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Correspondence between Dicke-model semiclasscial dynamics in the superradiant
dipolar phase and the Euler heavy top
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Analytic expression is found for the frequency dependence of the transmission coefficient of a transmission
line inductively coupled to the microwave cavity with the superradiant condensate. Sharp transmission drops
reflect the condensate’s frequencies spectrum. These results pave the way to direct detection of emergence
of the superradiant condensates in quantum metamaterials. Results are based on the analytic solutions of the
nonlinear semiclassical dynamics of the superradiant photonic condensate in the Dicke model of an ensemble of
two-level atoms dipolar coupled to the electromagnetic field in the microwave cavity. In the adiabatic limit with
respect to the photon degree of freedom, the system is approximately integrable with evolution being expressed
via Jacobi elliptic functions of real time. Depending on the coupling strength, the semiclassical coordinate
of the superradiant condensate in the ground state either oscillates in one of the two degenerate minima of
the condensate’s potential energy or traverses between them over the saddle point. An experimental setup for
measuring of the breakdown of the normal phase of the Dicke model via coupling to the transmission line is
proposed. A one-to-one mapping of the semiclassical motion of the superradiant condensate on the nodding of
unstable Lagrange “sleeping top” also turns the Dicke model into an analog device for modeling the dynamics
of mechanical systems.
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I. INTRODUCTION

Prediction of superradiant quantum phase transition [1,2],
that breaks parity symmetry of the system consisting of N�1
two-level (TL) atoms coupled to a single bosonic mode in
the resonant cavity, poses an interesting problem concerning
observable fingerprints of superradiant condensates emerging
in the quantum metamaterials [3–8]. This knowledge is also
important for the quantum computation perspectives [9–12].
Recently, an approximate integrability of the Dicke model
[13] was established [14] in the adiabatic limit with respect
to photon condensate degree of freedom. We show below
that, in the vicinity of the quantum phase transition into the
superradiant state, the condensate characteristic frequencies
obey the adiabaticity condition: �n � ω0, where h̄ω0 is the
bare TL splitting. This allows an analytic solution of the
semiclassical dynamics equation for the superradiant conden-
sate. This solution is based on the two integrals of motion
possessed by the coupled photonic condensate and the TL
system in the adiabatic limit. We found solutions that bear
unexpected parallelism with the evolution of the polar angle
made by the pivoted axis of the Euler symmetric spinning
top with direction of the external gravitational field, i.e., nod-
ding of Lagrange “sleeping top” [15–19]. We demonstrate
that semiclassical dynamics of the superradiant condensate
in the resonant cavity, and, hence, of the Lagrange sleeping
top nodding, could be studied by measuring frequency de-
pendence of the transmission coefficient of a transmission
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line inductively coupled to the cavity. This follows from the
derived below analytic expression featuring sharp drops of
transmission coefficient at the characteristic frequencies of
the superradiant condensate’s spectrum. Our analytic solution
indicates that patterns of the transmission coefficient drops
along the frequencies axis depend on the coupling strength
of the TL system to the microwave cavity photons.

II. DICKE HAMILTONIAN IN ADIABATIC
APPROXIMATION

In this article, we consider the Dicke model Hamiltonian
expressed in terms of the operators of collective variables,

Ĥ = ω

2
( p̂2 + q̂2) + 2γ√

S
q̂Ŝx + ω0 Ŝz, (1)

where Ŝα = ∑
i ŝα

i are Cartesian components of the total
pseudospin of the TL system, spin-1/2 Pauli operators ŝα

i
characterize states of the ith TL, and the Planck constant h̄
is taken for unity. We use here and below notations introduced
in Ref. [14], where h̄ = 1. The photon field second quantized
operators are as follows:

p̂ = i

√
1

2
(â† − â) and q̂ =

√
1

2
(â† + â), (2)

where [â, â†] = 1. The superradiant regime is achieved
for f 2 = γ 2/γ 2

c > 1, γc = √
ωω0/2 [1]. Using the Born-

Oppenheimer approximation for a slow semiclassical motion
of the photonic condensate on the background of fast coherent
TL systems [14] one may substitute operators p̂ and q̂ with
c numbers considered as fixed parameters with respect to
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the fast superspin degrees of freedom. Then, the spin part in
Eq. (1) is diagonalized using rotation angle θ around the y axis
(compare [14,20]),

