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Enhanced spin-mechanical interaction with levitated micromagnets
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Spin-mechanical hybrid systems have been widely used in quantum information processing. However, the
spin-mechanical interaction is generally weak, making it a critical challenge to enhance the spin-mechanical
interaction into the strong coupling or even ultrastrong coupling regime. Here, we propose a protocol that
can significantly enhance the spin-mechanical coupling strength with a diamond spin vacancy and a levitated
micromagnet. A driving electrical current is used to modulate the mechanical motion of the levitated micromag-
net, which induces a two-phonon drive and can exponentially enhance the spin-phonon and phonon-medicated
spin-spin coupling strengths. Furthermore, a high-fidelity Schrödinger cat state and an unconventional two-qubit
geometric phase gate with high fidelity and faster gate speed can be achieved using this hybrid system. This
protocol provides a promising platform for quantum information processing with nitrogen-vacancy spins coupled
to levitated micromagnets.
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I. INTRODUCTION

Hybrid quantum systems, which combine the advantages
of various quantum systems to overcome their shortcomings,
have been widely used in quantum information process-
ing [1–3]. Several proposals for hybrid systems in cavity
quantum electrodynamics (QED) [4], circuit QED [5], and
spin-mechanical hybrid systems [6–31] have already been im-
plemented in recent years. The spin-mechanical hybrid system
combines quantum systems with long coherence time, such
as trapped atoms or ions [32–35], solid-state spins [36–42],
and mechanical oscillators, with high-quality factors, such
as cantilevers [17–24], nanobeams [12–15], and a nonlinear
period-driven nanoelectromechanical oscillator [43]. It has
been widely used in the preparation of a nonclassical quan-
tum state of mechanical motion [25,26], ground-state cooling
[15–17], ultrasensitive sensing [11,44], as well as the gen-
eration of interaction between two distant quantum systems
[18–21]. The greatest impediment to its possible applications
is the unavoidable dissipation of the oscillators interacting
with the environment. To reduce dissipation, researchers have
developed levitated devices [45–76] that readily isolated the
oscillators from the environment.

Optical, electrical, and magnetic levitation are the three
types of suspending setups that can all work in a vacuum
environment. The magnetic trap with a passive field [45–54,
57–62] is simpler than the optical trap with lasers [63–66]
and the electrical trap with radio-frequency modulation of a
high-voltage electric field [33–35,56]. Photon recoil, damage
to suspended particles due to absorption resulting in internal
heating, and clamping losses can all be avoided via magneto-

*lipengbo@mail.xjtu.edu.cn

static field levitation [62,76]. For these suspended schemes,
the suspension objectives are diverse. Glass spheres [65],
superconductor spheres [68,74], superconductor rings
[48,73], magnetic microspheres [44,45], silicon particles
[64,70], and diamond particles [58–63] have all been
investigated on various platforms. Because of their isolation,
they have been used to construct ultrasensitive sensors [44,45]
as well as to couple superconducting circuits [54–57,73,73]
and solid-state spins [16,35,70]. Magnetic microspheres,
particularly yttrium iron garnet (YIG) spheres due to their
high spin density [77], have received a great attention
[78–86]. There have been investigations on magnon coupling
to cavity modes such as sphere cavity [81], coaxis cavity
[82], three-dimensional (3D) cavity [83], and so on. Classical
Rabi-like oscillation [84], magnetically induced transparency
[84], bistable states [85], and other intriguing quantum effects
have been observed. Furthermore, the YIG sphere can couple
to microwave photons and solid-state spins [86,87], which
has been utilized to improve the coupling strength between a
solid-state spin and a photon mode [86]. Also, the coupling
of a one-dimensional chiral spin ring and a bosonic magnon
reservoir was studied in Ref. [88], proving that controlling the
direction of information flow can be achieved by controlling
the applied external field. In addition, levitated micromagnets
coupled to solid-state spins have been studied [52]. A recent
study has showed the interaction of a nitrogen-vacancy (NV)
center in diamond with a levitated micromagnet through the
magnetic field gradient produced by the micromagnet [52].
The coupling strength, however, is so weak that it cannot be
used for quantum information tasks.

Inspired from previous experimental and theoretical
progress, we propose a useful approach to exponentially
enhance the spin-mechanical coupling strength in a spin-
magnetomechanical system. An NV center is situated near the
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hard spherical micromagnet, which levitates above the type-II
superconductor. The magnetic field gradient generated by the
micromagnet couples the NV center to the center-of-mass
motion of the micromagnet. Many schemes have been pro-
posed to enhance the single-quantum interaction on various
platforms. Nonlinear resources [89–92] and parametric drive
[93,94] (for example, two-photon drive) have been utilized to
increase light-matter interactions. The modulation of voltage
in a trapped-ion system is used to achieve parametric amplifi-
cation [95–97]. Modulating the spring constant of a cantilever
[98] increases the spin-phonon coupling strength exponen-
tially in a spin-mechanical system [20]. This work suggests
a classical electrical-current-driven approach for achieving
exponential enhancement of spin-mechanical interactions in
a suspended micromagnet platform. The driving current is
located above the levitated micromagnet. The trap poten-
tial is modified by the magnetic field of the current, which
modulates the oscillation frequency of the micromagnet’s
mechanical motion. This modulation process can provide
a two-phonon drive capable of amplifying the mechanical
zero-point fluctuations, hence increasing the spin-mechanical
interaction. In other words, despite merely employing a clas-
sical drive current, we obtain a nonlinear resource and, as
a consequence, achieve the strong coupling regime without
adding any nonlinear sources into the system. Utilizing the
strongly coupled spin-mechanical system, one can prepare a
high-fidelity superposition state of the levitated micromag-
net. In addition, phonon-mediated spin-spin coupling can be
obtained when two NV centers are coupled to the same
mechanical oscillator [18–21], and the interaction can also
be exponentially amplified with a driving current. With the
enhanced spin-spin coupling, the two-NV protocol can also
construct an unconventional two-qubit geometric phase gate
with the property of high fidelity, shorter operation time, and
universality.

II. SETUP AND PROTOCOL

A. The setup

Figure 1(a) presents a hybrid system that includes a mi-
cromagnet, an NV center, and a driving current. The hard
spherical micromagnet with radius a and mass m levitates on
the type-II superconductor because of the flux trapping effect,
the superconductor freezing or trapping the magnetic flux that
penetrates it during the cooldown [see Fig. 1(a)] [52,69,99].
The microfabricated pocket provides a stable vacuum envi-
ronment to isolate the micromagnet from the environment,
enabling the dissipation of the system to be decreased. A
cosine-function drive is provided by the current above the
micromagnet, and the NV center is placed nearby the micro-
magnet. Figure 1(b) depicts the principle of this setup. The
micromagnet trapped in the magnetostatic field, which can
be calculated via the frozen dipole model [Fig. 1(c)], can
be compared to a simple harmonic oscillator that couples to
the NV center. The NV center transition [Fig. 1(d)] is driven
by a linearly polarized microwave in the y direction, and the
transverse static magnetic field [i.e., x direction) results in a
mix of the eigenstates of σ̂z. The energy level structure of
the mixed states is depicted in Fig. 1(e). Figure 1(f) presents
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FIG. 1. Setup sketch: (a) The model of our proposal. (b) The
principle of our setup. (c) The frozen dipole model. (d) The energy
level structure of NV centers. It will produce Zeeman splitting when
a z-direction magnetic field is applied. (e) The energy level structure
of the mixed states. (f) The energy level splitting of the mixed states
varies with the x-direction magnetic field.

the energy level splitting of the mixed states varying with the
x-direction magnetic field.

