)
+ J

(
âpâ†2

s + â†
pâ2

s

)
,

(1)

where â†
s (â†

p) and âs (âp) are the creation operator and the
annihilation operator of the signal (pump) cavity, respectively.
Moreover, Ŝu = ∑

k σ̂ u
k /2 (k = 1, 2, . . . , N) is the collective

spin operator and σ̂ u
k (u = x, y, z) is the Pauli operator of the

kth atom. Here Ŝ+ = Ŝx + iŜy and Ŝ− = Ŝx − iŜy are the rais-
ing and lowering operators of the collective spin, respectively.
For simplicity, we set hereafter gc = √

Ng as the strength of
the collective coupling between the ensemble and the cavity
and further assume that ωp � ωl � 2ωq � 2ωs. In the rota-
tion frame of reference of Ĥ0 = ωl (â†

s âs + 2â†
pâp + Ŝz ), when

ωl � {gc, J}, we can obtain

ĤI = δpâ†
pâp + δsâ

†
s âs + δqŜz

+
(

Jâpâ†2
s + gâsŜ+ + �∗

2
âp + H.c.

)
, (2)

where δq = ωq − ωl , δs = ωs − ωl , and δp = ωp − 2ωl .
When the pump cavity suffers a cavity decay, the dynamics

of the system can be estimated by the master equation in the
Lindblad form [48]

ρ̇ = i[ρ, ĤI ] + κpL(âp)ρ̂, (3)

where for an arbitrary operator ô the standard Lindblad super-
operator is defined as

L(ô)ρ = ôρô† − 1
2 (ô†ôρ + ρô†ô). (4)

Here κp is the single-photon dissipation rate (i.e., the cavity
decay rate) of the pump cavity. Due to the presence of the
driving � of the pump mode, we first set ĉp = âp + d to
derive the effective Hamiltonian of the system. Thereafter, the
Hamiltonian in Eq. (4) is transformed to

Ĥh = δp(ĉ†
p − d∗)(ĉp − d ) + δsâ

†
s âs + δqŜz

+
(

J (ĉp − d )â†2
s + gâsŜ+ + �∗

2
ĉp + H.c.

)
. (5)

Meanwhile, the second term of the master equation (6) be-
comes

κpL(âp)ρ = κpL(ĉp)ρ − i[Ĥme, ρ], (6)

where Ĥme = −iκp(d∗ĉp − dĉ†
p)/2. Then the total Hamilto-

nian can be described as

Ĥtot = Ĥh + Ĥme

= δpĉ†
pĉp + δsâ

†
s âs + δqŜz−J

(
dâ†2

s + d∗â2
s

)
+ (

�d ĉp + Jĉpâ†2
s + gâsŜ+ + H.c.

)
(7)

and the dynamics of the system can be modeled by the master
equation

ρ̇ = −i[Ĥtot, ρ] + κpL(ĉp)ρ, (8)

where �d = (�∗ − 2d∗δp − iκpd∗)/2. For simplicity, we
have set d = �/(2δp − iκp) to eliminate the driving term
with �d .

According to the second and fourth terms in Eq. (11), the
signal cavity is squeezed [49–54]. Applying the Bogoliubov
transformation [29,52–56]

âS = cosh(r)âs + sinh(r)eiθS â†
s ,
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we can diagonalize the signal-cavity Hamiltonian in Eq. (11)
and obtain the Hamiltonian

Ĥ = δpĉ†
pĉp + δSâ†

SâS + δqŜz

+ {J[cosh(r)âS + sinh(r)eiθS â†
S]2ĉ†

p

+ g[cosh(r)âS + sinh(r)eiθS â†
S]Ŝ+ + H.c.}, (9)

where δS = √
δ2

s − (2J|d|)2, θS = − arctan[Im(d )/Re(d )],
and r = 1

4 ln[(δs + 2J|d|)/(δs − 2J|d|)]. Here we set
δs � 2J|d|, which makes the cavity squeezing parameter
r approach 0. Then we have cosh(r) → 1, sinh(r) → r, and
sinh(2r) → 2r. Thereafter, the Hamiltonian Ĥ in Eq. (9)
becomes approximated by

Ĥ � δSâ†
SâS + δqŜz + δpĉ†

pĉp

+ [J (âS + reiθS â†
S)2ĉ†

p + g(âS + reiθS â†
S)Ŝ+ + H.c.].

(10)

Furthermore, when the condition δS � {J, gc} is satisfied, ac-
cording to the works in Refs. [57,58], the dynamics of the
system can, up to the third order, be described by the effective
Hamiltonian

Ĥeff = Ĥ(1)
eff + Ĥ(2)

eff + Ĥ(3)
eff ,

Ĥ(1)
eff = δpĉ†

pĉp + δqŜz + Jr(2â†
SâS + 1)(e−iθS ĉp + H.c.),

Ĥ(2)
eff = − J2

2δS
(2ĉ†

pĉp + 4ĉ†
pĉpâ†

SâS − â†
Sâ†

SâSâS)

− g2

δS
(2â†

SâSŜz + Ŝ+Ŝ−),

Ĥ(3)
eff = g2

δS

[(
J

δS
ĉp + reiθS

)
Ŝ2

+ + H.c.

]
, (11)

where Ĥ(J )
eff (J = 1, 2, 3) represents the J th-order processes

of the effective Hamiltonian. Here we also have neglected
the fast-oscillating terms by the rotating-wave approximation.
Note that the Hamiltonian Ĥ(3)

eff in Eq. (11) contains the non-
linear interactions of the atomic ensembles, which is crucial
for generating spin squeezing in the protocol. However, these
nonlinear interactions are third-order processes whose effect
would be masked by that of the lower-order interactions.