Ŝz cos θ + Ŝx sin θ = Ĵ z, (3)

cos θ = ω0

ωP(q)
, sin θ = 2qγ

ωP(q)
√

S
, (4)

ωP(q) = ω0

√
1 + f 2

q2ω

Sω0
, (5)

and, consequently, one obtains the Hamiltonian with adiabatic
invariant Ĵ z,

Ĥa = ω

2
(p2 + q2) + ωP(q)Ĵ z. (6)

Since Ĥa commutes with Ĵ z, the lowest-energy band is reached
in state |S,−S〉 with Ĵ z|S,−S〉 = −S|S,−S〉. Substituting this
spin projection into Eq. (6), one finds effective Hamiltonian of
the condensate,

Ha(S,−S) = ω

2
(p2 + q2) − ωP(q)S. (7)

Hence, Eq. (7) describes a “particle” moving in the potential,

U (q) = ω

2
q2 − ω0S

√
1 + f 2

ωq2

ω0S
. (8)

Considering the first integral of motion of the Hamiltonian (7)
of a particle with effective mass 1/ω, one finds the differential
equation for the dynamic variable q,

Ha(S,−S) = q̇2

2ω
+ U (q) = E . (9)

Now we consider the case when the square root in Eq. (8)
can be expanded in powers of coordinate q, i.e., the following
condition holds:

f 2 ωq2

ω0S
� 1. (10)

Then, expanding the root in Eq. (8) up to fourth order in q
and substituting it into Eq. (9), one obtains the equation of
motion of a particle in the double-well potential Udw (the
constant term −ω0S is absorbed by constant E ),

E = q̇2

2ω
+ ω0

8S

(
f 2 ω

ω0

)2

q4 + ω

2
(1 − f 2)q2 ≡ q̇2

2ω
+ Udw(q).

(11)
The condition of superradiance f 2 > 1 makes the last term
negative, thus, forming a double-well potential.

A. Applicability of the series expansion

The minima ±qmin of Udw(q) are found readily from
the condition ∂qUdw(q)|qmin = 0. After substitution qmin into
applicability condition Eq. (10), one obtains the following
inequality condition:

f 2 ωq2
min

ω0S
≡ 2( f 2 − 1)

f 2
� 1. (12)

Substituting qmin into Udw(q) and using the condition in
Eq. (12), one finds

|Udw(qmin)| ≡ |Udw|min = ( f 2 − 1)2ω0S

2 f 4
� ω0S

8
. (13)

Hence, the approximate polynomial expression in Eq. (11)
for potential energy is safe to use in the close enough vicin-
ity of the phase transition f 2 → 1 + 0. Therefore, allowing
for the limitation Eq. (12), it seems, at first glance, that the
adiabaticity condition for the Hamiltonian Eq. (6) would be
ω � ωP, which in our case of f ≈ 1 could be achieved via
inequality ω � ω0, i.e., far from the resonance: ω = ω0, com-
pare Ref. [14]. We will see below that this is not the case in
the vicinity of the saddle-point energy |E | � |Udw|min, when
adiabaticity is granted already by f 2 → 1 + 0 itself, even
though the resonant condition ω0 = ω holds.

Also one can calculate value of sin θ in (4) at q = qmin, the
result is

sin θ (qmin) =
√

1 − γ 4
c

γ 4
≡

√
1 − f −4. (14)

Exactly this result was obtained for the superradiant phase
in the Dicke model using the rotated Holstein-Primakoff
transformation [20]. Thus, θ is the superradiant angle, which
describes (pseudo)spin rotation from the z axis to the x axis
under the superradiant phase transition.