B. Levitation of the micromagnet

As shown in Fig. 1(b), the position of the levitated
micromagnet with mass m and radius a in the direction
of gravity is represented by x. The acceleration of grav-
ity is g = 9.8 m/s2. The position vectors of frozen and
image dipoles are R f = (−hcool, 0, 0) and Ri = (−x, y, z)
with cooldown height hcool, respectively. The orientation
corresponds to μ f = μm(cos θcool, 0,− sin θcool ) and μi =
μm(− cos θ, sin θ sin φ, sin θ cos φ) with dipole moment μm,
respectively. The position vector and magnetic moment of the
micromagnet are μl = μm(cos θ, sin θ sin φ, sin θ cos φ) and
Rl = (x, y, z), respectively. The magnetic field produced by a
dipole μ at a position r is given by

B = μ0

4π

(
3r(μ · r)

r5
− μ

r3

)
. (1)

According to the frozen dipole model [99], the effective mag-
netic field Beff at the position of the levitated micromagnet
consists of the magnetic field B f generated by a frozen dipole
and the magnetic field Bi generated by an image dipole, as

023722-2



ENHANCED SPIN-MECHANICAL INTERACTION WITH … PHYSICAL REVIEW A 107, 023722 (2023)

FIG. 2. The potential energy of the levitated micromagnet. The
dimensionless potential energy us in the zy plane, zx plane, θφ plane,
and z direction are shown in (a), (b), (c), and (d), respectively. Here,
the radius and the density of the micromagnet are a = 22.4 μm and
ρ = 7430 kg/m3, respectively. The initial position and the equilib-
rium position are both 3a, the initial orientation is φcool = 0 and
θcool = π/2, and the residual induction is Br = 750 mT.

depicted in Fig. 1(c). Then the potential energy of the levitated
micromagnet is given by

U = −μ · Beff + mgx, (2)

where Beff = B f + 1/2Bi is the effective magnetic field pro-
duced by the interaction between the micromagnet and type-II
superconductor [52]. We can derive an analytic formula for
the potential energy U as

U = Usus, (3)

with

us = αsxs + gu,

gu = 3 + cos 2θ

6x3
s

− 16

3

gc cos θ + gs sin θ[
(xs + hcool )2 + y2

s + z2
s

]5/2 ,

gc = [
2(xs + hcool )

2 − y2
s − z2

s

]
cos θcool

− 3zs(xs + hcool ) sin θcool,

gs = 3(xs + hcool )(ys sin φ + zs cos φ) cos θcool

+ {[
(xs + hcool )

2 + y2
s − 2z2

s

]
cos φ − 3zsys sin φ

}
× sin θcool, (4)

where ls = l/a (l = x, y, z, radius a as characteristic length
scale), αs = a/αcrit , Us = mgαcrit , and αcrit = B2

r /(16gρμ0).
Br , ρ, and μ0 are residual induction, density of the micromag-
net, and vacuum permeability, respectively. The dimension-
less potential energy defined by us = αsxs + gu in Eq. (3) is
plotted in Fig. 2, showing that the micromagnet can be steadily
trapped in the potential trap. Figures 2(a), 2(b), and 2(c)
present the dimensionless potential energy us of the micro-

magnet in the zy plane, zx plane, and θφ plane, respectively.
In the zy direction, the potential energy exhibits strong sym-
metry. The equilibrium position of the levitation micromagnet
is (xeq, yeq, zeq, θeq, φeq ) = (heq, 0, 0, π/2, 0), where heq is the
location of the minimum value of the potential energy in the
direction of gravity. The potential energy distribution along
the z axis illustrated in Fig. 2(d) can be well approximated as
a harmonic potential, implying that the motion of the micro-
magnet is harmonic. The potential energy along the z direction
can be denoted by

U = Us

{
16

3

2z2 − (heq + hcool )2

[(heq + hcool )2 + z2]5/2
+ 1

3h3
eq

+ αsheq

}
, (5)

where heq and hcool correspond to the equilibrium position and
the cooling height, respectively. We assign φ = φeq = 0 and
θ = θeq = π/2. This indicates that the rotation of the micro-
magnet is neglected. Because the frequency of the rotation
mode is much larger than the frequency of the translational
mode, the interaction between the rotation mode and the NV
center can be ignored according to the big detuning condition.
By expanding at the equilibrium position and removing the
constant and high-order components, the potential energy can
be written as simple harmonic potential

U = 1
2 kmaz2, (6)

where

kma = μ0μ
2
m

4π

3

(heq + hcool )5
. (7)

The motion of the levitated micromagnet along the z di-
rection can be regarded as a simple harmonic motion, as
represented by

Ĥma = p̂2

2m
+ 1

2
kma ẑ2, (8)

where p̂z and ẑ are momentum and position oper-
ators, respectively. By quantizing the Hamiltonian
with p̂z = −i

√
mωma/2(â − â†), ẑ = z0(â + â†), and

z0 = √
1/(2mωma ), we can obtain

Ĥma = ωmaâ†â, (9)

where ωma = √
kma/m represents the trapping frequency as-

sociated with the cooling conditions, and â (â†) represents the
annihilation (creation) operator.

C. Hamiltonian of the system

The NV center is coupled to the micromagnet in this
protocol through the magnetic field gradient induced by the
micromagnet in the z direction. In the presence of a ho-
mogeneous static magnetic field in the x direction Bs =
B0êx, the ground state Hamiltonian of the NV center can
be written as ĤNV = DŜ2

z + γeŜ · Bs, where γe = geμB is the
electron gyromagnetic factor and D/2π = 2.87 GHz is the
zero-field splitting between sublevel |ms = 0〉 and |ms = ±1〉
[see Fig. 1(d)]. ge � 2 and μB = 14 MHz/mT are the Landau
factor of electron and Bohr magneton, respectively. Ŝ is the
electron spin operator including the components Ŝx, Ŝy, and
Ŝz. The microwave (MW) drive By(t ) = B0

y cos(ωpt ) polarized
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in the y direction is applied to drive the transition between the
sublevels, where B0

y and ωp are the amplitude and frequency
of the microwave drive, respectively. Then the Hamiltonian is
given by

ĤNV = DŜ2
z + δŜx + �pcos(ωpt )Ŝy, (10)

where �p = γeB0
y is the Rabi frequency and δ = γeB0.

The interaction between the NV center and the micromag-
net will be the subject of our next discussion. Here we neglect
the coupling between the rotation of the micromagnet and
the NV center, and only consider the coupling between the
oscillation in the z direction and the NV center. The interac-
tion between the other freedom degrees and the NV center is
discussed in detail in Appendix B. The micromagnet can be
described as a magnetic dipole in classical electrodynamics,
with Eq. (1) describing the magnetic field surrounding it. Only
the magnetic field in the z direction at position (heq, 0, d )
of the NV center is concerned here, which is given by B =
2μ0μmêz/[4π (d − z)3]. For magnetic fields in other direc-
tions, when the position of the NV center is strictly located
at x = 0 and y = 0, only the magnetic field in the z direction
exists (Bx = By = 0, Bz = 289 mT); when there is an error of
10 nm for the position of the NV center, the maximum value
of the magnetic field in the x and y directions is 7 mT, while
the minimum value of the magnetic field in the z direction is
288 mT, i.e., Bx, By � Bz. Then we can ignore the effect of
the magnetic field in the xy direction. The magnetic field is
represented by

B � 2μ0μmêz

4πd3
+ 6μ0μmẑêz

4πd4
+ O(ẑ2) (11)

around the equilibrium position. After removing the high-
order and constant components, and quantizing the motion,
the interaction Hamiltonian is expressed as

Ĥint = γeB · S = λ(â + â†)Ŝz, (12)

where λ = 2γeBra3z0/d4 is the coupling strength, d is the
distance between the NV center and the micromagnet, and z0

is the zero-point fluctuation.
Finally, Icu = I0cos (2ωcut ) is the drive current placed

above the micromagnet, where ωcu is the driving current
frequency and I0 is the amplitude of the driven electrical
current. The Hamiltonian of the driving current is given by
Ĥcu = 1/2k2

cuẑ2cos (2ωcut ). After quantization (Appendix C),
we can have

Ĥcu = −gcu(â + â†)2cos (2ωcut ), (13)

where gcu = kcuz2
0/2 defines the coupling strength between

the driving current and the micromagnet. The nonlinear term
or the parametric amplification is obtained by the linear drive.
The spin-mechanical coupling strength can be exponentially
enhanced with such a nonlinear term, as demonstrated below.
The drive current will inevitably have an effect on the NV
center, and the influence of the magnetic field induced by it on
the NV center is discussed in detail in Appendix C. Through
calculation and analysis, it can be proved that the effect of
driving current on the NV center is negligible in our model.