To eliminate the influence of the lower-order interactions,
we tune the parameters and make some proper assumptions,
as shown in the following. First, we assume that the signal
cavity is well cooled so that the signal cavity is in the vacuum
state, i.e., 〈â†

SâS〉 � 0. Therefore, all the interactions involving
â†
SâS, like the terms â†

pâpâ†
SâS and â†

SâSŜz, can be neglected.
Meanwhile, δp = J2/δS is set to eliminate the Stark shift of the
pump cavity. Furthermore, we assume that in the ensemble,
the number of excited atoms is much smaller than the total
number of atoms. Under this condition, the spin operator Ŝz

can be divided into two parts, i.e.,

Ŝz = −N

2
+ 
Ŝz, (12)

where 
Ŝz is a small fluctuation around the ground state.
After substituting Eq. (12) into the relation Ŝ2

z − Ŝz + Ŝ+Ŝ− =

N (N + 1)/4, we obtain (ignoring the constant terms)

Ŝ+Ŝ− � (N + 1)
Sz = (N + 1)Ŝz. (13)

This means that, when the atomic ensemble is in the low-
excitation regime, the effect of the coupling Ŝ+Ŝ− is to
produce a Stark shift given by (N + 1)Ŝz. Therefore, one can
choose δq = (N + 1)g2/δS to eliminate the influence of the
term Ŝ+Ŝ− effectively. Meanwhile, the effect of this term can
be eliminated completely by introducing an auxiliary atomic
level and a driven optical cavity [59–61] (see more details in
Appendix A). In the rest of paper and numerical simulations,
we assume the effect of Ŝ+Ŝ− has been fully compensated
and δq = 0. Correspondingly, the effective Hamiltonian of the
system becomes

Ĥeff ≈ geff(ĉp − d )Ŝ2
+ + J2

δS
d∗ĉp + H.c., (14)

where we have made the approximation r → J|d|/δS and
assumed geff = g2J/δ2

S. Then, by taking the corresponding
reverse transformations, we can convert the effective Hamil-
tonian in Eq. (14) back to the original frame and obtain

Ĥeff = geff
(
âpŜ2

+ + â†
pŜ2

−
) +

(
�∗

2
âp + �

2
â†

p

)
. (15)

Meanwhile, the effective Lindblad-type master equation (8)
becomes

ρ̇ = i[ρ, Ĥeff] + κpL(âp)ρ. (16)

The first term in Eq. (15) indicates that the system involves
a cavity-induced TAT-like interaction which can be used to
generate spin squeezing [27]. The built-in mechanism is that
when the pump cavity is in a coherent state with 〈âp〉 = β, the
effective Hamiltonian in Eq. (15) can be approximated as

Ĥ ′
eff = geff

(
βŜ2

+ + β∗Ŝ2
−
)
, (17)

i.e., the TAT interaction. Moreover, the TAT model in Eq. (17)
can be established through keeping the pump cavity in a state
with 〈âp〉 �= 0 during the evolution. According to Eqs. (15)
and (16), keeping the state in the pump cavity unchanged can
be achieved effectively by increasing the ratio between � and
geff. The detail is that for a larger ratio �/geff, the pump cavity
stays in a coherent state with amplitude d0 = i�/κp efficiently
for a longer period (see below for numerical demonstrations).
For convenience, we take the coherent state as the quasisteady
state of the pump cavity in the remaining text.

So far, we have considered a model which contains only
the photon loss of the pump mode. In reality, there always
exist some dissipative processes for the atomic ensemble and
the signal cavity. Here we assume that the system suffers from
dissipation induced by the ensemble collective dephasing, the
atomic spontaneous emission, and the signal cavity single-
photon loss. The dynamics of the system can therefore be
described by the master equation

ρ̇I=i[ρI , ĤI ]+
( ∑

v=s,p

κvL(âv )+
N∑

k=1

γsL(σ̂−
k )+γcL(Ŝz )

)
ρI ,

(18)

where ρI is the density operator under the full dynamics of the
system. The parameters κs, γs, and γc are the single-photon
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loss rate of the signal cavity, the spontaneous emission rate of
atoms, and the collective dephasing rate of the atomic ensem-
ble, respectively. In general, the third term in Eq. (18), i.e.,∑N

k=1 γsL(σ̂−
k )ρI , makes numeral simulations of a large-size

ensemble dynamics extremely difficult because the required
computation resources increase exponentially with the total
number of atoms N . However, the system dynamics involves
only the zero-momentum mode of the atomic ensemble and
also does not mix it with other nonzero-momentum modes.
Thus, according to Refs. [27,29,62,63], the third term in
Eq. (18) can be reduced to

∑
k

L(σ̂−
k )ρI = 1

N
L(Ŝ−)ρI . (19)

Then the full master equation (18) becomes

ρ̇I = i[ρI , ĤI ] +
( ∑

v=p,s

κvL(âv ) + γs

N
L(Ŝ−) + γcL(Ŝz )

)
ρI .

(20)

Accordingly, the effective master equation (16) is transformed
to

ρ̇eff = i[ρeff, Ĥeff] +
( ∑

v=s,p

κvL(âv )+γs

N
L(Ŝ−)+γcL(Ŝz )

)
ρeff,

(21)

where ρeff represents the density operator under the effective
dynamics of the system. Note that the part κsL(âs) in Eq. (16)
can be subtracted since the signal cavity has been decoupled
from the dynamics of the effective Hamiltonian in Eq. (15).