B. Applicability of the adiabatic approximation

As the system evolves and the photonic coordinate q(t )
changes with time, there exists some probability of tunneling
to the upper energy band at q = 0 where the gap between
the |S,−S〉 and |S,−S + 1〉 bands is the smallest due to
Landau-Zener tunneling. One can think about the problem
in a following way: The spin subsystem is controlled by an
external field q(t ), and its spectrum is changing in time as
q(t ) changes in time. The original Landau-Zener problem
considers the time-dependent Hamiltonian in form [21]

HLZ =
(

αt �

� −αt

)
. (15)

Then if, for example, the particle was initially in the ground-
state (GS) |g〉 with energy −√

α2t2 + �2 at t = −∞, the
probability of it ending up in an exited-state |e〉 with energy√

α2t2 + �2 at t = ∞ (Landau-Zener tunneling) is given by

PLZ = e−π�2/2h̄|α|. (16)

From this expression follows that the bigger is the gap � or
smaller is the rate of change of energy α, the smaller is the
tunneling probability.

In our case, when considering tunneling from spin state
|Jz = −S〉 to state |Jz = −S + 1〉 due to a change in time of
q(t ), we restrict the whole phase space to only the considered
subspace, and the spin part of Hamiltonian (1) is written as a
2 × 2 matrix,

HS =
(

ω0(−S + 1)
√

2γ q(t )√
2γ q(t ) −ω0S

)
. (17)
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In order to bring it in form (15), we perform a unitary trans-
formation,

HS → O†HSO

=
(√

2γ q(t ) + ω0/2 −ω0/2
−ω0/2 −√

2γ q(t ) + ω0/2

)
− ω0S,

O = 1√
2

(
1 −1
1 1

)
. (18)

The rate of change α is obtained by linearization,

2γ q(t ) ≈ 2γ q̇(t0)(t − t0). (19)

Thus, the rate α is α = 2γ q̇(t0). Finally, the transition proba-
bility is

PLZ = exp

{
− π h̄2ω2

0

|4h̄γ q̇(t0)|

}
. (20)

The separation between nonadiabatic energy levels
±2γ q(t ) + ω0/2 is large far from the point q = 0, thus, the
speed q̇(t ) might not be small in this region. However, near
q = 0 the gap reduces and in order to suppress the tunneling
of the rate of change of q(t ) should be slow. The velocity q̇(t )
at q = 0 can be easily found using the energy conservation
law (11),

q̇|q=0 =
√

2ω

h̄
[E − Udw(0)] =

√
2ω

h̄
E . (21)

The closer is the total energy to the maximum of the potential
(11) at E = 0 from above, the less is the particle’s speed when
passing the maximum. And if the energy is below the maxi-
mum, i.e., E < 0, the particle does not even reach the point
q = 0 at the maximum of the potential, so the tunneling to the
upper band is suppressed by a large energy gap. Finally, we
express the Landau-Zener tunneling probability via energy,

PLZ|E>0 = exp

{
− π h̄2ω2

0

4γ
√

2h̄ωE

}
. (22)

Later, in Sec. IV, we will calculate the Landau–Zener tunnel-
ing probability for energy E equal to the ground-state energy
of the Dicke model.