FIG. 3. Spin-phonon coupling. (a) Couplings between the spin
and phonons. (b) The intensity of the spin-phonon coupling as a
function of β and the transverse static magnetic field B0.

III. ENHANCING THE COUPLING STRENGTH

A. One NV

Based on the foregoing analysis, the total Hamiltonian of
the hybrid system is

ĤTO = ĤNV + Ĥma + Ĥint + Ĥcu. (14)

The first term is the Hamiltonian of NV centers. The second
corresponds to the free Hamiltonian of the micromagnet, the
third describes the interaction between the NV center and
micromagnet, and the last is the drive-current Hamiltonian.
In the absence of the microwave drive, the Hamiltonian ĤNV

is given by

ĤNV = DŜ2
z + δŜx. (15)

The eigenstates of Eq. (15) are mixed states |e〉 = sinθ |0〉 +
cosθ |b〉, |g〉 = cosθ |0〉 − sinθ |b〉, and |d〉 = (| + 1〉 − | −
1〉)/

√
2, where |b〉 = (| − 1〉 + | + 1〉)/

√
2 and tan2θ =

2δ/D, corresponding to the eigenenergy ωe/g = D[1 ±√
1 + (2δ/D)2]/2, and ωd = D.
We assume that the microwave is solely used to drive the

transition between the mixed states |g〉 and |d〉, i.e., ωp �
ωd − ωg = ωdg. Transforming to the frame at the microwave
frequency and using the rotating-wave approximation, the
Hamiltonian in the basis |e, d, g〉 of the NV center can be
reduced as

ĤNV =
⎛
⎝−�

2 0 0
0 �

2 0
0 0 ω′′

e

⎞
⎠ + 1

2i

⎛
⎝ 0 −�′

p 0
�′

p 0 0
0 0 0

⎞
⎠, (16)

where � = ωp − ωdg, ω′′
e = ωe − (ωd + ωg + ωp)/2, and

�′
p = �p cos θ . We consider a basis for further diagonaliza-

tion consisting of the eigenstates of Eq. (16), which are |e〉,
|+〉 = i sin β|g〉 + cosβ|d〉, and |−〉 = −icosβ|g〉 + sinβ|d〉,
with eigenenergies ω′′

e and ω± = ±
√

�2 + �′2
p /2, where

tan2β = �′
p/�. Here we consider energy levels |e〉 and |+〉 as

a qubit with resonance frequency defined as ω0 ≡ ω′′
e − ω+,

and we take into account the resonance condition ω0 ≈ ωma,
as shown in Fig. 3(a). Using the eigenbasis |e,±〉 and the uni-
tary transformation U = exp(−iĤut ) with Ĥu = ωcu(σ̂z/2 +
â†â) and rotating wave approximation, the Hamiltonian of the
hybrid system is represented as

ĤTO = δ0

2
σ̂z + δmâ†â + �(âσ̂+ + â†σ̂−) − gcu

2
(â2 + â†2

),

(17)
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FIG. 4. Spin-phonon coupling. (a) �eff/� and Cd/Cnd as a func-
tion of the squeezing parameter r. The spin-phonon coupling strength
appears to be enhanced exponentially. (b and c) The dynamic
processes with (r = 3) and without (r = 0) the drive current, respec-
tively. Here the initial state is |0〉| ↑〉, where the | ↑〉 represents the
excited state |e〉. The coefficients are δm = �, δ0 = 0, and r = 0, 3.
The dephasing of NV centers and the dissipation of the micromagnet
are γNV = 0.1� and κS

ma = 0.1�, respectively.

where σ̂z ≡ |e〉〈e| − |+〉〈+|, σ̂x = σ̂+ + σ̂−, σ̂+ ≡ |e〉〈+|,
σ̂− ≡ |+〉〈e|, δ0 = ω0 − ωcu, and δm = ωma − ωcu. Here only
the states |m,+〉 and |n, e〉 are resonant with the condition
n = m + 1, with m and n being the phonon numbers [see
Fig. 3(a)]. Under the aforesaid resonant condition, the spin-
phonon coupling strength is given by � = λcosθcosβ, which
is related to the transverse magnetic field B0 and β, depending
on �′

p and �, as shown in Fig. 3(b). The coupling strength in-
creases as B0 and β decrease, showing that we should choose
an appropriate value to make the system work well.

Using the Bogoliubov transformation [93,97,100] b̂ =
â cosh r − â† sinh r, with tanh (2r) = gcu/δm, the total
Hamiltonian can be expressed in a simple form

ĤTO = ĤRO + ĤSq, (18)

ĤRO = δ0

2
σ̂z + �mb̂†b̂ + �eff (b̂ + b̂†)σ̂x, (19)

ĤSq = �e−r

2
(b̂ − b̂†)(σ̂+ − σ̂−), (20)

where �eff = �er/2 and �m = δm/ cosh (2r). b̂ (b̂†) is the an-
nihilation (creation) operator of Bogoliubov modes. Because
of the driving current, the spin-phonon coupling strength
can be enhanced exponentially. The spin-phonon coupling
strength is orders of magnitude larger than the original one,
as seen in Fig. 4(a). Because the item e−r decreases to zero
as the squeezing parameter r increases, the term ĤSq can be
ignored.

To quantify the spin-mechanical coupling strength the co-
operativity Cnd = �2/(κmaγNV), a dimensionless parameter, is
introduced, where κma and γNV are the mechanical dissipa-
tion and the spin dephasing, respectively. Inevitably, as the
coupling strength is amplified, so is the mechanical noise.

To alleviate the negative consequences of amplified mechan-
ical noise, the dissipative squeezed scheme proposed in the
literature [20,101,102] can be used. We consider that the
micromagnetic sphere can couple with an additional optical
mode or cavity mode with a two-tone drive. When the dis-
sipation of the additional mode is large, an effective phonon
dissipation κS

ma is induced, which cools the phonon mode to
the ground state. Through the dissipative squeezed method,
the b mode is always in the ground state in the squeezed pic-
ture. In this case, the Lindblad master equation of the system
can be expressed as

˙̂ρ = −i[ĤRO, ρ̂] + κS
maD(b̂)ρ̂ + γNV D(σ̂z )ρ̂, (21)

where D(Ô)ρ̂ = Ôρ̂Ô† − {Ô†Ô, ρ̂}/2 is the Lindblad opera-
tor, and κS

ma is the effective mechanical dissipation resulting
from the interaction between the mechanical mode and the
auxiliary bath. And then effective cooperativity with the driv-
ing current is given by Cd = �2

eff/(κS
maγNV). As a result, we

can get Cd/Cnd ∼ e2r , which is magnified exponentially, as
shown in Fig. 4(a). Using the master equation (21), we nu-
merically evaluate the dynamic processes with and without
the driving current. In the absence of the driving current, the
coupling strength between spins and phonons is extremely
weak, resulting in no Rabi oscillation; in the presence of
the driving current, the spin-phonon coupling strength is
greatly enhanced, resulting in Rabi oscillations, as illustrated
in Figs. 4(b) and 4(c). To put it in other words, the driving cur-
rent can be employed to enhance the spin-phonon coupling.