As demonstrated above, we have obtained the cavity-
induced TAT-like interaction effectively and the Lindblad-type
master equation to simulate the dynamics of the system. These
enable us to generate spin squeezing and study the properties
of the generated spin squeezing under different decoherence
noise sources.

III. GENERATING SPIN SQUEEZING

In this section we investigate the generation of spin squeez-
ing through theoretical analyses and numerical simulations.
First, we need to introduce the spin squeezing parameter ξ 2

R
proposed by Wineland et al. [1,5,6],

ξ 2
R = N

〈(Ŝ · n⊥)2〉 − 〈Ŝ · n⊥〉2

|〈Ŝ〉|2 , (22)

where Ŝ = Ŝxex + Ŝyey + Ŝzez and eu (u = x, y, z) is the unit
vector in the u direction. The unit vector n⊥ is in the direc-
tion minimizing the numerator. The spin squeezing parameter
represents the ratio of the fluctuations between a quantum
state of interest and a coherent spin state (CSS) in Ramsey
spectroscopy. Here the CSS acts as a noise-reference state. It
is seen from Eq. (22) that, when ξ 2

R < 1, the phase sensitivity
of the state of interest is improved over the standard quantum
limit, i.e., this state is squeezed. Note that a smaller ξ 2

R indi-
cates a stronger spin squeezing. In this paper we choose the
parameter ξ 2

R to characterize the strength of the generated spin
squeezing.

To numerically simulate the evolution of the system,
we use the Monte Carlo approach (i.e., the quantum-jump
method) [64], where individual quantum trajectories of the
system evolve under a non-Hermitian Hamiltonian and then
are randomly interrupted by quantum jumps. Moreover, the
dynamics of the system is regarded as an ensemble average
over these trajectories of the system wave functions. The num-
ber of involved trajectories is larger and the description of the
dynamics of the system is more precise. However, simulating
a large number of trajectories also requires many computa-
tion resources. Therefore, after balancing the precision of the
numerical simulation and the requirement of the computation
resources, we take the average over 1000 trajectories to calcu-
late the dynamics of the system.

In the following two sections we assume that initially, the
pump cavity is in a coherent state |α〉p, where α = |α|eiϕ is
the complex amplitude with an argument ϕ = arg(α). At the
same time, the signal cavity and the atomic ensemble are well
cooled to their ground states, i.e., |0〉s and |l,−l〉e, respec-
tively, where l = N/2. Here | j, mz〉e represents a collective
spin state of an ensemble of N spin- 1

2 atoms, with an orbital
angular momentum quantum number and a magnetic quantum
number mz ∈ {−l,−l + 1, . . . , l − 1, l}.

A. With driving the pump cavity

In this section we study the generation of spin squeezing in
the case where the pump cavity is driven by external fields and
is initialized in the quasisteady coherent state, i.e., α = d0 =
i�/κp.

First, we assume that the dynamics of the system can be
well described by the master equation (3). From the discus-
sion below Eq. (16), we can find that the strength of the
generated spin squeezing is determined by the state of the
pump cavity during the evolution. Therefore, the evolution of
the pump cavity is worth studying. According to Eqs. (15)
and (16), the pump cavity seems to stay in a coherent state
effectively during the evolution when we set {κp,�} � geff.
Thus, we introduce a coherent state |βp〉p whose amplitude is
βp ≡ 〈âp〉p (time dependent), as a reference state, and define
the fidelity FI (eff) = p〈βp|ρI (eff)|βp〉p to study the state of the
pump cavity. From Fig. 2(a) we can obverse that both FI

and Feff are always greater than 0.995 within the evolution
time of t = 300/gc. In other words, the pump cavity stays in
the coherent state effectively during the evolution. Therefore,
according to Eq. (17), the dynamics of the ensemble can be
well described by the TAT model if the pump cavity is initially
in a coherent state. Therefore, the protocol could give rise to a
strong squeezing strength. According to Fig. 2(b), we find that
under the chosen parameters, the protocol is able to generate a
spin squeezing of ξ 2

R ∼ −9.24 dB in an ensemble of N = 50
atoms.

Moreover, the squeezing direction is also an essential prop-
erty of spin squeezing. From the cavity-induced TAT-like
interaction and the initial coherent state of the pump cavity,
〈Ŝx〉 = 〈Ŝy〉 = 0 is maintained during the evolution of the
system. Therefore, the mean-spin direction is in the z direc-
tion and the spin squeezing only occurs in the x-y plane. To
find the spin squeezing direction n⊥, we randomly choose
a direction of the x-y plane nr = cos θex + sin θey, where
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FIG. 2. Time evolution of (a) the parameters FI (eff) and |〈âp〉|
and (b) the spin squeezing parameter ξ 2

R , given by the full master
equation (20) (solid curve) and the effective master equation (21)
(dashed curve) for κp = � = gc. All other parameters are N = 50,
δs = 15gc, J = √

2gc, and κs = γc = γs = 0. (c) Husimi-Q function
and spin squeezing direction (red dashed curve) for the strongest
spin squeezing [corresponding to the dots in (b)]. Here ρI and ρeff

represent the states given by the full master equation (20) and the
effective master equation (21), respectively.