III. SOLUTION IN JACOBI FUNCTIONS

Analytic solutions of equation of motion Eq. (11) in the
quartic double-well potential are well known [22] and found
below in the form of the different Jacobi elliptic functions,
depending on the value of E of the total energy of the sys-
tem. Using conservation law (11), the motion of the photonic
subsystem can be described by the differential equation,

q̇2

2ω
= E − ω2 f 4

8ω0S
q4 − ω

2
(1 − f 2)q2. (23)

If the total energy of the system is positive: E > 0, i.e., the
particle has enough momentum to surpass the potential barrier

at q = 0, the solution is as follows:

q(t )E>0 = A cn(�t, k),

A2 = 2S( f 2 − 1)

f 4

ω0

ω

⎛
⎝1 +

√
1 + 2 f 4E

Sω0(1 − f 2)2

⎞
⎠,

�2 = ω2( f 2 − 1)

√
1 + 2 f 4E

Sω0(1 − f 2)2
,

k2 = 1

2

⎛
⎜⎝1 + 1√

1 + 2 f 4E
Sω0(1− f 2 )2

⎞
⎟⎠. (24)

One should note that q(t ) is a sign changing function, meaning
that the particle travels between the two wells q = ±q0.

For negative total energy E < 0, the solution is as follows:

q(t )E<0 = ±A dn(�t, k), A2 = ω0

ω

4S(1 − f 2)2z

f 4(1 − √
4z + 1)

,

�2 = ω2(1 − f 2)2z

1 − √
4z + 1

, k2 =
√

4z + 1

2z
(
√

4z + 1 − 1),

z = E f 4

2ω0S(1 − f 2)2
. (25)

In this case q(t ) does not change sign, so that particle remains
in one of the two potential wells.

If the total energy is zero E = 0, the period of motion
becomes infinite and the solution is as follows:

q(t )E=0 = ±2
√

S

f 2

√
ω0

ω
( f 2 − 1)sech(ωt

√
f 2 − 1). (26)

This solution describes particle moving infinitely long from
the “turning point” at q = q(t = 0) to the saddle point at q(t =
∞) = 0. In all the solutions above, the inequality in Eq. (12)
ensures adiabaticity condition � � ω0 provided that ω � ω0,
and,

|E | � |Udw|min = ( f 2 − 1)2ω0S

2 f 4
. (27)

Simultaneously, the semiclassical approximation is jus-
tified by the proportionality of the photonic condensate
coordinate q(t ) ∝ √

S = √
N/2, where N is the macroscopic

number of the TLs.

IV. GROUND-STATE ENERGY OF THE DICKE MODEL

Our solutions above describe quasiclassical motion with
arbitrary energy. However, in the quantum case, the energy
of course should be quantized, and its arbitrary values are
not allowed. In analogy with the Bohr model of an electron
in an atom, we consider discrete energy levels of the Dicke
model as allowed values of energy of quasiclassical motion.
In particular, the analytical expression for the ground-state
energy EGS of the Dicke model in the superradiant phase can
be obtained in the thermodynamic limit of large S [1,20], e.g.,
see Eq. (B15) in Ref. [20]. In the notation, used in the current
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f = 1.044 f = 1.051 f = 1.061

FIG. 1. Illustration of the ground-state energy level (dashed line) of the Dicke model with respect to the maximum of the effective potential
in (11) (solid line). The parameters are chosen as ω = 1, ω0 = 5, S = 10. As parameter f grows, the ground-state energy level drops below
the potential-energy maximum.

paper, the expression becomes

EGS = ω0S − ω0 f 2

2
(S + 1) − ω0

2 f 2
S + 1

2
(ε1 + ε2),

ε2
1,2 = 1

2

[
ω2

0 f 4 + ω2 ±
√(

ω2
0 f 4 − ω2

)2 + 4ω2ω2
0

]
. (28)

This expression is valid for f � 1. Simultaneously, the value
of the potential-energy U in (11) at its maximum equals zero.
In particular, in the case of f = 1,

EGS| f =1 = 1

2

(√
ω2 + ω2

0 − ω0
)

> 0. (29)

This means that at the superradiant quantum phase transition
the ground-state energy is above the potential barrier. Thus,
the quasiclassical motion with total energy EGS in this regime
is described by the Jacobi cn function, see Eq. (24). As the
coupling constant grows further, at some value of f > 1, the
energy of the ground state drops below the top of the potential
barrier, i.e., EGS < 0. This is illustrated in Fig. 1. By substitut-
ing (29) in (22) and in limit ω0 � ω we obtain the following
expression for the probability of Landau-Zener tunneling for
the quasiclassical dynamics with the energy, defined by the
energy of the ground state of the quantum model at the point
of the superradiant phase transition,