B. Geometric phase

Now we focus on the process of enhancement in phase
space. Considering Eq. (19), for the sake of simplicity, we
set δ0 = 0 and move into the Bogoliubov-mode interaction
representation. The time evolution operator of the system
URO(t ) = D[α(t )]exp[i�(t )σ̂ 2

x ] is obtained via Magnus ex-
pansion [103–106], where D[α(t )] = exp[α(t )b̂† − α∗(t )b̂]σ̂x

is the displacement operator and α(t ) = �eff/�m(1 − ei�mt )
is the coherent displacement of the phonon in phase space.
The spin and phonon are decoupled at time t = 2πN/�m

with N = 1, 2, 3, . . . , as shown by the time evolution operator
URO(t ), and the phonon returns to its initial state. In Fig. 5(a),
the phonon-mode trajectory is shown in phase space. Due to
the driving current, the phase space trajectory is magnified
and covers a broader area. In addition, the phonon migra-
tion direction in phase space is correlated to the spin state,
as indicated in equation D[α(t )]. Under the original repre-
sentation, i.e., the interaction representation of phonons, the
phase space displacement of phonons is written as αI (t ) =
�/(2�m)[(cos �mt − 1)e2r − isin �mt] [95,97].

The geometric phase � is determined only by the enclosed
area swept away by phonon trajectories in phase space, as
given by

� = Im

[∫ t

0
α∗(t ′) dα(t ′)

]
. (22)

The geometric phase with the driving current at time t =
2π/�m (phonons orbit once in phase space) is given by
�d = 2π (�eff/�m)2. In Fig. 5(b), �d/�nd ∝ (ercosh2r)2 is
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FIG. 5. (a) Phonon trajectory in phase space, which encloses
a larger area as the squeeze parameter increases. (b) Geometric
phase (in one period) and time (required to acquire a given geo-
metric phase) as a function of the squeezing parameter r. (c) The
phonon-mediated spin-spin coupling strength varies with the squeez-
ing parameter r. The squeezing parameter r is plotted as a function
of the ratio gcu/δm in the inset.

shown as a function of the squeezing parameter r, where
�nd = 2π (�/δm)2 is the geometric phase sans drive. The
geometric phase is roughly exponentially increased. We cur-
rently consider acquiring a certain geometric phase �0. After
that, we can get td/tnd ∝ 1/(ercosh2r), where td and tnd are
the time required to acquire �0 with and without a drive,
respectively. As seen in Fig. 5(b), increasing the squeezing
parameter r reduces the time required to acquire a given
phase �0.

C. Two NVs

We now discuss the interaction of two NV centers with a
micromagnet. Two NVs are symmetrically arranged on either
side of the micromagnet along the magnetic field direction,
coupling to the micromagnet center of mass motion via a
strong magnetic field gradient. Two NV centers are symmetri-
cally placed at positions (heq, 0, d ) and (heq, 0,−d ) on either
side of the micromagnet along the direction of magnetization.
Along the z axis, the magnetic field produced by the micro-
magnet is given by

B1 = μ0μm

2π (d − z)3 êz, (23a)

B2 = μ0μm

2π (d + z)3 êz. (23b)

After expanding at the equilibrium position, omitting con-
stant items and high-order components, the magnetic field can
be represented as

B1 = 6μ0μm

4πd4
zêz, (24a)

B2 = −6μ0μm

4πd4
zêz. (24b)

In the same way as the one-NV process, we can get the
interaction Hamiltonian of two NV centers, which reads

Ĥint = λ(â + â†)
(
Ŝ1

z − Ŝ2
z

)
, (25)

where λ = 2γeBra3z0/d4 is the coupling strength. Then, the
Hamiltonian of the hybrid system is given by

ĤTT = ω0

2

(
σ̂ 1

z + σ̂ 2
z

) + ωmaâ†â + �(â + â†)
(
σ̂ 1

x − σ̂ 2
x

)
− gcu(â + â†)2cos2ωcut . (26)

Moving in the rotation frame, the Hamiltonian can be simpli-
fied as

ĤTT = δ0

2

(
σ̂ 1

z + σ̂ 2
z

) + δmâ†â + �[â(σ̂+
1 − σ̂+

2 )

+ â†(σ̂−
1 − σ̂−

2 )] − gcu

2
(â2 + â†2

). (27)

In the squeezing frame [i.e., with the Bogoliubov transforma-
tion [93,97,100] b̂ = â cosh r − â† sinh r and tanh (2r) =
gcu/δm], the Hamiltonian of the hybrid system consisting of
the NVs and micromagnet is given by

ĤRT = δ0

2

(
σ̂ 1

z + σ̂ 2
z

) + �mb̂†b̂ + �eff (b̂ + b̂†)
(
σ̂ 1

x − σ̂ 2
x

)
.

(28)

With δ0 = 0, the Hamiltonian can be reduced using the
Schrieffer-Wolff transformation [12,107] Ĥ eff

RT = eSĤRTe−S ,
where S = η(b̂† − b̂)(σ̂ 1

x − σ̂ 2
x ) and η = �eff/�m. It is worth

noting that the parameter η is much smaller than one, in-
dicating that it satisfies the Lamb-Dicke condition η � 1,
which is similar to that for trapped ions [108]. The effective
Hamiltonian is given by

Ĥ eff
RT = �mb̂†b̂ − ξ

(
σ̂ 1

x − σ̂ 2
x

)2
, (29)

where ξ = �2
eff/�m. Retaining only the terms containing ξ ,

we obtain the Ising interaction Hamiltonian

ĤIsing = ξ
(
σ̂ 1

x − σ̂ 2
x

)2
, (30)

corresponding to the one-axis twisting interaction [109]. In
this scenario, the effective spin-spin interaction of the two
NVs is obtained, and the phonon is only virtually excited.
Figure 5(c) shows the coupling strength between two NVs
and the insert depicts the squeezing parameter r as a function
of gcu/δm. The ratio of the amplified spin-spin coupling (ξ =
�2

eff/�m) to the bare coupling (ξ0 = �2/δm), given by ξ/ξ0 ∝
(e2rcosh2r)2, exponentially increases. The phonon-mediated
spin-spin interaction can be enhanced up to several orders of
magnitude stronger than the bare coupling, as the squeezing
parameter r increases. It is independent of the specific frame
of the phonon since the phonon mode has been adiabatically
eliminated. The spin-spin interaction is at the heart of several
quantum technologies, such as qubit gates, which are vital
for quantum computer implementation. In Sec. IV B, we will
consider a two-qubit gate with excellent fidelity and faster
gate speed.
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IV. APPLICATION

A. Preparing Schrödinger cat states

The single NV hybrid system can be utilized to prepare a
Schrödinger cat state [25,110], which is a linear superposition
of two coherent states. According to the analysis of Sec. III A,
the coupling strength of the NV center and micromagnet
has been greatly enhanced, which is critical for preparing
a cat state with the spin-mechanical interaction. We assign
δ0 = 0 for the Hamiltonian (17). The Hamiltonian can be
diagonalized with the Bogoliubov transformation [93,97,100]
b̂ = â cosh r(t ) − â† sinh r(t ) with tanh [2r(t )] = gcu(t )/δm,
which reads

ĤTO = ĤRO + ĤSq + ĤErr, (31)

ĤRO = �m(t )b̂†b̂ + �eff (t )(b̂ + b̂†)σ̂x, (32)

ĤSq = �e−r(t )

2
(b̂ − b̂†)(σ̂+ − σ̂−), (33)

ĤErr = −i
ṙ(t )

