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Dissimilar collective decay and directional emission from two quantum emitters
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We study a system of two distant quantum emitters coupled via a one-dimensional waveguide where the
electromagnetic field has a direction-dependent velocity. As a consequence, the onset of collective emission is
nonsimultaneous, and, for appropriate parameters, radiation could be enhanced for one of the emitters while
inhibited for the other. Interference effects enable the system to radiate in a preferential direction depending on
the atomic state and the field propagation phases. We characterize such directional emission as a function of
various parameters, delineating the conditions for optimal directionality.

DOI: 10.1103/PhysRevA.107.023723

I. INTRODUCTION

Engineering atom-photon interactions by manipulating
electromagnetic (EM) fields is a significant aspect of design
and implementation of quantum technologies [1–3]. For in-
stance, reducing the mode volume of the EM field enhances
the light-matter coupling [4] and controlling the field polariza-
tion allows for chiral interactions between quantum emitters
with polarization-dependent transitions [5]. Current platforms
allow one to change yet another property of the EM field:
its propagation velocity [6–8]. In particular, one can envision
the possibility of having an EM field with unequal velocities
when propagating to the left or to the right, here referred to as
anisotachy.1 Such feature is, as yet, an unexplored aspect of
quantum optical systems, which could be implemented with
state-of-the art nonreciprocal components [9,10]. Since the
propagation velocity is an essential ingredient in connecting
the distant parts of a larger system, the effects of anisotachy
are expected to appear when measuring properties that depend
on the interaction between delocalized subsystems, such as
quantum correlations.

Quantum correlations among emitters can collectively en-
hance or inhibit light absorption and emission [11]. For
example, a collection of emitters can radiate faster or slower
than individual ones depending on their correlations, phe-
nomena known as super- and subradiance respectively.2

These effects have been extensively studied both theoretically
[11–16] and experimentally across various platforms [17–29].

*psolano@udec.cl
†kanu.sinha@asu.edu
1The term anisotachy comprises the Greek words aniso for unequal

and tachytita for velocity.
2In the context of this paper, super- and subradiance indicate the

instantaneous rate of atomic excitation decay being faster or slower
than independent decay.

Recent works have proposed, and implemented [30], collec-
tive effects for controlling the direction of emission using
the nonlocal correlations between two emitters, with potential
applications in quantum information processing and quantum
error correction [31–34].

In this work we propose a system comprising of two dis-
tant quantum emitters or atoms coupled to a one-dimensional
waveguide with an effective direction-dependent field veloc-
ity, or anisotachy. As we will show, a direction-dependent time
delay can allow two correlated emitters to exhibit disparate
collective effects such that while the decay of one atom is
enhanced, the decay of the other is inhibited. In such a system,
interference effects in the radiated field lead to a directional
emission. We characterize such directional emission as a func-
tion of initial states of the emitters, field propagation phases,
and the waveguide coupling efficiency. Our results demon-
strate that collective directional emission is a rather prevalent
quantum optical phenomenon that needs further exploration,
to understand its advantages, limitations, and dependence on
a broader set of parameters. We first present a theoretical
model of the system, describing the disparate cooperative
decay dynamics of the emitters and the radiated field intensity
in the presence of anisotachy. We then characterize the opti-
mum conditions for directional emission. Finally we discuss
the experimental feasibility and give a brief outlook of the
phenomena.

II. MODEL

Let us consider two two-level quantum emitters coupled to
the EM field modes of a waveguide. The field modes prop-
agate through different waveguide with unequal velocities on
the left and the right, as shown in Fig. 1, leading to an effective
anisotachy.

The Hamiltonian for the system is given as H =
HE + HF + HEF , where HE = ∑

m=1,2 h̄ω0σ̂
+
m σ̂−

m is the
Hamiltonian for the emitters, with [σ̂+

m , σ̂−
m ] as the raising
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FIG. 1. Schematic representation of two two-level atoms coupled
to a waveguide with an interatomic separation d . The waveguide is
such that the left (right) propagating modes have a velocity vL (vR ).
The atoms have a resonance frequency ω0 and a decay rate γ , and
couple to the waveguide with a coupling efficiency β.

and lowering operators for the mth atom. HF =∫∞
0 dω h̄ω{â†

R(ω)âR(ω) + â†
L(ω)âL(ω)}, corresponds to

the Hamiltonian for the guided modes of the waveguide, with
â(†)

L(R) as the bosonic operators for the left (right) propagating
modes. The interaction Hamiltonian in the interaction picture
with respect to the free Hamiltonians HE + HF is [35,36]

H̃EF =
∑

m=1,2

∫ ∞

0
dω h̄g(ω)

{
σ̂+

m

[
âR(ω)eikRxm

+ âL(ω)e−ikLxm
]
e−i(ω−ω0 )t + H.c.

}
, (1)

where x1 = −x2 = −d/2 denotes the position of the emitters,
g(ω) represents the atom-field coupling strength and kL,R ≡
ω/vL,R corresponds to the asymmetric left and right wave
numbers. This Hamiltonian, in the weak coupling regime and

rotating-wave approximation, accurately describe the system.
Considering the initial state of the system with the emitters
being in the single excitation subspace and the field in vac-
uum,

|�(t )〉 =
{ ∑

m=1,2

cm(t )σ̂+
m +

∫ ∞

0
dω [cR(ω, t )â†

R(ω)

+ cL(ω, t )â†
L(ω)]

}
|gg〉 ⊗ |[0]〉, (2)

one can derive the equations of motion for the atomic coeffi-
cients, c1 and c2, using a Wigner-Weisskopf approach as (see
Appendix A for details)

ċ1(2)(t ) = −γ

2

[
c1(2)(t ) + βc2(1)(t − TL(R))

× �(t − TL(R))e
iω0TL(R)

]
. (3)

Here γ is the total spontaneous emission rate, βγ =
4π |g(ω0)|2 is the decay rate into the guided modes, and
TR(L) = d/vR(L) is the propagation time of the field traveling
right (left) from one emitter to the other.