P = exp

{
− πω2

0√
2ω2

}
. (30)

This expression defines the upper bound for the probability
of Landau-Zener tunneling. The tunneling is suppressed for
ω0 > ω, which is an agreement with the result for applica-
bility of adiabatic approximation [14] according to which the
nonadiabatic coefficient,

C = 〈S,−S; q| p̂|S,−S + 1; q〉|q=0 = f

2

√
ω

ω0
(31)

should be small.

V. MEASURING NORMAL PHASE BREAKDOWN
VIA THE TRANSMISSION LINE COUPLED TO THE

PHOTONIC CONDENSATE

The normal phase of the Dicke model would correspond to
the case of a single-well potential in Eq. (11) when f 2 < 1 and

q = 0 at the minimum of the effective potential energy. The
emergence of the superradiant condensate at f 2 > 1 causes
transition to a bifurcating equilibria, i.e., to the double-well
potentials in Eq. (11), thus, making the normal phase unstable.
Simultaneously, the semiclassical motions of the photonic
condensate Eqs. (24) and (25) could be measured, e.g., using
transmission line setup [5]. In this setup, an electromagnetic
wave Q(y, t ) propagating in the transmission line (along axis
y) is described by the Maxwell propagation equation of an
electromagnetic wave coupled linearly to the superradiant
condensate via semiclassical coordinate q(t ),

∂2Q(y, t )

c2∂t2
− ∂2Q(y, t )

∂y2
= κδ(y − y0)q(t ), (32)

H = Ha(S,−S) − κq(t )Q(y0, t ), (33)

where c is the electromagnetic wave propagation velocity
and κ is the strength of inductive coupling between the
transmission line and the microwave cavity that contains the
condensate described by the unperturbed Hamiltonian Eq. (9).
Considering now the last term in Eq. (33) as a perturba-
tion, one finds a response q1(t ) of the condensate, linear in
κQ(y0, t ), that follows from Eq. (11):

q̈1

ω
+ ∂2Udw(q0)

∂q2
q1 ≡ L̂q1 = κQ(y0, t ), (34)

where unperturbed condensate motions q0(t ), expressed in
Eqs. (24)–(26), obey Eq. (11). Allowing for the latter, one
finds that Eq. (34) is of the Lamé type with “external force”
κQ(y0, t ) and, hence, its solution looks like,

q1(t ) =
∫ t

0
GR(t − t ′)κQ(y0, t ′)dt ′ (35)

L̂GR(t − t ′) = δ(t − t ′); GR(t − t ′ < 0) ≡ 0, (36)

where retarded Green’s function GR of the Lamé differential
operator L̂ is introduced. Substituting Eq. (35) into the right-
hand side of Maxwell’s equation Eq. (32) and making its
Fourier transform with respect to time-variable t , one finds
a Schrödinger-like equation for a scattering from the Dirac-
δ function potential barrier, which results in a transmission
coefficient D(ω̃) of the transmission line for a wave traveling
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FIG. 2. Frequency dependences of the transmission coefficient
D(ω̃) Eq. (38) for a transmission line inductively coupled to the mi-
crowave cavity with the superradiant condensate at different values
of the coupling strength f that enters Eqs. (24) and (25). Propaga-
tion velocity c and coupling constant κ in Eq. (33) obey relation:
cκ2 = 0.0225. Other parameters are the same as in Fig. 4.

with the frequency ω̃ [23],

−∂2
y Qω̃ − κ2GR(ω̃)δ(y − y0)Qω̃ = ω̃2

c2
Qω̃, (37)