2
(b̂†2 − b̂2), (34)

where �eff (t ) = �er(t )/2 and �m(t ) = δm/ cosh [2r(t )].
b̂ (b̂†) corresponds to the annihilation (creation) operator
of the Bogoliubov mode. The Hamiltonian Eq. (32) is the
time-dependent Rabi model, and the undesirable corrections
are ĤSq and ĤErr. The Hamiltonian ĤSq can be ignored
since it contains e−r(t ), as previously stated. We assume that
the pump varies slowly over time to maintain adiabatic-
ity during the dynamical process, such that the correction
item ĤErr can be ignored because ṙ(t ) ≈ 0. Utilizing Mag-
nus expansion [103–106], then, the time evolution operator
can be written as URO(t ) = D[α(t )]exp[−iχ (t, 0)b̂†b̂], where
D[α(t )] = exp[α(t )b̂† − α∗(t )b̂]σ̂x is the displacement op-
erator and α(t ) = −i�/2

∫ t
0 exp[r(t ′) − iχ (t, t ′)] dt ′ is the

coherent displacement of phonons in phase space, with
χ (t, t ′) = ∫ t

t ′ �m(t ′′) dt ′′. The spin-mechanical system is pre-
pared in the initial state |�0〉 = |0〉| ↓〉, with | ↓〉 representing
the ground state, and the time evolution operator is then ap-
plied to the initial state. Finally, we can obtain an entangled
cat state

�final = |α(t )〉|+〉x − | − α(t )〉|−〉x√
2

, (35)

where the states | ± α(t )〉 are the phonon mode coherent
states, and |±〉x = (| ↑〉 ± | ↓〉)/

√
2 are the eigenstates of

the operator σ̂x, with | ↑〉 being the excited state |e〉. From
t = 0 to t = t f , the ideal Rabi Hamiltonian Eq. (32) and the
total Hamiltonian Eq. (31) are used to carry out the dynamic
simulations of the aforementioned process, respectively. If we
assume that the initial state is |0〉| ↓〉, the spin dephasing is
γNV, and the phonon dissipation is κS

ma, the dynamic evolution
follows the Lindblad master equation

˙̂ρ = −i[ĤRO or ĤTO, ρ̂] + γNVD(σ̂z )ρ̂ + κS
maD(b̂)ρ̂, (36)

where D(Ô)ρ̂ = Ôρ̂Ô† − {Ô†Ô, ρ̂}/2 is the Lindblad oper-
ator. Figures 6(a)–6(d) depict the evolution of the phonon-
mode Winger function over time using the Hamiltonian ĤRO.
At the initial time t = 0, the squeezed parameter r(0) = 0
indicates that the current drive is zero, and the system is

FIG. 6. Schrödinger cat states. With κS
ma = γNV = 0.01�, the

Winger functions of the phonon mode are displayed in (a), (b), (c),
and (d), corresponding to the situations �t = 0, �t = 1.5, �t = 3,
and �t = 4.5, respectively. (e) The fidelity of the cat state is eval-
uated with different dephasing rates of the NV center. Furthermore,
the dynamic process resulting from ĤRO is identical to that resulting
from ĤTO. Here, r(t ) = rmax tanh(�t/2) where rmax = 1.25.

prepared in the initial state |0〉| ↓〉 [20,94]. The current drive
is loaded adiabatically over time, and then the transformed
b mode evolves into a well-separated Schrödinger cat state in
phase space. In addition, the fidelity of the cat state is depicted
in Fig. 6(e) (with the Hamiltonian ĤRO), achieving 99.7%
when γNV = 0.001�, 98.3% when γNV = 0.01�, and 92.8%
when γNV = 0.05�. It is worth noticing that the evolution
predicted by ĤRO (solid lines with close symbols) matches
that predicted by ĤTO (the solid line with open symbols). It
suggests that the unwanted corrections produced by ĤSq and
ĤErr can be ignored.

B. Two-qubit gate

Quantum logic gates [104,111–114] are the core of quan-
tum computation. Geometric quantum computing refers to
the quantum computation associated with the pure geometric
phase [115]. Based on the different methods of obtaining the
geometric phase, the geometric phase gate can be divided
into two categories: (i) the conventional geometric phase gate,
which acquires the pure geometric phase with adiabatic evo-
lution of qubits, and (ii) the unconventional geometric phase
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gate, which acquires the pure geometric phase with the evo-
lution of the Bose mode along a close trajectory in the phase
space. Conventional geometric phase gates have been studied
with many platforms [115–117]. The two-NV proposal, as
discussed in Sec. III C, can be utilized to build an unconven-
tional geometric phase two-qubit gate with high fidelity and
faster gate speed. The hybrid system containing two NVs is
described by the Hamiltonian (28). As previously discussed,
we set δ0 = 0, and b̂ (b̂†) corresponds to the Bogoliubov mode
annihilation (creation) operator. Moving in the Bogoliubov-
mode interaction frame, we can get

Ĥ I
RT = �eff (b̂e−i�mt + b̂†ei�mt )

(
σ̂ 1

x − σ̂ 2
x

)
. (37)

Then, utilizing the Magnus expansion [103–106], the time
evolution operator is given by

URT(t ) = D[α(t )]Ei j[ζ (t )], (38)

where D[α(t )] = exp[α(t )b̂† − α∗(t )b̂](σ̂ 1
x − σ̂ 2

x ) denotes the
displacement operator, and α(t ) = �eff/�m(1 − ei�mt ) is the
coherent displacement of phonons in phase space. The second
item describing spin-spin interaction is given by

Ei j[ζ (t )] = exp

⎛
⎝ 2∑

i, j

ζ (t )ηi j σ̂
i
xσ̂

j
x

⎞
⎠, (39)

where

ηi j =
{

1, i = j
−1, i �= j

(40)

and ζ (t ) = i�2
eff/�

2
m(�mt − sin �mt ). The phonon mode re-

turning to its initial state, a gate operation is completed. As a
result, the gate time is determined by τ = 2π/�m, at which
point the time evolution operator can be represented as

URT(τ ) = exp

⎛
⎝i2π

�2
eff

�2
m

2∑
i, j

ηi j σ̂
i
xσ̂

j
x

⎞
⎠. (41)

Adjusting the ratio between �eff and �m, qubit gates
corresponding to different phases can be constructed,
such as the π/2-2-qubit gate described by URT(τ ) =
exp(i π

8

∑2
i, j ηi j σ̂

i
xσ̂

j
x ). Supposing that the initial state is the

eigenstate of σ̂x, then, at time τ , the final state is

|+〉x|+〉x → |+〉x|+〉x,

|−〉x|−〉x → |−〉x|−〉x,

|+〉x|−〉x → eiπ/2|+〉x|−〉x,

|−〉x|+〉x → eiπ/2|−〉x|+〉x. (42)

The two-qubit gate only adds a phase to |+〉x|−〉x and
|−〉x|+〉x, not |+〉x|+〉x and |−〉x|−〉x, because the time evolu-
tion operator at time τ is Î when the initial state is the latter.
Furthermore, the two-qubit gate is universal, as demonstrated
in the literature [118].

Utilizing Eq. (28) for numerical simulations with the dis-
sipation of the phonon mode κS

ma and the dephasing of NVs
γ 1

NV and γ 2
NV, the dynamic process can be described by the

Lindblad master equation
˙̂ρ = −i[ĤRT, ρ̂] + κS

maD(b̂)ρ̂ + γ 1
NVD

(
σ̂ 1

z

)
ρ̂ + γ 2

NVD
(
σ̂ 2

z

)
ρ̂,

(43)

FIG. 7. (a) and (b) The dynamic process of the two-qubit gate
with the varying squeezing parameter r. When the phonon mode
evolves back to the original state, a gate operation is accomplished.
(c) gate time and (d) infidelity of the two-qubit gate as a function
of the squeezing parameter r. The larger the squeezing parameter r,
the shorter the gate time and the smaller the gate infidelity. Here, the
parameters are κS

ma = γ 1
NV = γ 2

NV = 0.01�, δ0 = 0, �m = 4�eff and
the initial state is (|+〉x + |−〉x )/

√
2 ⊗ (|+〉x + |−〉x )/

√
2.

where D(Ô)ρ̂ = Ôρ̂Ô† − {Ô†Ô, ρ̂}/2. As depicted in
Figs. 7(a) and 7(b), when the fidelity of the phonon mode
reaches its maximum value, a gate operation is finished. It
reveals that the two-qubit gate time decreases as the squeezing
parameter r increases. Furthermore, Fig. 7(c) indicates that
with the squeezing parameter r increasing, the gate time
decreases dramatically. The two-qubit-gate infidelity arising
from the dephasing of the spins is also affected by the
squeezing parameter r shown in Fig. 7(d). It indicates that a
two-qubit gate with higher fidelity and shorter gate time can
be achieved, with the fidelity being more than 99.9% when
the squeezing parameter r = 3.