θ is the polar angle. As discussed above, the argument ϕ

is maintained effectively during the evolution. According to
Eq. (17) and Ref. [1], the squeezing direction n⊥ satisfies
θ = π/4 + ϕ/2. Here we demonstrate the spin squeezing di-
rection at the moment where the strongest squeezing occurs
[the dots in Fig. 2(b)]. To show the spin squeezing direction
intuitively, we introduce the Husimi-Q function, which repre-
sents the quasiprobability distribution of any spin states [1].
The Husimi-Q function is defined as

QI (eff) = 〈CSS|R̂†(θQ, φQ)ρI (eff)R̂(θQ, φQ)|CSS〉,

where |CSS〉 represents a CSS with all the atoms in their ex-
cited states and R̂(θQ, φQ) = exp[iθQ(Ŝx sin φQ − Ŝy cos φQ)]
is a rotation operator [1]. From Fig. 2(c) we find that the
spin squeezing direction under the full dynamics of the system
deviates slightly from the effective prediction (i.e., y axis). In
other words, the analysis about the spin squeezing direction
is effective. Moreover, from Figs. 2(a)–(c) we have demon-
strated the validity of the effective master equation to describe
the dynamics of the full system. These results show that the
assumptions and the approximations we have made in Sec. II
are suitable.

FIG. 3. (a) Time evolution of the spin squeezing parameter ξ 2
R for

an ensemble of N = 50 atoms, given by the full master equation (20).
(b) Minimum values of the spin squeezing parameter ξ 2

R,min for differ-
ent N , given by the effective master equation (21). We assume that
κp = gc (red solid curve) and κp = 5gc (blue dashed curve) for the
present protocol and that gTAT = d0geff = igeff (black dotted curve)
for the TAT protocol. The other parameters are � = κp, δs = 15gc,
J = √

2gc, and κs = γc = γs = 0.

According to the mechanism of the cavity-induced TAT-
like interaction in Sec. II, when the condition {κp,�} � geff

is satisfied, the dynamics of the system is consistent with that
of the TAT model. To confirm this, we now introduce the TAT
protocol, as a reference. The Hamiltonian in the TAT protocol
is given by

ĤTAT = gTATŜ2
+ + g∗

TATŜ2
−, (23)

where gTAT = d0geff. Compared to the present protocol, the
TAT protocol is equivalent to the case where the pump cavity
stays in the quasisteady state during the evolution. Thereafter,
we numerically compare the present protocol and the TAT
protocol. Figure 3(a) plots the evolution of ξ 2

R versus t , show-
ing that a larger κp increases the similarity between the present
protocol and the TAT protocol. In particular, all the curves
are in clear agreement with each other at the beginning of the
evolution. The reason is that, from Fig. 2(a), we can obtain
that the pump cavity is in the quasisteady state effectively at
the beginning of the evolution. From Fig. 3(b) we can find
that for a small ensemble, the present protocol can generate
the same spin squeezing strength as the TAT protocol, e.g.,
� = κp = 5gc for N = 10. Moreover, it is also seen that, as
the number of atoms increases, the minimum value of the spin
squeezing parameter ξ 2

R,min is decreased for both the present
protocol and the TAT protocol. However, an increase in the
number of atoms causes the strongest spin squeezing gener-
ated with the present protocol to gradually deviate from that
generated with the TAT protocol. The reason is that the gener-
ation of spin squeezing in an ensemble with more atoms gen-
erally leads more atoms to be excited, which would cause the
state of the pump cavity to deviate more from the quasisteady
coherent state. Moreover, according to Figs. 3(a) and 3(b),
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FIG. 4. Time evolution of the spin squeezing parameter ξ 2
R for

different γs. The involved spontaneous emission rates γs are set to be
10−3gc [for ρI (red solid curve) and ρeff (blue dashed curve)] and 0
[for ρI (black dotted curve)]. All other parameters are the same as
those in Fig. 2.

a larger κp results in a stronger spin squeezing. This means
that a setup with a larger single-photon dissipation of the
pump cavity and a stronger external driving field is more
efficient for the present protocol to generate a stronger spin
squeezing.

Next we study the influence of the spontaneous emission of
the atoms and the collective dephasing of the ensemble. From
Fig. 4 we find that the effect of spontaneous emission prolongs
the duration of the squeezing at the expense of reducing the
squeezing strength slightly. Meanwhile, it can be seen from
Fig. 5 that, at the same intensity, the influence of the collective
dephasing of the ensemble on the generated spin squeezing
is much greater than that caused by the atomic spontaneous
emission. The essential reason is that the collective dephasing
would affect the relative phases between the energy levels of
the ensemble so that the direction of the squeezing gradually
becomes chaotic during the evolution.

Though the signal cavity is decoupled from the effective
dynamics described by Eq. (21), the signal cavity decay af-
fects inevitably the full dynamics of the system in reality.
Here we discuss the influence of the signal cavity decay
on the system. With the help of the theory of the adi-
abatic elimination [65,66], we can replace γsL(âs)ρ with
J2 pγL(âp)ρ + g2 pγL(Ŝ−)ρ, where pγ = 4γs/(4δ2

s + γ 2
s ), in

the master equations (20) and (21) (see more details in Ap-
pendix B). Therefore, the effect of the signal cavity decay
causes an additional single-photon dissipation of the pump
cavity and an additional collective spontaneous emission of
the atoms. From Sec. II, the condition κp � J2 pγ is well
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0

FIG. 5. Time evolution of the spin squeezing parameter ξ 2
R for

different γc. The involved dephasing rates γc are set to be 10−3gc [for
ρI (red solid curve) and ρeff (blue dashed curve)] and 0 [for ρI (black
dotted curve)]. All other parameters are the same as those in Fig. 2.
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FIG. 6. Time evolution of the spin squeezing parameter ξ 2
R for

different κs. The involved signal cavity decay rates κs are set to be
0.1gc [for ρI (red solid curve) and ρeff (blue dashed curve)] and 0
[for ρI (black dotted curve)]. All other parameters are same as those
in Fig. 2.

satisfied, which means that the adiabatic effect on the pump
cavity may be not obvious. Then the signal cavity decay
mainly produces an additional collective spontaneous emis-
sion. This analysis can be verified indirectly by comparing the
evolution of the spin squeezing parameter ξ 2

R in Figs. 4 and 6.