D(ω̃) =
∣∣∣∣ 2ω̃

2ω̃ − icκ2GR(ω̃)

∣∣∣∣
2

. (38)

The Green’s function GR(t ) is easily constructed allowing
for the fact that zero modes of Lamé differential operator
L̂ ∂t q0 = 0 are just the first time derivatives of the correspond-
ing unperturbed solutions, q0(t ) of the Hamiltonian dynamics
Eq. (11) expressed via the Jacobi elliptic functions in Eqs. (24)
and (25),

GR(t � 0) =
⎧⎨
⎩

− ω

�2
∂t cn(�t, k), E > 0

− ω

�2
∂t dn(�t, k), E < 0,

,

GR(t < 0) ≡ 0. (39)

Using Fourier series expansions of the Jacobi elliptic func-
tions [22] cn(�t, k), dn(�t, k) one finds GR(ω̃) as the sum
of the Green’s functions G0R

�n
(ω̃) of harmonic oscillators with

frequencies forming (half)integer multiples of photonic con-
densate frequency π�/K ,

GR
E>0(ω̃) = π2ω

2�kK2

∞∑
n=0

(2n + 1)G0R
�n

(ω̃)

ch[(2n + 1)πK ′/2K]
,

�n = (2n + 1)π�

2K
, (40)

GR
E<0(ω̃) = π2ω

�K2

∞∑
n=1

nG0R
�̃n

(ω̃)

ch[nπK ′/K]
, �̃n = nπ�

K
, (41)

G0R
� (ω̃) = 1

2

[
1

ω̃ + � + iδ
− 1

ω̃ − � + iδ

]
,

K ′ = K (
√

1 − k2). (42)

Corresponding frequency dependences of the transmission
coefficient D(ω̃) for the transmission line are presented in
Fig. 2. The presence of the superradiant condensate is re-
flected by the sharp transmission drops at the frequencies
belonging to the Fourier spectrum of the semiclassical motion

FIG. 3. Scheme of the Euler top with pivoted point of the x3 axis
and the definition of the Euler angles.

of the condensate, the latter being marked by the poles of the
Green’s function in Eqs. (40) and (41). Relative narrowing of
the intervals between transmission coefficient sharp drops in
Fig. 2 when one moves from E = 0.01 to E = 0.0001, i.e.,
more close to the saddle-point energy of photonic condensate
E = 0, is remarkable. It is related with the fact that solutions
for k values in Eqs. (24) and (25) provide the limit k → 1
when E → 0. Since the complete elliptic integral of the first
kind K (k → 1) → ∞ [22] the frequencies spectrum �n of
the superradiant condensate given in Eqs. (40) and (41), con-
denses in the direction of zero frequency.

VI. MAPPING ON DYNAMICS OF THE SPINNING
LAGRANGE TOP

Using definition of the θ angle in Eq. (4) in combination
with equation of motion of the photon field coordinate q in
Eq. (11) in the limit Eq. (10), it is straightforward to find
a striking coincidence of the photonic coordinate dynamics
with the dynamics of the Euler θ angle of a symmetric top
in gravitational field [15], the Lagrange top. For this purpose,
we remind this fundamental problem in classical mechanics.
It is well known that the Euler-Poisson equations of motion of
a rigid symmetric top that moves about a fixed point under
the action of a gravitational force (the Lagrange case) are
integrable [15]. The energy conservation law for this case is
written as

Ẽ = Ĩ1

2
(θ̇2 + φ̇2 sin2 θ ) + I3

2
(ψ̇ + φ̇ cos θ )2 + μgl cos θ.

(43)
Here the Euler angles θ, φ, and ψ are introduced as usual
[15], relative to the laboratory x, y, and z coordinate system,
and gravity acts in the negative direction of the polar z-axis
direction, see Fig. 3.

Then, angle θ is formed by the z axis and the axis x3 of
the rotating top, i.e., one of its three principal axes x1–3 with
the corresponding moments of inertia I1 = I2, I3. The pivoting
point and the center of mass both lie on the x3 axis, separated
by distance l .