III. DYNAMICS

Let us consider the initial state of the emitters to be |�0〉 ≡
c1(0)|eg〉 + c2(0)|ge〉. The equations of motion [Eq. (3)] can
be solved to obtain (see Appendix B):

c1(2)(t ) =
∞∑

n=0

c1(2)(0)ei2nφ (βγ /2)2n

(2n)!
(t − 2nT )2ne−γ (t−2nT )/2�(t − 2nT )︸ ︷︷ ︸

Even number of trips between atoms

−
∞∑

n=0

c2(1)(0)ei2nφ+iφL(R)
(βγ /2)2n+1

(2n + 1)!
(t − 2nT − TL(R) )

2n+1e−γ (t−2nT −TL(R) )/2�(t − 2nT − TL(R) )︸ ︷︷ ︸
Odd number of trips between atoms

, (4)

where φR(L) = ω0TR(L) is the phase acquired by the resonant
field upon propagation between the emitters, and T = (TR +
TL)/2, v = (vR + vL)/2, φ = (φR + φL)/2 are the average
propagation time, velocity, and phase, respectively.3 The first
term in the equation above represents the modification of
atomic decay after n round trips of the field between the
emitters. The second term represents an odd number of trips
(2n + 1) from one emitter to the other. The directional propa-
gation phase (φR(L)), together with the phase from the atomic
coefficients (c2(1)), determines the constructive or destructive
nature of interference between the two terms. In the absence
of anisotachy, Eq. (4) reduces to previous results [37,39].

Figure 2(a) shows the decay of the atomic excitation co-
efficients as a function of time. Destructive (constructive)
interference in the left (right) propagating modes leads to

3In the absence of anisotachy, it simplifies to previous results of
collective radiation in the presence of delay [37–41].

an inhibited decay of atom A1 and enhanced decay of atom
A2, after the field from one atom reaches the other. One
can thus interpret collective decay as a mutually stimulated
emission process, as is evident from the series expansion in
Eq. (4). For a negligible separation between emitters (T →
0), the series converges to yield the standard superradiant
exponential decay. In the presence of delay, the resulting
dynamics is more precisely described as a cascade of stim-
ulated emission processes [42]. For instance, the field from
one emitter can stimulate emission of the other, leading
to a nonexponential decay that is faster than superradiance
[37,40,41,43], or completely suppress its emission, leading
to bound states in the continuum (BIC) [38,44]. More gen-
erally, this effect can accelerate the decay of one atom while
slowing the decay of the other, as shown in Fig. 2(a). This
demonstrates that the phenomena of super- and subradiance
extends beyond the system as a whole, and it can be used
for an effective description of local atom-photon interference
effects.
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TABLE I. Some representative examples of dissimilar collective decay for different atomic and field propagation phases.

φL φR φA1 − φA2 Atom 1 Atom 2

2nπ (2m + 1)π 0 Enhanced Inhibited Anisotachy
π Inhibited Enhanced required

(2n + 1)π 2mπ 0 Inhibited Enhanced Anisotachy
π Enhanced Inhibited required

(n + 1
2 )π (m + 1

2 )π π

2 Inhibited Enhanced No anisotachy
− π

2 Enhanced Inhibited required

One can note a few salient features of the collective atomic
dynamics from the above equation:

(1) Each term in the series expansion can be interpreted
as multiple partial reflections of a field wave packet bouncing
between the atoms at signaling times t = 2nd/v and 2nd/v +
d/vL(R), as denoted by the theta functions [�(t − 2nd/v) and
�(t − 2nd/v − d/vL(R) )]. This offers the intuition that the
collective decay dynamics arises from a cascade of stimulated
emission processes as the field emitted by the each of the
atoms propagates back and forth between them.

(2) The interference phase for all partial reflections
is determined by the phase factors c1(2)(0)ei2nφ and

c2(1)(0)ei2nφ+iφL(R) , which is a combination of the atomic and
field propagation phases. Each successive term comes with
an additional factor of the atom-waveguide coupling strength
βγ /2.

(3) The propagation phases φL(R) can be different in the
presence of anisotachy, which can make the contribution from
the second term to the collective dynamics different for the
two atoms, thus leading to dissimilar collective behavior. We
summarize a few example cases of such behavior in Table I.

The EM field intensity emitted by the system, as a func-
tion of position x and time t , can be evaluated as I (x, t ) =
ε0c
2 〈�(t )|Ê†(x, t )Ê (x, t )|�(t )〉4 (see Appendix C):

I (x, t )

I0
=

∣∣∣∣∣∣∣
⎧⎪⎨
⎪⎩C1(t, [x + d/2]/vL)e−iω0(x+d/2)/vL︸ ︷︷ ︸

Atom 1 left light cone

+C2(t, [x − d/2]/vL)e−iω0(x−d/2)/vL︸ ︷︷ ︸
Atom 2 left light cone

+ C1(t,−[x + d/2]/vR)eiω0(x+d/2)/vR︸ ︷︷ ︸
Atom 1 right light cone

+C2(t,−[x − d/2]/vR)eiω0(x−d/2)/vR︸ ︷︷ ︸
Atom 2 right light cone

⎫⎪⎬
⎪⎭
∣∣∣∣∣∣∣
2

, (5)

where we have redefined the atomic excitation coefficients
Ci(t, τ ) = ci(t + τ )ζ (t, τ ) to explicitly include the causal dy-
namics in the notation, with ζ (t1, t2) ≡ �(t1 + t2) − �(t2).
The first (last) two terms above correspond to the left- (right-)
going light cones emitted from the atoms A1 and A2. Fig-
ure 2(b) shows the radiated intensity with the emitted fields
destructively (constructively) interfering to the left (right)
leading to almost perfect directional emission.

IV. DIRECTIONAL EMISSION

We characterize the probability of emitting the pho-
ton into the right (left) propagating mode by PR(L)(�0) =
limt→∞

∫∞
0 dω|cR(L)(ω, t )|2, with PR(L)(�0) as an explicit

function of the initial state |�0〉 (see Appendix D). We focus
here on the limit of small atomic separation γ T � 1 such
that retardation effects are negligible. For convenience we
write the initial condition as c1(0) = cos θeiφA1 and c2(0) =
sin θeiφA2 . The probability of emitting in a particular direction
is a function of four parameters: the coupling efficiency β, the

4Here Ê (x, t ) = ∫∞
0 dk Ek[âL(k)e−ikLx + âR(k)eikRx]e−iωt is the

electric field operator, and we have assumed Ek ≈ Ek0 to be constant
near the atomic resonance frequency.

average propagation phase φ; the initial atomic populations
parametrized by θ ; and the difference between the relative
atomic and propagation phases �φ = (φA1 − φA2) + (φR −
φL)/2. For a given experimental realization, the parameters β

and φ would be fixed, and the variable atomic parameters θ

and �φ would determine the directionality of emission.
The directional emission of the system can be character-

ized by χ = (PR − PL)/(PR + PL), which can be calculated
explicitly as (see Appendix D)

χ (�0) = −β sin φ

Ptot

(
sin �φ sin 2θ + β cos 2θ sin φ

1 + (β sin φ)2

)
, (6)

where Ptot = PR + PL is the total probability of emitting into
the waveguide:

Ptot (�0) = β

[
1 − β cos2 φ − (β − 1) cos �φ cos φ sin 2θ

1 − (β cos φ)2

]
.