V. EXPERIMENTAL FEASIBILITY

To verify the experimental feasibility of the scheme pro-
posed in this paper, we consider the scheme based on the
experimental parameters given in Ref. [52], which include the
radius a = 0.25 μm, cooling height hcool = 3a, equilibrium
position heq = 3a, equilibrium angle φeq = 0 and θeq = π/2,
the density of micromagnet ρ = 7430 kg/m3, and residual
induction Br = 750 mT. Then, the frequency of the oscillator
is 347 kHz. According to Ref. [52], the quality factor Q of the
oscillator can reach 105, and then the dissipation of the me-
chanical oscillator is assumed to be κm/2π = ωma/Q ≈ 3 Hz
(the damping caused by gas collisions and eddy current is
analyzed in Appendix D). The coherence time of NV center
can approach 1 s [23,119], and then its dissipation is 1.7 Hz.
The coupling strength between the NV center and the micro-
magnet is 2 kHz with the distance between the NV center and
magnetic sphere d = 2a, which is consistent with Ref. [52].
Here we take the distance between the NV center and the mag-
netic sphere as d = 0.3 μm, at which point the spin-phonon
coupling strength is 17 kHz. A driving current is applied to the
hybrid system, with the position hcu = 0.3 μm and amplitude

023722-8



ENHANCED SPIN-MECHANICAL INTERACTION WITH … PHYSICAL REVIEW A 107, 023722 (2023)

(a)

(b)

FIG. 8. (a) The coupling strength between the driving current
and the micromagnet varies with the distance between them. (b) The
coupling strength of the NV and micromagnet grows as the distance
between them decreases and the squeezing parameter r increases.

I0 = 10 mA. Figure 8(a) shows the coupling strength between
the driving current and the micromagnet as a function of the
distance between them dCU−MA. As the distance between them
grows, it decreases. Here, the driving strength of the current
is taken as gcu/2π = 0.1 MHz, with dCU−MA = 0.3 μm. The
coupling strength between the NV center and the micromag-
net as a function of the distance between them dNV−MA and the
squeezing parameter r is depicted in Fig. 8(b). This shows that
the coupling strength can be amplified when decreasing the
distance and increasing the squeezing parameter r, reaching
1.3 MHz if dNV−MA = 0.3 μm and the squeezing parameter
r = 5, indicating that it can reach the strong and even ul-
trastrong regime. To summarize, we can choose appropriate
parameters based on the actual experimental conditions. In
addition, the proposal is simple to implement under current
experimental circumstances.

VI. CONCLUSION

Utilizing NV centers and a levitated micromagnet, we
propose a hybrid quantum spin-mechanical system. A time-
dependent driving current is applied to the hybrid system,
which offers the critical nonlinear resource for the enhance-
ment of the coupling strength. As a result, the spin-phonon
and phonon-medicated spin-spin coupling strengths can be
enhanced exponentially. The system can be utilized to con-
struct an unconventional two-qubit geometric phase gate
with high fidelity and shorter gate time, as well as to pre-
pare Schrödinger cat states with high fidelity. Furthermore,
the ground-state cooling approach, which requires the ultra-
strong interaction between qubits and oscillators described
by Ref. [16], could be more simply implemented with our
proposal. In addition, because the trapped frequency is related
to the levitated height and the radius of the micromagnet, a
wide frequency range can be easily obtained. Our proposal
can also be extended to other solid-state spin systems, such
as the silicon-vacancy center, germanium-vacancy center, and
tin-vacancy center in diamond [20,38,41], allowing for more
quantum information processing applications based on quan-
tum levitodynamics.
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APPENDIX A: THE MOTION OF THE MECHANICAL
OSCILLATOR

In order to solve the oscillation frequency of the micro-
magnet associated with the three center-of-mass and two
orientational degrees of freedom, we need to obtain the mo-
tion equation of the micromagnet at the equilibrium position.
Utilizing the potential U , the force experienced by the micro-
magnet is given by

f (r) = −∂U (r)

∂r
= −UsJ

∂us(us)

∂us
, (A1)

where r = (x, y, z, θ, φ), us = J · r = (x/a, y/a, z/a, θ, φ),
and J = diag(1/a, 1/a, 1/a, 1, 1) with characteristic length
scale a. At the equilibrium position, the resultant force on the
magnetic sphere is zero, that is, f (ueq ) = 0. Therefore, the
Taylor expansion of the force at the equilibrium position is

f eq
(
ueq

) ≈ −UsJ2ksu, (A2)

where ks is stiffness matrix whose matrix element is given by

ki j = ∂2us(u)

∂ui∂u j

∣∣∣∣
u=ueq

. (A3)

Then the motion equation of the micromagnet can be
written as

ü + W · u = 0, (A4)

where W = UsJ2M−1ks and M = diag[m, m, m, Im, Im] is
mass matrix, with the mass of the micromagnet m = ρ4πa3/3
and the moment of inertia Im = 2ma2/5 for spherical rigid
body. The eigenfrequency of the system is given by the eigen-
value of W , and after simple calculation the matrix W can be
reduced to

W = ω2
0Iconstks = ω2

0k, (A5)

where k = Iconstks, Iconst = diag(1, 1, 1, 2.5, 2.5), and ω0 =
1/ls

√
Us/m with characteristic length scale ls. Then the oscil-

lation frequency of the micromagnet is ωi = ω0
√

ki, where ki

is the eigenvalue of the matrix k and i = 1, 2, 3, 4, 5.
First, we consider that hcool → ∞, that is, there is no

trapped flux in the superconductor, such that the potential is
given by

us(us; hcool → ∞, θcool, αs) = αsxs + 3 + cos 2θ

6x3
s

. (A6)

Through simple calculation, we can get the minimum value of
potential Eq. (A6) at θ = π/2 and x = h1, that is, the equilib-
rium position is θeq = π/2 and heq = h1 = (1/α)1/4, where h1

can be obtained by equation ∂xs us(us; hcool → ∞, θcool, αs) =
0. In physical units, h1 is written as

h1 =
(

a3B2
r

16ρgμ0

) 1
4

. (A7)
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Taking advantage of θeq = π/2, heq = h1, Eq. (A6), and
Eq. (A3), the stiffness matrix ks is

ks =

⎡
⎢⎢⎢⎢⎢⎣

4
h5

I
0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 2

3h2
1

0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦. (A8)

Utilizing Eq. (A5), we can get W = ω2
0k with

k =

⎡
⎢⎢⎢⎢⎣

4 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 5h2
1

3a 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ (A9)

and ω0 = [g4/(a3αcrit )]1/8. The eigenvalues of matrix k are
k1 = 4, k2 = k3 = k5 = 0 and k4 = 5h2

1/(3a), and then the
eigenfrequency of the micromagnet is given by ωi = ω0

√
ki

with i = 1, 2, 3, 4, 5. Of course, the case analyzed above is
very ideal. Therefore, we calculate the oscillation frequency
of the micromagnet in the presence of the trapped magnetic
flux in the following part.