B. Without driving the pump cavity

In this section we discuss the property of the generated spin
squeezing without driving the pump cavity. Here the effective
Hamiltonian in Eq. (15) is given by

Ĥ ′
eff = g′

eff(âpŜ2
+ + â†

pŜ2
−), (24)

where g′
eff = g2J/δ2

s .
First, we study the generation of spin squeezing in the ideal

case of no decoherence involved. Similar to Sec. III A, we
start by studying the coherence properties of the pump cavity
with a coherent state as a reference state. Without the driving,
the amplitude of the reference state is decreased sharply in
the early stage, as shown in Fig. 7(a). This indicates that the
initial coherent state of the pump cavity is destroyed, which,
according to Eq. (17), limits the strength of the generated
spin squeezing. As shown in Fig. 7(b), the protocol is able
to generate a spin squeezing of ξ 2

R ∼ −5.19 dB in an en-
semble of N = 50 atoms. Meanwhile, from Figs. 7(a) and
7(b) we find that the fidelity of the reference coherent state
exceeds 0.98 before the strongest squeezing occurs. In other
words, the pump cavity is in a coherent state approximately.
Therefore, the prediction of the spin squeezing direction along
θ = π/4 + ϕ/2 in the x-y plane is still valid. From Fig. 7(c),
the spin squeezing direction based on the full master equa-
tion only has a small deviation from the effective prediction,
i.e., along the y axis. Moreover, from Figs. 7(a) and 7(c),
the effective master equation is also still valid to describe
the system dynamics. However, the effective master equation,
when used to predict the evolution of ξ 2

R , has a big deviation
due to the sensitivity of ξ 2

R to the parameters. Therefore, the
following numerical simulations in this section are all based
on the full master equation.

According to Figs. 7(a) and 7(b), an increase in the am-
plitude of the initial coherent state of the pump cavity might
lead to a faster and stronger spin squeezing. Here we nu-
merically study this deduction and plot the corresponding
results in Fig. 8. From Fig. 8, a larger-amplitude coherent
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FIG. 7. Time evolution of (a) the parameters FI (eff) and |〈âp〉| and
(b) the spin squeezing parameter ξ 2

R , given by the full master equa-
tion (20) (solid curve) and the effective master equation (21) (dashed
curve) for α = i. All other parameters are N = 50, δs = 15gc, J =√

2gc, and � = κp = κs = γc = γs = 0. (c) Husimi-Q function and
spin squeezing direction (red dashed curve) for the strongest spin
squeezing [corresponding to the dots in (b)].

state prepared in the pump cavity accelerates the process
of generating spin squeezing. The reason is that, according
to Eq. (17), an increase in the amplitude of the coherent
state in the pump cavity increases the coupling strength of the
nonlinear interaction between the atoms. However, at the same
time, a larger-amplitude coherent state in the pump cavity also
involves a violation of the assumption δs � 2|α|J . This results
in a decrease of the generated squeezing strength, as shown in
Fig. 8.
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FIG. 8. Time evolution of the spin squeezing parameter ξ 2
R for

different α, given by the full master equation (20). The involved
amplitudes of the initial coherent state α are set to be i (red solid
curve), 1.5i (blue dashed curve), and 2i (black dotted curve). All
other parameters are the same as those in Fig. 7.
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FIG. 9. Time evolution of the spin squeezing parameter ξ 2
R for

different γs, given by the full master equation (20). The involved
atomic spontaneous emission rates γs are set to be 10−3gc (red solid
curve) and 0 (blue dashed curve). All other parameters are the same
as those in Fig. 7.

It is worth studying further the effects of the spontaneous
emission of the atoms and the collective dephasing of the
ensemble on the system. As shown in Fig. 9, the spontaneous
emission of the atoms slightly influences the evolution of spin
squeezing. Compared to the case with driving the pump cavity
in Sec. III A, the atomic spontaneous emission cannot prolong
the duration of spin squeezing in the case of no pump cavity
driving. According to Figs. 9 and 10, when setting γs = γc,
the dephasing of the ensemble has a greater effect on the
generation of spin squeezing than the atomic spontaneous
emission. Meanwhile, from Figs. 5 and 10 it can be found that
in the case of no pump cavity driving, the collective dephasing
of the ensemble has a weaker influence on the generation of
spin squeezing than that in the case with driving the pump
cavity.