(7)

We note from the above that Ptot = β only for φ = (n + 1
2 )π ,

more generally, the interference in the field enhances or in-
hibits the effective coupling efficiency between the emitters
and the waveguide. Equation (6) shows that the emission is
typically directional for most values of �φ and φ 
= Nπ ,
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FIG. 2. Atomic excitation probability and intensity dynamics for
emitters prepared initially in the symmetric state |�0〉 = 1√

2
(|eg〉 +

|ge〉), with φL = π and φR = 2π . (a) The blue solid and red
dash-dotted curves represent the populations of atoms A1 and A2,
respectively, with the dotted vertical lines indicating the onset of
collective emission. The gray dotted and dashed curves represent
standard individual and superradiant decay, respectively. The thick
dashed line represents the excitation probability of the entire atomic
system, which tends to subradiance. (b) Intensity of the radiated
field as a function of spacetime. The vertical dashed lines indicate
the position of the two atoms while the horizontal dash-dotted lines
represent the times t = TL and t = TR. Here we have chosen the
dimensionless atomic separation γ d/c ≈ 1, propagation velocities
vL/c ≈ 0.988 and vR/c ≈ 0.788, ω0/γ ≈ 500 and coupling effi-
ciency β ≈ 1.

N ∈ N. This indicates a prevalence of directional emission in
quantum optical systems.

Figure 3 shows the directionality of photon emission
χ as a function of the parameters of the initial atomic
state for the optimum directionality condition φ = (n + 1

2 )π ,
for two particular waveguide coupling efficiencies (β = 1
and 0.01). Considering two orthogonal entangled atomic
states |�a(b)〉 = 1√

2
(|eg〉 + eiϕa(b) |ge〉) with ϕa − ϕb = π , we

obtain a directional parameter value χa(b) = sin(φR − φL −
ϕa(b) )/(1 + β2). It can be thus seen that appropriately manipu-

FIG. 3. Directionality parameter χ as a function of the initial
atomic state parameters, for waveguide coupling efficiencies of
(a) β = 1 (b) β = 0.01. The propagation phase is fixed to be φ =
π/2 and the atomic separation is considered to be in the nonretarded
regime (γ T � 1). (a) For β = 1, the maximum directionality is
obtained for θ = π/8 and �φ = ±π/2 with a maximum and mini-
mum χ values of χmax = −χmin = 1/

√
2. The gray points indicate

directional emission obtained for initial states |eg〉 ± i|ge〉 with a
χ± = ±1/2 [32]. (b) For β = 0.01 the directional parameter can be
as large as χmax = −χmin ≈ 0.999.

lating the relative field propagation phase (φR − φL ) can allow
one to distinguish any two orthogonal maximally entangled
states in the single excitation subspace based on the direction
of emission, as illustrated by the points χ+ and χ− in Fig. 3.

We note that the directional emission from an entangled
state benefits from β < 1 as can be seen from comparing
Figs. 3(a) and 3(b). This can be understood from the series
expansions in Eqs. (4), where the terms with odd powers
of β contribute to the directionality, while terms of order
β2 are detrimental. This contrasts with the standard case of
neglecting field propagation, where β < 1 does not change the
qualitative behavior of guided emission. In the limit β � 1

χ (�0) ≈ −C sin φ sin �φ, (8)

where C = sin 2θ is the concurrence that characterizes the
entanglement of a pure state |�0〉. Thus, for small waveg-
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uide coupling efficiencies, the directionality χ could be a
direct measure of the entanglement of the emitters. This also
indicates that directional emission can be observed even in
experiments with low coupling efficiency between emitters
and waveguides.

We discuss the various parameter dependencies of the di-
rectionality below:

(1) Dependence on average propagation phase (φ =
φR+φL

2 ): Directionality comes from having constructive inter-
ference in one direction and destructive interference in the
other direction. Considering the phases of field propagation
φR = 2nπ and φL = (2m + 1)π , gives φ = (n + 1

2 )π . We see
that this maximizes the overall prefactor sin φ and thus the
directionality.

(2) Dependence on the relative atomic and field phases
(�φ): The interference effects between the atomic dipoles and
the field are represented by the sin �φ term, which maximizes
directionality for sin �φ → 1. This can be clearly seen from
both Figs. 3(a) and 3(b).

(3) Dependence on waveguide coupling efficiency (β ) and
initial atomic excitation amplitudes (θ ): In the case of β → 0,
there is nearly zero probability of multiple reflections, absorp-
tions, and reemissions of the field in the waveguide, such that
the field from one atom perfectly interferes (constructive or
destructively) with the field from the other atom. For β → 1,
the optimum directionality occurs when one atom radiates
most of the field, while the second provides just enough field
required for constructive interference [as seen from Fig. 3(a)].
This case corresponds to the optimum value θ = π/8.

Directionality can aid in sensing either the relative atomic
phases or field propagation phases ϕ,5 all other experi-
mental parameters being fixed. In order to quantify this
advantage we define FD(ϕ) ≡ ∑

i=L,R,out Pi[∂ log(Pi )/∂ϕ]2 as
the Fisher information that considers directionality. Here
Pi is the probability of emission into the decay channel
i, spanning over modes propagating to the left (PL), right
(PR), and out of the waveguide [Pout = 1 − (PR + PL)]. To
compare with the case where one ignores directionality,
we define the nondirectional Fisher information FND(ϕ) ≡∑

i=tot,out Pi[∂ log(Pi )/∂ϕ]2, that considers only the total de-
cay into and outside the waveguide with probabilities Ptot and
Pout, respectively. It can be shown that FD(ϕ) � FND(ϕ) (see
Appendix D), meaning that distinguishing the direction of
propagation of the emitted photon helps to better estimate the
general phase ϕ.