From Fig. 2, we can get the equilibrium ueq =
(heq, 0, 0, π/2, 0). For the convenience of calculation, setting
h1 as the characteristic length scale, we can get

U = Usus,

us = gu + xs,

gu = 3 + cos 2θ

6x3
s

− 16

3

gc cos θ + gs sin θ[
(xs + hcool )

2 + y2
s + z2

s

]5/2 ,

gc = −3zs(xs + hcool ),

gs = [
(xs + hcool )

2 + y2
s − 2z2

s

]
cos φ − 3zsys sin φ,

(A10)

with Us = mgh1 and θcool = π/2. Utilizing the equa-
tion ∂zs us(us; hcool, π/2) = 0, we can get

hcool = h2

[
2(

1 − h4
2

)1/4 − 1

]
. (A11)

The equilibrium position heq = h2 in the gravity direction is
determined by implicit function Eq. (A11). Here, the parame-
ter we considered is h2/h1 � 1, i.e., h2 ≈ hcool.

With us = (heq, 0, 0, π/2, 0), Eq. (A10), and Eq. (A3), the
stiffness matrix ks is

ks =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2
h5

cool
0 0 0 0

0 1
2h5

cool
0 0 0

0 0 3
2h5

cool
− 1

h4
cool

0

0 0 − 1
h4

cool

4
3h3

cool
0

0 0 0 0 2
3h3

cool

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (A12)

Utilizing Eq. (A5), we can get W = ω2
0k with

k =

⎡
⎢⎢⎢⎢⎢⎣

2 0 0 0 0
0 1

2 0 0 0
0 0 3

2 −hcool 0

0 0 − 5hcool
2a2

10h2
cool

3a2 0

0 0 0 0 5h2
cool

3a2

⎤
⎥⎥⎥⎥⎥⎦, (A13)

where ω0 = Bra−1h̃−5/2
cool /(4

√
ρμ0) in physical units. The

eigenvalues of matrix k are k1 = 5h̃2
cool/3, k2 = 2, k3 =

1/2, and k4,5 = [9 + 20h̃cool ±
√

81 + 400h̃2
cool] with h̃cool =

hcool/a, then the eigenfrequency of the micromagnet is given
by ωi = ω0

√
ki, with i = 1, 2, 3, 4, 5. We take the parameters

radius a = 0.25 μm, mass density ρ = 7430 kg/m3, resid-
ual induction Br = 750 mT, cooldown height hcool = 3a, and
gravity acceleration g = 9.8 m/s2. We can obtain the os-
cillation frequency of the oscillator as ωx/2π = 1903 kHz,
ωy/2π = 695 kHz, and ωz/2π = 347 kHz.

The librational mode of the suspended micromagnet has
been studied in Ref. [52], corresponding to the librational
frequency ωr = √

ωLωI , which precesses around the local
magnetic field Bloc with Einstein–de Haas frequency ωI =
ρsV/(Imγe) due to the conservation of angular momentum,
where ρs is the spin density, the local magnetic field Bloc is the
sum of the magnetic field generated by superconductivity and
the external magnetic field, and ωL is the Larmor frequency.
Here, the spin density is taken as ρs = Br/(γeμB), then the
Einstein–de Haas frequency frequency is ωI/2π = 9.01 kHz.
The frequency of rotation mode is ωr/2π = 1588 kHz with
the local magnetic field |Bloc| = 10 mT and the Larmor fre-
quency ωL/2π = 280 MHz.

APPENDIX B: INTERACTION BETWEEN
MICROMAGNET AND NV

1. Translational modes

As shown in Fig. 1, the position vector of the magnetic
sphere is rl = (x, y, z). Note that here we consider three direc-
tions of simple harmonic oscillation. The magnetic moment
of the micromagnet is μl = μm(0, 0, 1) along the z direc-
tion. The position coordinate of the NV center is (heq, 0, d ).
According to Eq. (1), the magnetic field induced by the mi-
cromagnet at the position of the NV center is

Bx = μ0μm

4π

3

r5
(d − z)(heq − x),

By = μ0μm

4π

3

r5
(d − z)(−y),

Bz = μ0μm

4π

[
3

r5
(d − z)(d − z) − 1

r3

]
, (B1)

where r = √
(x − heq )2 + y2 + (z − d )2. According to the re-

sults in Eq. (B1), we know that the magnetic field at the NV
color center is mainly in the z direction, and the magnetic field
in the xy direction is almost zero, so we only consider the
magnetic field in the z direction. Then the Hamiltonian for the
interaction between NV and the magnetic sphere is

Ĥint = γeBzSz. (B2)
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Expanding the magnetic field Bz at the equilibrium position
(xeq, yeq, zeq ) = (heq, 0, 0) yields (removing the constant and
higher-order terms)

Bz = ∂xBz|ueq=(heq,0,0)x + ∂yBz

∣∣
ueq=(heq,0,0)y

+ ∂zBz|ueq=(heq,0,0)z.
(B3)

After calculation we can get ∂xBz|x=heq = 0, ∂yBz|y=0 =
0, and ∂zBz|z=0 = μ0μm/(4π )(6/d4). Then the interaction
Hamiltonian Ĥint can be reduced to

Ĥint = λ(â + â†)Sz, (B4)

with λ = γe
μ0μm

4π
6

d4 z0, that is, the simple harmonic oscillation
in the xy direction is not coupled with the NV center.

2. Rotation mode

In this section, the coupling strength between the rotation
mode (precession) and the NV center is estimated. Consid-
ering the rotation mode alone, the coordinate and magnetic
moment of the micromagnet can be written as (heq, 0, 0)
and Bl = μm(cos θ, sin φ sin θ, cos φ sin θ ), respectively. The
coordinate of the NV center is (heq, 0, d ), and the distance be-
tween NV and the magnetic sphere is d . According to Eq. (1),
the magnetic field experienced by the NV center, generated by
the magnetic sphere, is given by

Bx = −μ0μm

4π

1

r3
cos θ,

By = −μ0μm

4π

1

r3
sin φ sin θ,

Bz = μ0μm

4π

(
3d2

r5
− 1

r3

)
cos φ sin θ. (B5)

Since the rotation mode is a precession near the equilibrium
position (precess around the local magnetic field, i.e., around
the z axis), we have δθ = π/2 − θ → 0 and φ → 0. Then
Eq. (B5) can be reduced to

Bx = μ0μm

4π

1

d3
δθ,

By = −μ0μm

4π

1

d3
φ,

Bz = μ0μm

4π

1

d3
(φ2 + δθ2). (B6)

According to the interaction Hamiltonian ĤRN
int = γeB · Ŝ =

λx
RNŜx + λ

y
RNŜy + λz

RNŜz, the coupling strength of the
rotation mode and the NV center can be estimated from
λx

RN = γeμ0μm/(4πd3)δθzp f , λ
y
RN = γeμ0μm/(4πd3)φzp f

and λz
RN = γeμ0μm/(4πd3)(φ2

zp f + δθ2
zp f )/2 with δθzp f =

φzp f = √
h̄/(2Imωr ) [35].

Here, we take the parameters a = 0.25 μm, d = 0.3 μm,
and Br = 750 mT, so that the coupling strengths are
λ/2π = 17 kHz, λx

RN/2π = 2.62 kHz, λ
y
RN/2π = 2.62 kHz,

and λz
RN/2π = 1.72 mHz. According to the previous analysis,

we know that the oscillation frequency in the z direction and
the frequency of the rotation mode are ωz/2π = 347 kHz
and ωr/2π = 1588 kHz, respectively, with parameters a =
0.25 μm, mass density ρ = 7430 kg/m3, residual induction

Br = 750 mT, cooldown height hcool = 3a, and gravity accel-
eration g = 9.8 m/s2. We consider here the coupling between
the NV center and the micromagnet translational mode, and
the resonance of the NV center and the translational mode
is achieved by microwave driving of the NV center using
the method of dressed states; however, in this case the big
detuning condition is satisfied between the NV center and
the rotating mode. Therefore, there is no energy exchange
between the rotating mode and NV center due to big detuning.
Besides, the coupling strength of the NV center and rotation
mode is approximately satisfied much less than that of the NV
center and translational mode, i.e., the former can be ignored.