Furthermore, the effect of the cavity decay on the system
also needs to be investigated. Here the pump cavity decay
becomes an undesired physical process. According to Fig. 11,
the pump cavity decay can significantly prolong the duration
of squeezing, but at the same time it can also clearly reduces
the strength of squeezing. This indicates that the protocol
in the case without driving the pump cavity is particularly
suitable for a system with a high-quality pump cavity. Mean-
while, as discussed in Sec. III A, the influence of the signal
cavity decay is equivalent to introducing an extra pump cavity
decay and an extra atomic collective spontaneous emission.
It is worth noting that the extra pump cavity decay cannot be
ignored like in the case with driving the pump cavity. Thus,
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FIG. 10. Time evolution of the spin squeezing parameter ξ 2
R for

different γc, given by the full master equation (20). The involved
collective dephasing rates γc are set to be 10−3gc (red solid curve)
and 0 (blue dashed curve). All other parameters are the same as those
in Fig. 7.
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FIG. 11. Time evolution of the spin squeezing parameter ξ 2
R for

different κp, given by the full master equation (20). The involved
single-photon dissipation rates of the pump cavity κp are set to be
0.01gc (red solid curve), 0.1gc (blue dashed curve), and 0 (black
dotted curve). All other parameters are the same as those in Fig. 7.

the robustness of the generated spin squeezing to the signal
cavity decay would be reduced, which is shown in Fig. 12.

IV. EXPERIMENTAL FEASIBILITY

In order to demonstrate further the performance of the pro-
tocol, we discuss the experimental feasibility by combining
the theoretical model in the protocol with the current experi-
ments.

Here we consider a setup consisting of two coplanar
waveguide resonators (CPWRs), a superconducting quantum
interference device (SQUID), and a rubidium atomic ensem-
ble, as shown in Fig. 13. The SQUID is used to mediate
the parametric conversion between a single photon of the
pump cavity (CPWR I) and a pair of photons of the signal
cavity (CPWR II). In other words, the SQUID constructs
the parametric coupling between two cavities. The pump-
ing frequency of the SQUID satisfies ωSQUID = 2ωs − ωp.
The SQUID has been designed and realized in many exper-
iments, like the asymmetrically threaded SQUID [37] and
the rf SQUID [38]. The strength of the parametric coupling
constructed by the SQUID has been reported with a range
of J/2π = 0.1–17.7 MHz [35–38]. Meanwhile, we take the
atomic clock states {5S1/2, F = 1, mF = −1} := |1,−1〉 and
{5S1/2, F = 2, mF = 1} := |2, 1〉 as the information carriers
[39,40]. To date, coupling these two states to the CPWR
has been experimentally implemented with an additional rf
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FIG. 12. Time evolution of the spin squeezing parameter ξ 2
R for

different κs, given by the full master equation (20). The involved
single-photon dissipation rates of the signal cavity κs are set to be
0.1gc (red solid curve) and 0 (blue dashed curve). All other parame-
ters are the same as those in Fig. 7.

FIG. 13. Schematic for a possible architecture for the protocol.
CPWR I and the CPWR II are coupled to the SQUID. The atomic
ensemble is placed above CPWR II and is coupled to the magnetic
mode of CPWR II. An extra driving is applied to CPWR I.

field [39]. However, the reported coupling strength is too
weak to implement efficient quantum coherent operations
[41]. Fortunately, several approaches can be used to increase
the coupling strength. Such approaches include decreasing
the space between the atomic ensemble and the CPWR [39]
and introducing novel CPWRs able to provide some strong
magnetic fields [42]. Thus, here we take gc/2π = 40 kHz with
N = 106 [40]. Note that both the relaxation time T1 and the
coherent time T2 of the Rb atomic ensemble are of the order
of 1 s [43]. This indicates that one can ignore the effect of
the atomic spontaneous emission and the collective dephasing
on the dynamics of the system. In addition, for the CPWRs,
a quality factor over 106 has been realized experimentally
[44–46]. Thus, we take κp ∼ 10−6ωp and κs ∼ 10−6ωs. Ac-
cording to these parameters mentioned above, we list a group
of feasible parameters and then estimate the minimum of the
spin squeezing parameter in Table I. Note that, for the case
with driving (discussed in Sec. III A), it is not necessary that
the initial state of the pump cavity is the quasisteady coherent
state. As shown in Fig. 14, the generation of spin squeezing is
also achievable when the pump cavity is initially in the ground

FIG. 14. Time evolution of (a) the parameter |〈âp〉| and (b) the
spin squeezing parameter ξ 2

R for the pump cavity initiated in the
ground state (blue solid curve) and the quasisteady state (red dotted
curve), given by the full master equation (20). All other parameters
are N = 50, δs = 15gc, � = κp, J = √

2gc, and κs = γc = γs = 0.
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TABLE I. Experimental feasible parameters and the minimum spin squeezing parameters.

Type of ensemble

Parameter Rb atoms NV centers

encoded states |1, −1〉 ↔ |2, 1〉 |ms = 0〉 ↔ |ms = −1〉
number of spins 106 1012

spin frequency 6.8324 2.6899
ωq/2π (GHz)
spin spontaneous emission rate — —
γs/2π (kHz)
spin collective dephasing rate — 0.26
γc/2π (kHz)
collective coupling strength 40 1.200 × 104

gc/2π (kHz)
signal cavity frequency 6.8330 2.8691
ωs/2π (GHz)
signal cavity decay rate 7 3
κs/2π (kHz)
parameter coupling strength 56.569 1.697 × 104

J/2π (kHz)
SQUID’s pumping frequency 10 2
ωSQUID/2π (GHz)
pump cavity frequency 3.6660 3.7389
ωp/2π (GHz)
External field Driving Driving No Driving Driving Driving No Driving

driving amplitude 10 10 — 10 10 —
�/2π (MHz)
pump cavity decay rate 10 10 0.003 10 10 0.003
κp/2π (MHz)
amplitude of the initial 0 i i 0 i i
coherent state α

minimum of the spin squeezing −15.13 −14.91 −2.34 −13.58 −13.58 −9.51
parameter ξ 2

R,min (dB)1

1Parameter ξ 2
R,min differs from the parameter ξ 2

R,min in Sec. III. The details are shown in Appendix C.

state. Meanwhile, from Fig. 14 we find that the generations of
spin squeezing between these two cases with different initial
states of the pump cavity are almost the same. The reason
for this similarity is that the time cost of constructing the
quasisteady coherent state from the ground state in the pump
cavity is too short to change the generation of spin squeezing
significantly.