V. EXTENSION TO N ATOMS

Having illustrated the key features of the dynamics in the
presence of anisotachy, we now consider an extension of the
system to the case of N atoms, as shown in Fig. 4. We consider
an array of N atoms, each separated from its nearest neighbor
by a distance d and connected via an asymmetric waveguide
configuration that allows for anisotachy.

Assuming an initial state of the total system to have only
one excitation, the subsequent state of the system can be

5Here ϕ could refer to either the atomic phases [φA1 , φA2 ], the field
propagation phases [φR, φL], or the relative phases [�φ, φ].

FIG. 4. Schematic representation of N atoms coupled to a waveg-
uide in an configuration with anisotachy.

written as

|�(t )〉 =
{

N∑
m=1

cm(t )σ̂+
m +

∫ ∞

0

[
cR(ω, t )â†

R(ω)

+ cL(ω, t )]â†
L

}
|gg . . . g〉 ⊗ |[0]〉. (9)

For atoms placed in a one-dimensional regular array, the
equations of motion for the atomic excitation amplitudes, after
eliminating the field modes, can be written as

ċm(t ) = −γ

2

{
cm(t ) + β

[∑
n<m

ei(m−n)φR cn

(
t − (m − n)

d

vR

)

+
∑
n>m

ei(n−m)φL cn

(
t − (n − m)

d

vL

)]}
. (10)

As in the previous section, we focus on the limit of small
atomic separation (γ T � 1), and consider the resulting col-
lective atomic dynamics. The above set of coupled delay
differential equations can be thus solved to obtain the dy-
namics of the N-atom system. Considering the column vector−→
C (t ) with entries cm(t ), we can write the system of equa-
tions as

−̇→
C (t ) = −γ

2
[
↔
I +β(

↔
R + ↔

L)]
−→
C (t ), (11)

where
↔
I is the N × N identity matrix and

↔
R (

↔
L) is a strictly

lower (upper) triangular matrix with nonzero elements given
by Rnm = ei(m−n)φR (Lnm = ei(n−m)φL ). The dynamics of the
system can then be solved as an eigenvalues problem [45],
where the largest (smaller) eigenvalue corresponds to the de-
cay rate of the most superradiant (subradiant) state. Through
numerical exploration, we find that the eigenvalue corre-
sponding to the most superradiant state increases linearly with
the number of emitters. On the other hand, the eigenvalue
corresponding to the most subradiant state decreases poly-
nomially as N−3, except when all the propagation phases are
integer multiples of 2π leading to an eigenvalue zero regard-
less of the number of emitters. These results reproduce the
expected behavior for a one-dimensional chain of atoms [15].
In this sense, anisotachy does not change the overall scaling
of collective behavior but instead modifies the evolution at the
level of the individual emitters.
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FIG. 5. (a) Schematic representation for realization of anisotachy with circulators. The atoms are connected to a waveguide, which in turn
connects to circulators that are coupled to two separate waveguides with different field velocities, such that the left (right) propagating modes
have a velocity vL (vR ). The velocity of the field in the waveguide outside of the circulator region is vo. (b) Schematic representation of a
circuit QED implementation of the model. Two transmons (A1 and A2) coupled via circulators and Josephson junction (JJ) arrays (JJA1 and
JJA2). The transmons are also coupled to each other via a control line that can allow for entangled state preparation by driving the qubits with
an external pump field.

VI. IMPLEMENTATION IN A CIRCUIT QED SYSTEM

The proposed system can be implemented with field circu-
lators, that are readily available for fiber optics and an active
element of research in superconducting circuits [46,47] and
integrated photonics [48,49]. These can be integrated into
state-of-the art waveguide QED platforms [50].

We discuss a possible implementation of the present model
in a circuit QED platform, as shown in Fig. 5. One can
consider a system of two transmons coupled via two sepa-
rate Josephson junction arrays (JJAs), that allow for low-loss
propagation of microwave fields with slow velocities [51].
We assume some typical parameter values for the proposed
system as shown in Table II.

The JJ arrays are considered to be made of N ≈ 2000 junc-
tions, and in the regime of relevant frequencies each junction
can be modeled as a linear LC oscillator, with inductance
L1(2) and capacitance C1(2), capacitively coupled to the ground
with a ground capacitance Cg. The inductance and capaci-
tance values are assumed to be: L1 ≈ 1 nH, L2 ≈ 1.58 nH,
C1 ≈ C2 ≈ 1 fF, Cg ≈ 100 fF [51–53]. The size of the unit
cell in the JJ array is assumed to be a = 10 μm. With the
above set of parameters, and a distance d ≈ 1.6 cm (such that
γ d/v ≈ 1) between the emitters one can realize the parameter
values considered.

VII. SUMMARY AND OUTLOOK

We have proposed a system composed of two distant
emitters coupled via a waveguide where the guided field expe-

TABLE II. Parameter values for a superconducting circuit imple-
mentation of the model as depicted in Fig. 5.

Qubit resonance frequency ω0/(2π ) 5 GHz
Decay rate γ /(2π ) 10 MHz
Waveguide coupling efficiency β 0.95
Phase velocity in JJA1 v1/c 0.0033
Phase velocity in JJA2 v2/c 0.0026

riences a direction-dependent propagation velocity. We show
that in such a system the collective decay of the emitters can
be nonsimultaneous and, with an appropriate set of parame-
ters, while one of the atoms can exhibit enhanced radiative
decay the other one is inhibited [Fig. 2(a)]. This suggests that
collective decay can be described by local atom-photon inter-
ference processes that lead to a mutually stimulated emission
of the atoms [Eq. (4)]. The power radiated by such a pair
of emitters can have a high directionality controlled by their
phase relation and field propagation phase [Fig. 2(b)]. Such
directional emission is a rather general feature of collective
delocalized systems [Eq. (6)]. We analyze the directionality
of emission as a function of various parameters, characteriz-
ing the optimal conditions for directional emission (Fig. 3).
Our results suggest that such directional emission can also
be observed for waveguides with low coupling efficiencies.
We further remark that the dynamics of the emitters de-
scribed here shares commonalities with classical systems [54].
Nonetheless, in the proposed model, the directionallity of the
coupling aids the detection of entanglement [Eq. (8)] and
helps distinguish between the symmetric and asymmetric en-
tangled states of two emitters (Fig. 3). We finally propose a
possible implementation of the scheme in a superconducting
circuit platform in Sec. VI.