APPENDIX C: THE HAMILTONIAN OF DRIVE CURRENT

Current pumping Icu(t ) = I0cos (2ωcut ) is added to the
hybrid system to enhance coupling strength. The position
of the origin current and image current in the zx plane are
Ror = (hcu, 0, 0) and Rim = (−hcu, 0, 0), respectively. When
just the magnetic field in the z direction near the equilibrium
position is considered, the total magnetic field created by the
origin and image current is given by

Bcu = Bor + Bim = μ0I

2π

(
1

ror
+ 1

rim

)
êz. (C1)

Then the potential energy of the micromagnet in the magnetic
field generated by the current can be written as

Ucu = −μ · Bcu, (C2a)

= −μ0μmI

2π

[
1√

(heq − hcu)2 + z2

]

−μ0μmI

2π

[
1√

(heq + hcu)2 + z2

]
. (C2b)

By expanding at the equilibrium position, dropping con-
stant items and high-order terms, the potential energy can be
represented as

Ucu = −1

2
kcuẑ2cos (2ωcut ), (C3)

where

kcu = μ0μmI0

2π

[
1

(hcu − heq )3
+ 1

(hcu + heq )3

]
. (C4)

Quantizing the potential energy, the Hamiltonian is given by

Ĥcu = −gcu(â + â†)2cos (2ωcut ), (C5)

where gcu = kcuz2
0/2 is the coupling strength between the

drive current and the micromagnet.
Next we consider the effect of the magnetic field generated

by the current on the NV center. The positions of the NV cen-
ter, current, and micromagnet are (heq, 0, d ), (hcu, 0, 0), and
(heq, 0, 0), respectively, with d = 0.3 μm, hcu = 0.55 μm,
and heq = 3a. The magnetic field generated by the current at

023722-11



XUE-FENG PAN et al. PHYSICAL REVIEW A 107, 023722 (2023)

the position of the NV center can be written as

BCU−NV
x = μ0I0

2π
√

2dCU−NV

,

BCU−NV
z = μ0I0

2π
√

2dCU−NV

, (C6)

with the distance of current to NV center dCU−NV =√
(hcu − heq )2 + d2. Using Eq. (C6), the magnetic field gen-

erated by the current at the NV color center can be obtained:
BCU−NV

x = BCU−NV
z = 3 mT. According to Eq. (B1), we can

calculate the magnetic field generated by the micromagnet at
the position of the NV center: Bz = 289 mT, i.e., BCU−NV

z �
Bz. We can neglect the effect of the magnetic field in the z di-
rection of the current on the NV center. For the magnetic field
in the x direction generated by the current at the position of the
NV center, we can take the bias magnetic field B0 � BCU−NV

x
of the NV center, so we can also ignore the effect of BCU−NV

x
on the NV spin. In summary, the effect of the magnetic field
generated by the current on the NV center is negligible.

APPENDIX D: THE DAMPING RATE

In this section the calculations are mainly performed
for the eddy-current damping and gas-collision damping
[52,120,121].

1. The eddy-current damping

For the convenience of considering the eddy-current damp-
ing, we equate the micromagnet to a current ring. The motion
of the micromagnet in the plane parallel to the supercon-
ducting surface will not bring a change of magnetic flux. In
this case there will be no damping from the image dipole,
which is always rotating or moving with the micromagnet.
However, the rotation or translation of the micromagnet in
the plane perpendicular to the superconducting surface brings
about a change in the magnetic flux, and in this case there is
a damping of the eddy current to the micromagnet. It means
that eddy-current damping impedes motion perpendicular to
the superconducting surface, but not parallel to the supercon-
ducting surface.

First of all, we study the rotation perpendicular to the su-
perconducting surface. Assuming that the rotation frequency
of the current loop is ωθ , the voltage induced by the change in
magnetic flux is [120]

Uθ = d�θ

dt
= d[BzA cos θ (t )]

dt
= BzAωθ cos [θ (t )], (D1)

with the area of the current ring A. The resistance of the
micromagnet is given by R = 2/(σa). The energy lost in each
cycle is

E θ
d =

∫ T

0

U 2
θ

R
dt = π3B2

z a4ωθ

R
. (D2)

The total energy stored can be written as

Eθ = 1
2 Imω2

θ . (D3)

Then the Qr factor is given by

Qr = 2π
Eθ

E θ
d

= 16ρωθ

15πσB2
z

. (D4)

We can obtain the damping rate

γθ

2π
= ωθ

Qθ

= 15πσB2
z

16ρ
. (D5)

Next we calculate the damping of the translational mode
perpendicular to the superconducting surface. Setting the os-
cillation frequency as ωx, the voltage induced by the change
of magnetic flux is

Ux = d�x

dt
= d[δBzA sin ωxt]

dt
= δBzAωθ sin ωxt, (D6)

where δBz is the change in the magnetic field at the center
of the ring during the oscillation and we assume that the
magnitude of the magnetic field penetrating the ring is equal
to the magnetic field at the center of the ring, which results in
a larger calculated damping rate than the actual damping rate.

The energy lost in each cycle is

Ex
d =

∫ T

0

U 2
x

R
dt = π3δB2

z a4ωx

R
. (D7)

The total energy stored can be given by

Ex = 1
2 mω2

x x2
zp f . (D8)

Then the Qx factor is given by

Qx = 2π
Ex

Ex
d

= 8ρωxx2
zp f

3πδB2
z a2σ

. (D9)

We can obtain the damping rate

γx

2π
= ωx

Qx
= 3πδB2

z a2σ

8ρx2
zp f

. (D10)

According to Beff = B f + 1/2Bi, the magnetic
field in each direction at the equilibrium position
(xeq, yeq, zeq, θeq, φeq ) = (heq, 0, 0, π/2, 0) can be
written as

Bx = 0,

By = 0,

Bz = μ0μm

4π

(
1

r3
f

− 1

r3
i

)
. (D11)

Then we can get Bz = 0.57 mT and δBz = 0.52 mT. We
take the parameters: radius of micromagnet a = 0.25 μm,
resistance of the micromagnet σ = 107 �−1m−1 [120], oscil-
lation frequency in the x direction ωx/2π = 1903 kHz, and
zero-point fluctuation in the x direction xzp f = √

h̄/(2mωx )
to calculate the damping rate, γθ/2π = 0.13 mHz and
γx/2π = 0.03 mHz. That is, the damping due to the eddy-
current is much smaller than the dissipation assumed in the
main text.
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2. The gas-collision damping

The higher the vacuum level of the experimental environ-
ment, the smaller the damping due to the collision of residual
air molecules with suspended particles. The damping rate
caused by the gas molecules is given by [52,65,122–124]

γgas

2π
= 3ηga

m

0.619

Kn + 0.619

(
1 + 0.31Kn

K2
n + 1.152Kn + 0.785

)
,

(D12)

where Knudsen number Kn = λ̄/a and gas viscosity coeffi-
cient ηg = nmg

√
8kBTg/(πmg)λ̄/2 with number density n =

Pg/(kBTg), gas pressure Pg, gas temperature Tg, average mass
of each gas molecule mg, free mean path of gas molecules λ̄ =
kBTg/(

√
2Pgs), collision cross section s = πd2

g , gas molecu-
lar diameter dg, and Boltzmann constant kB. Here we take
the parameters gas temperature Tg = 10 mK and gas molec-
ular diameter dg = 0.372 nm. Then the damping rate due
to gas collisions is γgas/2π = 0.15 Hz at parameter Pg =
10−5 mBar.
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