Furthermore, the protocol can also be implemented with
ensembles of other particles, such as nitrogen-vacancy (NV)
centers in diamond [67–77]. In this case, a feasible setup is
the same as the one shown in Fig. 13, but with the atomic
ensemble replaced by the NV centers. We encode the internal
states of the NV centers, |ms = 0〉 and |ms = −1〉, as the
information carriers [71]. The coupling strength between a
single NV center and a single CPWR photon g/2π exceeds
12 Hz [67,71]. To date, for a typical ensemble of NV centers,
a relaxation time of T1 ∼ 40 s (γs � 1 Hz) has been demon-
strated experimentally [67] and with the spin-echo sequences
a coherent time of T2 > 600 μs (γc < 0.26 kHz) has also been
reached [29,72]. Thus, we also give a group of feasible pa-
rameters and the minimum of the spin squeezing parameter in
Table I.

V. CONCLUSION

In this paper we have proposed a protocol to generate spin
squeezing in atomic ensembles via a fully quantum degenerate
parametric amplifier. By adjusting the parameters, an effective
cavity-induced TAT-like interaction could be achieved. The
strength of the generated spin squeezing was determined by
some properties of the pump cavity, such as the initial state,
the driving strength, and the cavity decay. We mainly dis-
cussed the generated spin squeezing in two cases of the pump
cavity. For the first case, the pump cavity was initially in the
quasisteady coherent state by a driving field and the cavity
decay. Meanwhile, for the second case, the pump cavity was
initiated in an arbitrary coherent state and there was no pump
cavity driving.

In the first case, theoretical analyses and numerical simu-
lations showed that the present protocol can generate a strong
spin squeezing whose strength is even comparable to that of
the TAT model. The reason is that, for a fixed d0 and an
extremely large ratio of κp to geff, the effect of the cavity-
induced TAT-like interaction is equivalent to applying the TAT
interaction to the atomic ensemble. Meanwhile, according to
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numerical simulations, the present protocol is robust to the
atomic spontaneous emission and the signal cavity decay.

In the second case, according to numerical simulations, the
present protocol can generate an observable spin squeezing.
A properly large amplitude of the initial coherent state can
accelerate the generation of spin squeezing. Meanwhile, the
present protocol is also robust to the collective dephasing of
the ensemble, in addition to the atomic spontaneous emission
and the signal cavity decay. It is worth noting that the pump
cavity decay is able to prolong the duration of squeezing
significantly.

After combining the experimental results, we showed that
the present protocol is feasible experimentally. A group of
realistic parameters, as shown in Table I, was given to predict
some experimentally feasible results. Moreover, the present
protocol can be extended to generate spin squeezing in various
ensembles, such as ensembles of NV centers. We hope that the
present protocol provides a different approach for generating
spin squeezing in photon-spin coupling systems.
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APPENDIX A: APPROACH FOR COMPENSATING THE
TERM (g2/δS)Ŝ+Ŝ− COMPLETELY

In this Appendix we give a detailed derivation of the ap-
proach for compensating (g2/δS)Ŝ+Ŝ− completely. We first
assume the information of spin squeezing is a carrier by the
levels of the atoms |0〉a ≡ | ↓〉a and |1〉a ≡ | ↑〉a. Here we
introduce an optical cavity, a laser pulse, and an auxiliary
level of the atoms |2〉a [59–61]. The optical cavity (pulse) is
far-off resonance with the transition |0〉a ↔ |2〉a (|1〉a ↔ |2〉a)
with the coupling strength gd (�o) and the detuning 
d (
o).
In the interaction picture, the Hamiltonian described these
interactions is given as

Ĥo = 
d d̂†d̂ + gc

N∑
k=1

(|2〉k
a

k
a〈0|ĉ + |0〉k

a
k
a〈2|ĉ†)

+ �o

N∑
k=1

(|2〉k
a

k
a〈1|e−i
ot + |1〉k

a
k
a〈2|ei
ot ), (A1)

where d̂† and d̂ are the creation operator and the anni-
hilation operator of the optical cavity mode, respectively.
Further, |ε〉k

a (ε = 0, 1, 2 and k = 1, 2, . . . , N) represents that
the kth atom is in |ε〉a. When the conditions 
o − 
d = 


and {
d ,
o} � {gd ,�o,
} are satisfied, the auxiliary level
|2〉a can be eliminated adiabatically and then the effective

Hamiltonian of the system is

Ĥ (1)
o,eff = gd�o


′

N∑
k=1

(|1〉k
a

k
a〈0|d̂ei
t + |0〉k

a
k
a〈1|d̂†e−i
t )

+ �2
o


o

N∑
k=1

|1〉k
a

k
a〈1| + g2

d


d

N∑
k=1

|0〉k
a

k
a〈0|ĉ†ĉ, (A2)

where 
′ = 2
d
o/(
o + 
d ). To adiabatically eliminate
the optical cavity mode, we set 
 � gd�o/