While on the one hand our results show that directional
emission could be used for state tomography and measuring
entanglement, on the other hand one can prepare the emitters
in an entangled state by driving them through the waveguide.
This can be thought as the time reversal process of collective
directional emission [39,55,56]. The directional emission and
state preparation protocols can allow for efficient and control-
lable routing of quantum information in quantum networks
[31,32,57,58].

The phenomena described in this work can be extended
to study directional emission from collective many-body
quantum states, with the presented system as a fundamental
unit along a chain of emitters coupled to an anisotachyic
bath. Additionally, for strongly driven systems, the ef-
fects of atomic nonlinearity become relevant [59,60]. It
has been shown, for example, that nonlinearity can assist

023723-6



DISSIMILAR COLLECTIVE DECAY AND DIRECTIONAL … PHYSICAL REVIEW A 107, 023723 (2023)

in directional emission [31,61–63]. It would therefore be
pertinent to analyze and optimize the directionality over
a broader set of parameters including general atomic
states, field propagation phases in nonlinear systems and
anisotachy.

Anisotachy in waveguide QED platforms could offer new
ways to manipulate light-matter interactions. In particular, we
show here that it can be used to couple delocalized correlated
state of two emitters to a specific direction of collective ra-
diation. This effect expands the toolbox for quantum optics

applications while enriching our understanding of waveguide
QED systems.
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APPENDIX A: DERIVATION OF THE EQUATIONS OF MOTION

We can write the coupled emitter-field equations of motion from Eqs. (2) and (4) as

ċR(ω, t ) = −i
∑

m=1,2

cm(t )[g(ω)]∗e−iωxm/vR ei(ω−ω0 )t , (A1)

ċL(ω, t ) = −i
∑

m=1,2

cm(t )[g(ω)]∗eiωxm/vL ei(ω−ω0 )t , (A2)

ċm(t ) = −i
∫ ∞

0
dω g(ω)e−i(ω−ω0 )t

[
cR(ω, t )eiωxm/vR + cL(ω, t )e−iωxm/vL

]
. (A3)

Formal integration of (A1) and (A2) yields

cR(ω, t ) = −i
∫ t

0
dτ

∑
m=1,2

g∗(ω)cm(τ )e−iωxm/vR ei(ω−ω0 )τ , (A4)

cL(ω, t ) = −i
∫ t

0
dτ

∑
m=1,2

g∗(ω)cm(τ )eiωxm/vL ei(ω−ω0 )τ . (A5)

Substituting the above in Eq. (A3), we can rewrite the atomic equation as follows:

ċm(t ) = −
∫ ∞

0
dω |g(ω)|2

∫ t

0
dτ

∑
n=1,2

cn(τ )e−i(ω−ω0 )(t−τ )(eiω(xm−xn )/vR + e−iω(xm−xn )/vL
)
. (A6)

We now define the field correlation function F (s) = ∫∞
0 dω|g(ω)|2e−i(ω−ω0 )s, to obtain

ċm(t ) = −
∫ t

0
dτ
{
2cm(τ )F (t − τ ) + cn(τ )

[
eiω0T mn

R F
(
t − τ − T mn

R

)+ e−iω0T mn
L F

(
t − τ + T mn

L

)]}
, (A7)

where T mn
R,L = (xm − xn)/vR,L is the direction dependent delay time for the light propagating between the emitters.

In the standard Markov approximation F (τ ) = 2π |g(ω0)|2δ(τ ), though more generally F (τ ) is a narrow distribution symmet-
ric around s = 0. We assume that the temporal width σ of such distribution is narrower than the delay time between the emitters
(σ < |T mn

L,R|),

ċm(t ) = − 2
∫ t

0
dτ cm(t − τ )F (τ ) − eiω0T mn

∫ t−T mn

−T mn

dτ cn(t − τ − T mn)F (τ ), (A8)

where T 12 = T 12
L = TL or T 21 = T 21

R = TR. If σ is small enough we can assume that the amplitude of the coefficients does
not vary significantly over the region where F (τ ) is nonzero, such that cm(t − τ ) ≈ cm(t ). Thus given that F (τ ) is symmetric,
centered around τ = 0 and narrower than T mn we have

ċm(t ) ≈ − 2cm(t )
∫ ∞

0
ds F (s) − cn(t − T mn)�(t − T mn)eiω0T mn

∫ ∞

−∞
dτ F (τ ). (A9)

The term F (τ ) is a complex function with the real and imaginary part being even and odd functions respectively. We define

γ

2
=2Re

[∫ ∞

0
dτ F (τ )

]
= Re

[∫ ∞

−∞
dτ F (τ )

]
, (A10)

�L =Im

[∫ ∞

0
dτ F (τ )

]
, (A11)

where �L is the Lamb shift, which we include as a part of the emitters renormalized resonance frequency ω0.
Introducing a phenomenological cross-coupling efficiency β between the emitters (0 � β � 1), one can simplify Eq. (A9) to

obtain the atomic equations of motion [Eq. (4)].
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APPENDIX B: ATOMIC DYNAMICS

1. Lambert W-function solution

Taking the Laplace transform of Eq. (4), one gets

sc̃1(s) − c1(0) = − γ

2
[c̃1(s) + β c̃2(s)e−sTL eiφL ], (B1)

sc̃2(s) − c2(0) = − γ

2
[c̃2(s) + β c̃1(s)e−sTR eiφR ], (B2)

which can be solved to obtain the Laplace coefficients pertaining to the two emitters as follows:

c̃1(s) = c1(0)
(
s + γ

2

)− c2(0)β γ

2 e−sTL eiφL(
s + γ

2

)2 − (
β

γ

2 e−sT eiφ
)2 , (B3)

c̃2(s) = c2(0)
(
s + γ

2

)− c1(0)β γ

2 e−sTR eiφR(
s + γ

2

)2 − (
β

γ

2 e−sT eiφ
)2 . (B4)

The poles of the above Laplace coefficients are given by

s±
n = −γ

2
+ 1

T
Wn

(
∓β

γ T

2
eγ T/2eiφ

)
, (B5)

where Wn is the nth branch of the Lambert W-function [64].
We can thus rewrite the Eqs. (B3) and (B4) as

c̃m(s) =
∑
±

∞∑
n=−∞

α±
n,m

s − s±
n

, (B6)

where the coefficients α±
n,m are obtained as

α±
n,m = lim

s→s±
n

c̃m(s)(s − s±
n ). (B7)

Thus taking the inverse Laplace transform of Eq. (B6), we get

cm(t ) =
∑

σ=+,−

∞∑
n=−∞

ασ
n,me−γ σ

n t , (B8)

where

γ ±
n = γ

2
− 1

T
Wn

(
∓βγ T

2
eγ T/2eiφ

)
, (B9)

α±
n,1 = 1

2

c1(0) ± c2(0)ei(φL−φR )/2e(TL−TR )γ ±
n /2

1 + Wn
(∓ βγ T

2 eγ T/2eiφ
) , (B10)

α±
n,2 = 1

2

c2(0) ± c1(0)e−i(φL−φR )/2e−(TL−TR )γ ±
n /2

1 + Wn
(∓ βγ T

2 eγ T/2eiφ
) . (B11)

2. Series expansion solution

An alternative way of expressing the atomic excitation amplitudes as the inverse Laplace transform of Eqs. (B3) and (B4) in
terms of a series solution is as follows [42]:

c1(t ) = 1

2π i
lim
ε→0

∫ +i∞+ε

−i∞+ε

ds
c1(0)

(
s + γ

2

)− c2(0) βγ

2 e−sTL eiφL(
s + γ

2

)2

[ ∞∑
n=0

(
βγ /2e−sT eiφ

s + γ /2

)2n
]
, (B12)

= c1(0)
1

2π i

∫
ds

{
1

s + γ /2

[ ∞∑
n=0

(
βγ /2e−sT eiφ

s + γ /2

)2n
]}

︸ ︷︷ ︸
(Ia)

−c2(0)
1

2π i

∫
ds

{
βγ

2

e−sTL eiφL

(s + γ /2)2

[ ∞∑
n=0

(
βγ /2e−sT eiφ

s + γ /2

)2n
]}

︸ ︷︷ ︸
(IIa)

.

(B13)
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c2(t ) = 1

2π i
lim
ε→0

∫ +i∞+ε

−i∞+ε

ds
c2(0)

(
s + γ

2

)− c1(0) βγ

2 e−sTR eiφR(
s + γ

2

)2

[ ∞∑
n=0

(
βγ /2e−sT eiφ

s + γ /2

)2n
]
, (B14)

= c2(0)
1

2π i

∫
ds

{
1

s + γ /2

[ ∞∑
n=0

(
βγ /2e−sT eiφ

s + γ /2

)2n
]}

︸ ︷︷ ︸
(Ib)

−c1(0)
1

2π i

∫
ds

{
βγ

2

e−sTR eiφR

(s + γ /2)2

[ ∞∑
n=0

(
βγ /2e−sT eiφ

s + γ /2

)2n
]}

︸ ︷︷ ︸
(IIb)

.

(B15)

We identify the terms (Ia) = (Ib) ≡ (I) as corresponding to the round trip times (even number) of the field between the atoms
and the terms (IIa) and (IIb) (not necessarily equal to each other) as the terms coming from odd number of trips between the
atoms. Simplifying each of the above terms:

(I) = 1

2π i

∫
ds

{
1

s + γ /2

[ ∞∑
n=0

(
βγ /2e−sT eiφ

s + γ /2

)2n
]}

, (B16)

=
∑

n

(βγ eiφ/2)2n

(2n)!
(t − 2nT )2ne−γ /2(t−2nT )�(t − 2nT ), (B17)

(IIa) = 1

2π i

∫
ds

{
βγ

2

e−sTL eiφL

(s + γ /2)2

[ ∞∑
n=0

(
βγ /2e−sT eiφ

s + γ /2

)2n
]}

, (B18)

=
∑

n

(βγ /2)2n+1

(2n + 1)!
ei2nφ+iφL (t − 2nT − TL )2n+1e−γ /2(t−2nT −TL )�(t − 2nT − TL ), (B19)

(IIb) = 1

2π i

∫
ds

{
βγ

2

e−sTR eiφR

(s + γ /2)2

[ ∞∑
n=0

(
βγ /2e−sT eiφ

s + γ /2

)2n
]}

, (B20)

=
∑

n

(βγ /2)2n+1

(2n + 1)!
ei2nφ+iφR (t − 2nT − TR)2n+1e−γ /2(t−2nT −TR )�(t − 2nT − TR). (B21)

We substitute the above in Eqs. (B13) and (B15) to obtain the dynamics of general initial states given by Eq. (4).
We plot the atomic dynamics as a function of time in Fig. 6. It can be seen that when the sign of the atomic coefficients

c1,2 changes, so does the sign of its electric dipole moment that drives the field, causing the atoms to switch from absorbing to
emitting, or vice versa.

APPENDIX C: INTENSITY DYNAMICS

The intensity of the field emitted by the atoms as a function of position and time can be evaluated as I (x, t ) =
ε0c
2 〈�(t )|Ê†(x, t )Ê (x, t )|�(t )〉, where Ê (x, t ) = ∫∞

0 dω Eω[âL(ω)e−ikLx + âR(ω)eikRx]e−iωt is the electric field operator at po-
sition x and time t . More explicitly, we obtain

I (x, t ) = ε0c|E0|2
2

〈�(t )|
{∫

dω1[â†
L(ω1)eik1Lx + â†

R(ω1)e−ik1Rx]eiω1t
∫

dω2[âL(ω2)e−ik2Lx + âR(ω2)eik2Rx]e−iω2t

}
|�(t )〉,

(C1)

= ε0c|E0|2
2

〈�(t )|
∫

dω1

∫
dω2[ei(k1L−k2L )xc∗

L(ω1, t )cL(ω2, t ) + e−i(k1R−k2R )xc∗
R(ω1, t )cR(ω2, t )

+ e−i(k1R+k2L )xc∗
R(ω1, t )cL(ω2, t ) + ei(k1L+k2R )xc∗

L(ω1, t )cR(ω2, t )]ei(ω1−ω2 )t |�(t )〉, (C2)