′. Then the
above effective Hamiltonian in Eq. (A2) is reduced to

Ĥ (2)
o,eff = g2

d�
2
o


′2

Ŝ+Ŝ− + �2

o


o
Ŝz, (A3)

where Ŝ+Ŝ− = ∑N
k=1

∑N
k′=1(|1〉k

a
k
a〈0|)(|0〉k′

a
k′
a 〈1|) and Ŝz =

1/2
∑N

k=1(|1〉k
a

k
a〈1| − ∑N

k=1 |0〉k
a

k
a〈0|). This means that when

one takes

g2
d�

2
o


′2

+ g2

δS
= δq + �2

o


o
= 0, (A4)

the effect of the undesired term (g2/δS)Ŝ+Ŝ− is compensated
completely.

APPENDIX B: ADIABATIC ELIMINATION
OF THE SIGNAL CAVITY

Due to few photons and strong cavity loss, the signal cavity
can be considered as an ambience and can be adiabatically
eliminated. Here we give a detailed derivation of the adiabatic
elimination of the signal cavity. According to the Hamiltonian
in Eq. (2), we can obtain the interactions which excite signal
cavity photons

V̂1 = Jâpâ†2
s , V̂2 = gŜ−â†

s (B1)

and the free Hamiltonian of signal cavity photons

Ĥe = δsâ
†
s âs. (B2)

We introduce a Lindblad operator Ls = √
γsâs which satisfies

L(Ls)ρ = γsL(âs)ρ. According to the work in Ref. [65], the
Lindblad operators of the effective master equation can be
described as

L̂h = L̂s

(
Ĥe − i

2
L̂†

s L̂s

)−1

V̂h, (B3)

where h = 1, 2. Then we would obtain

L̂1 = 2
√

γsJ

2δs − iγs
âpâ†

s , L̂2 = 2
√

γsg

2δs − iγs
Ŝ−. (B4)

This means that the Lindblad superoperator which de-
scribes the signal cavity decay γsL(âs)ρ can be replaced
by J2 pγL(âpâ†

s )ρ + g2 pγL(Ŝ−)ρ, where pγ = 4γs/(4δ2
s +

γ 2
s ). Moreover, since the signal cavity remains effectively

in vacuum during the evolution of the system, the term
J2 pγL(âpâ†

s )ρ is able to reduce to J2 pγL(âp)ρ. Therefore,
the effect of the signal cavity decay γsL(âs)ρ is equivalent
to introducing an extra pump cavity decay J2 pγL(âp)ρ and
an extra atomic collective spontaneous emission g2 pγL(Ŝ−)ρ.
The physical mechanics are that when the signal cavity is
eliminated adiabatically, the pump cavity and the ensemble
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can be considered to be coupled to a new vacuum bath (i.e.,
the vacuum signal cavity).

APPENDIX C: MINIMUM OF THE SPIN SQUEEZING
PARAMETER IN TABLE I

Note that, in typical ensembles, the number of particles is
of the order of multiple 106 (e.g., Rb atoms) or multiple 1012

(e.g., NV centers). This means that it is extremely difficult
to exactly estimate the full dynamics of the ensemble. In
the following we simplify the dynamics of the system and
then effectively obtain the minimum spin squeezing. With the
Holstein-Primakoff transformation (HPT) [78] and in the limit
of N → ∞, the collective spin operators can be transformed
to the bosonic operators as

Ŝ− →
√

Nb̂, Ŝz → −N/2 + b̂†b̂, (C1)

where b̂ is the bosonic annihilation operator. Accordingly, the
spin squeezing parameter in Eq. (22) is rewritten as

ξ 2
R = N2

(N − 2〈b̂†b̂〉)2
(1 + 2〈b̂†b̂〉 − 2|〈b̂2〉|). (C2)

Meanwhile, from the effective master equation (21) and the
HPT, we obtain the Heisenberg equation [27]

∂t âp = −iNgeffb̂
2 − i�∗

2
− (κp + J2 pγ )âp

2
, (C3a)

∂t b̂
2 = −2iNgeffâp(2b̂†b̂ + 1) − (

γs + g2
c pγ + 2γc

)
b̂2,

(C3b)

∂t b̂
†b̂ = −2iNgeff(âpb̂†2 − â†

pb̂2) − (γs + g2
c p)b̂†b̂, (C3c)

where ∂t = ∂/∂t . Applying the mean-field approximation, the
instantaneous evolution of the average values of the operators
is described as

∂t 〈âp〉 = −iNgeff〈b̂2〉 − i�∗

2
− (κp + J2 pγ )〈âp〉

2
, (C4a)

∂t 〈b̂2〉 = −2iNgeff〈âp〉(2〈b̂†b̂〉+1) − (
γs+g2

c pγ +2γc
)〈b̂2〉,
(C4b)

∂t 〈b̂†b̂〉 = −4iNgeffIm(〈âp〉〈b̂†2〉) − (
γs + g2

c p
)〈b̂†b̂〉. (C4c)

Then the time evolutions of 〈b̂2〉 and 〈b̂†b̂〉 can be obtained
by solving the coupled equations in Eqs. (C4). After substi-
tuting 〈b̂2〉 and 〈b̂†b̂〉 into Eq. (C2), the evolution of the spin
squeezing parameter ξ 2

R is also obtained and then the mini-
mum of the spin squeezing parameter ξ 2

R,min can be achieved
accordingly.
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