= ε0c|E0|2
2

〈�(t )|
∣∣∣∣
∫

dω[cL(ω, t )e−iωx/vL + cR(ω, t )eiωx/vR ]e−iωt

∣∣∣∣2|�(t )〉, (C3)

= ε0c|E0|2γ β

4π

∣∣∣∣
∫

dωe−iωt

{∫ t

0
dτ [c1(τ )eiω(−x+x1 )/vL + c2(τ )eiω(−x+x2 )/vL

+ c1(τ )e−iω(−x+x1 )/vR + c2(τ )e−iω(−x+x2 )/vR ]ei(ω−ω0 )τ

}∣∣∣∣2, (C4)
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FIG. 6. Dynamics of atomic coefficients (a) c1(t ) and (b) c2(t ), and atomic populations (c) |c1(t )|2 and (d) |c2(t )|2. Whenever the atomic
coefficients change sign (c1,2(t ) = 0) the atomic populations reverse their absorption and emission behavior, as indicated by the yellow and
green regions corresponding to atom A1 absorbing-A2 emitting and A1 emitting-A2 absorbing, respectively.

where we have used Eqs. (A1) and (A2) to substitute the field amplitudes in terms of the atomic excitation amplitudes.
Using the W-function solution for the atomic coefficients [Eq. (B8)] and performing the integrals over time and frequency, we
obtain

I/I0 =
∣∣∣∣∣∣
∑

σ=+,−

∞∑
n=−∞

(
ασ

n,1e−i(ω0−iγ σ
n )[t+(x−x1 )/vL]{�[t + (x − x1)/vL] − �[(x − x1)/vL]}

+ασ
n,2e−i(ω0−iγ σ

n )[t+(x−x2 )/vL]{�[t + (x − x2)/vL] − �[(x − x2)/vL]}
+ασ

n,1e−i(ω0−iγ σ
n )[t−(x−x1 )/vR]{�[t − (x − x1)/vR] − �[−(x − x1)/vR]}

+ασ
n,2e−i(ω0−iγ σ

n )[t−(x−x2 )/vR]{�[t − (x − x2)/vR] − �[−(x − x2)/vR]})
∣∣∣∣∣∣
2

. (C5)

We can rewrite the above in terms of the atomic excitation amplitudes using Eq. (B8) as

I/I0 = ∣∣(c1[t + (x + d/2)/vL]e−iω0(x+d/2)/vL {�[t + (x + d/2)/vL] − �[(x + d/2)/vL]}
+ c2[t + (x − d/2)/vL]e−iω0(x−d/2)/vL {�[t + (x − d/2)/vL] − �[(x − d/2)/vL]}
+ c1[t − (x + d/2)/vR]eiω0(x+d/2)/vR{�[t − (x + d/2)/vR] − �[−(x + d/2)/vR]}
+ c2[t − (x − d/2)/vR]eiω0(x−d/2)/vR{�[t − (x − d/2)/vR] − �[−(x − d/2)/vR]})∣∣2, (C6)

which corresponds to Eq. (6).

APPENDIX D: DIRECTIONAL EMISSION

Let us consider the dynamics for the atomic coefficients given by Eq. (5). In the limit γ T � 1, neglecting the delay but
keeping the propagation phases, we obtain

c1(t ) =
[

c1(0)
∞∑

n=0

(
β

γ

2 teiφ
)2n

2n!
− c2(0)ei(φL−φ)

∞∑
n=0

(
β

γ

2 teiφ
)2n+1

(2n + 1)!

]
e− γ

2 t�(t ), (D1)
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c2(t ) =
[

c2(0)
∞∑

n=0

(
β

γ

2 teiφ
)2n

2n!
− c1(0)ei(φR−φ)

∞∑
n=0

(
β

γ

2 teiφ
)2n+1

(2n + 1)!

]
e− γ

2 t�(t ). (D2)

These series converges to

c1(t ) =
[

c1(0) cosh

(
β

γ

2
teiφ

)
− c2(0)ei(φL−φ) sinh

(
β

γ

2
teiφ

)]
e− γ

2 t�(t ), (D3)

c2(t ) =
[

c2(0) cosh

(
β

γ

2
teiφ

)
− c1(0)ei(φR−φ) sinh

(
β

γ

2
teiφ

)]
e− γ

2 t�(t ). (D4)

We now consider the field coefficients in the steady state (t → ∞), which can be simplified to

cR(ω, t → ∞)

= −ig∗(ω)e−i φR
2

{
[c1(0)eiφR + c2(0)]

( γ

2 − i�)

( γ

2 − i�)2 − (
β

γ

2 eiφ
)2 − [c2(0)e2iφ + c1(0)eiφR ]

β
γ

2(
γ

2 − i�
)2 − (

β
γ

2 eiφ
)2

}
, (D5)

cL(ω, t → ∞)

= −ig∗(ω)e−i φL
2

{
[c1(0) + c2(0)eiφL ]

( γ

2 − i�)

( γ

2 − i�)2 − (
β

γ

2 eiφ
)2 − [c2(0)eiφL + c1(0)e2iφ]

β
γ

2

( γ

2 − i�)2 − (
β

γ

2 eiφ
)2

}
. (D6)

The probability of emitting the photon to the right (left) is thus given by

PR(L) =
∫ ∞

0
dω|cR(L)(ω, t → ∞)|2. (D7)

We parametrize the initial atomic coefficients as c1(0) = eiφA1 cos θ and c2(0) = eiφA2 sin θ , to obtain the right and left emission
probabilities as follows:

PR = |g(ω0)|2
∫ ∞

0
dω

∣∣∣∣∣(sin θ + cos θei�φeiφ )

(
γ

2 − i�
)

(
γ

2 − i�
)2 − (

β
γ

2 eiφ
)2

− (sin θ + cos θei�φe−iφ )e2iφ β
γ

2(
γ

2 − i�
)2 − (

β
γ

2 eiφ
)2

∣∣∣∣∣
2

,

(D8)

PL = |g(ω0)|2
∫ ∞

0
dω

∣∣∣∣∣(sin θ + cos θei�φe−iφ )

(
γ

2 − i�
)

(
γ

2 − i�
)2 − (

β
γ

2 eiφ
)2

− (sin θ + cos θei�φeiφ )
β

γ

2(
γ

2 − i�
)2 − (

β
γ

2 eiφ
)2

∣∣∣∣∣
2

.

(D9)

We consider the integral

I0 =
∫ ∞

0
dω

∣∣∣∣∣ T1
(

γ

2 − i�
)− T2β

γ

2(
γ

2 − i�
)2 − (

β
γ

2 eiφ
)2

∣∣∣∣∣
2

, (D10)

= |T1|2
∫ ∞

0
dω

�2∣∣( γ

2 − i�
)2 − (

β
γ

2 eiφ
)2∣∣2 − 2Im{T1T ∗

2 }β γ

2

∫ ∞

0
dω

�∣∣( γ

2 − i�
)2 − (

β
γ

2 eiφ
)2∣∣2

+ |T1 − T2β|2
(γ

2

)2
∫ ∞

0
dω

1∣∣( γ

2 − i�)2 − (
β

γ

2 eiφ
)2∣∣2 ,

≡ |T1|2I3 − 2Im{T1T ∗
2 }β

(γ

2

)
I2 + |T1 − T2β|2

(γ

2

)2
I1, (D11)

where we can simplify the integrals I1, I2, and I3 as follows:

I1 =
∫ ∞

0
dω

1∣∣( γ

2 − i�
)2 − (

β
γ

2 eiφ
)2∣∣2 = π

2

1(
γ

2

)3

1

[1 − (β cos φ)2][1 + (β sin φ)2]
, (D12)

I2 =
∫ ∞

0
dω

�∣∣( γ

2 − i�
)2 − (

β
γ

2 eiφ
)2∣∣2 = −π

4

1(
γ

2

)2

β2 sin 2φ

[1 − (β cos φ)2][1 + (β sin φ)2]
, (D13)

I3 =
∫ ∞

0
dω

�2∣∣( γ

2 − i�
)2 − (

β
γ

2 eiφ
)2∣∣2 = π

2

1(
γ

2

) 1 − β2 cos 2φ

[1 − (β cos φ)2][1 + (β sin φ)2]
. (D14)
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Substituting the above in Eq. (D11), we get

I0 = π

γ

|T1|2[1 − β2 cos 2φ] + Im
(
T1T ∗

2

)
β3 sin 2φ + |T1 − T2β|2

[1 − (β cos φ]2][1 + (β sin φ)2]
. (D15)

Plugging this result back into Eq. (D9) and (D8) and considering 4π |g(ω0)|2 = βγ yields

PR = 1

2

β

1 + (β sin φ)2

{
[1 − β + (β sin φ)2](1 − β cos �φ cos φ sin 2θ )

1 − (β cos φ)2 + cos (�φ + φ) sin 2θ + 2β sin2 θ sin2 φ

}
, (D16)

PL = 1

2

β

1 + (β sin φ)2

{
[1 − β + (β sin φ]2)(1 − β cos �φ cos φ sin 2θ )

1 − (β cos φ)2 + cos (�φ − φ) sin 2θ + 2β cos2 θ sin2 φ

}
, (D17)

which depends on the four parameters: β, θ , φ, and �φ. We use the above equations to obtain the total probability of emitting
into the waveguide Ptot and the directionality parameter χ is given by Eqs. (6) and (7).

1. Optimum directionality

We give the parameter values that optimize the directionality parameter given by Eq. (6). The value of φ that maximizes
directionality is φ = 2n+1

2 π such that sin φ = ±1. The directional parameter for the optimal value of φ reads

χ = − sin �φ sin 2θ ± β cos 2θ

1 + β2
. (D18)

Considering that the value of β is fixed for a given physical system, we find the global optimum over the two remaining
parameters (θ , and �φ), yields

β sin 2θ ∓ cos 2θ sin �φ = 0

∓ sin 2θ cos �φ = 0,

which gives the optimum values of of �φ = (n + 1
2 )π and θ = ± 1

2 arctan 1
β

. This shows that the optimum value of θ in general

depends on the value of β, and it tends to θ → ( 2n+1
2 )π as β → 0.

2. Directional Fisher information

The directional and nondirectional quantum Fisher information are defined as

FD(ϕ) = PL(ϕ)

(
∂ log PL(ϕ)

∂ϕ

)2

+ PR(ϕ)

(
∂ log PR(ϕ)

∂ϕ

)2

+ Pout (ϕ)

(
∂ log Pout (ϕ)

∂ϕ

)2

, (D19)

FND(ϕ) = Ptot (ϕ)

(
∂ log Ptot (ϕ)

∂ϕ

)2

+ Pout (ϕ)

(
∂ log Pout (ϕ)

∂ϕ

)2

. (D20)

The difference between the two can be found as

FD(ϕ) − FND(ϕ) = PL(ϕ)

(
∂ log PL(ϕ)

∂ϕ

)2

+ PR(ϕ)

(
∂ log PR(ϕ)

∂ϕ

)2

− Ptot (ϕ)

(
∂ log Ptot (ϕ)

∂ϕ

)2

(D21)

= PL(ϕ)

(
∂PL(ϕ)

∂ϕ

1

PL(ϕ)

)2

+ PR(ϕ)

(
∂PR(ϕ)

∂ϕ

1

PR(ϕ)

)2

− Ptot (ϕ)

(
∂Ptot (ϕ)

∂ϕ

1

Ptot (ϕ)

)2

(D22)

= 1

PL(ϕ) + PR(ϕ)

[(
PR(ϕ)

PL(ϕ)

)(
∂PL(ϕ)

∂ϕ

)2

+
(

PL(ϕ)

PR(ϕ)

)(
∂PR(ϕ)

∂ϕ

)2

− 2
∂PL(ϕ)

∂ϕ

∂PR(ϕ)

∂ϕ

]
(D23)

= 1

Ptot (ϕ)

⎡
⎣
⎛
⎝√PR(ϕ)

PL(ϕ)

⎞
⎠(∂PL(ϕ)

∂ϕ

)
−
√

PL(ϕ)

PR(ϕ)

(
∂PR(ϕ)

∂ϕ

)⎤⎦2

. (D24)
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Since all the probabilities are positive real numbers, this term is always positive, thus yielding

FD(ϕ) − FND(ϕ) � 0. (D25)

The equality is satisfied when PR = PL, corresponding to equal emission probabilities in the left and right directions.
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