Constants μ and g are the mass and the acceleration of
the top in the gravitational field, and Ĩ1 ≡ I1 + μl2. Since the
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(a) (b)

(c) (d)

FIG. 4. Trajectories on the sphere of the free end of the x3 axis of the spinning Lagrange top with: (a) positive energy E = 0.01 and
f = 1.21, (b) negative energy E = −0.03 and f = 1.22. Other parameters of the Dicke model Hamiltonian Eq. (1): ω = 1, ω0 = 5, S = 10.
Corresponding time evolution of the angle θ (t ), (c) and (d) are taken from Dicke model solutions Eqs. (24) and (25) and definition Eq. (4) of
angle θ . T is the oscillation time period of the corresponding Jacobi function.

conjugate momenta corresponding to the cyclic angles φ,ψ

are conserved, one obtains the following extra integrals of
motion:

pψ = I3(ψ̇ + φ̇ cos θ ) = M3, (44)

pφ = (Ĩ1 sin2 θ + I3 cos2 θ )φ̇ + I3ψ̇ cos θ = Mz, (45)

where integrals of motion M3, Mz are the angular moments of
the top along the axes x3 and z, respectively, counted with re-
spect to the fixed point O of the top. Now, excluding variables
φ̇, ψ̇ from expression in Eq. (43) using Eqs. (44) and (45), and
considering a particular case M3 = Mz ≡ M, one finds instead

of Eq. (43),

Ẽ − M2

2I3
− μgl = Ĩ1

2
θ̇2 + M2

2Ĩ1
tan2 θ

2
− 2μgl sin2 θ

2

≈ 2Ĩ1Q̇2 + M2

2Ĩ1

[
Q4 + Q2

(
1 − 4μglĨ1

M2

)]
,

(46)

φ̇ = M

2Ĩ1(1 − Q2)
, ψ̇ = M[I3 + 2(Ĩ1 − I3)(1 − Q2)]

2Ĩ1I3(1 − Q2)
,

(47)
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where smallness of the Euler angle θ is assumed: sin θ/2 ≡
Q � 1. Now, a direct comparison of Eq. (46) with Eq. (11),
allowing for the inequality Eq. (10), leads to the conclusion
that the pseudospin rotation angle θ defined in Eq. (4) pos-
sesses the same dynamics as the Euler angle of the Lagrange
top θ that enters dynamics Eq. (46). Namely, the one-to-one
correspondence between Eqs. (11) and (46) is achieved under
the following conditions:

μgl/Ĩ1 = ω2(2 f 2 − 1), M/2Ĩ1 = ω f −1,

E

2ω0S
=

[
Ẽ − M2

2I3
− μgl

]
(M2/2Ĩ1)−1. (48)

The analytical solutions Eqs. (24) and (25) expressed via
e angle θ as defined in Eq. (4), are plotted in the form of tra-
jectories of the spinning Lagrange top(sleeping top noddings)
on the sphere, see Fig. 4. The Euler angle φ depends linearly
on time t according to Eqs. (47) and (48): φ ≈ ω f −1t . This
time dependence of the rotation angle φ around Z axis was
considered as a fast one with respect to θ (t ) and averaging
over φ(t ) was made in the equations of motion in Ref. [24].

VII. CONCLUSIONS

In conclusion, we have considered the Dicke model in a
superradiant state and found analytic solutions of the semi-

classical dynamics of the photonic condensate in the adiabatic
limit with respect to the bare cavity mode coupled to the
two-level atomic array. We have also discovered one-to-one
correspondence between photonic condensate dynamics and
nodding motion of the Lagrange sleeping top. Finally, we
found an analytic expression for the frequency dependence
of the transmission coefficient of a transmission line induc-
tively coupled to the microwave cavity with the superradiant
photonic condensate. Predicted sharp transmission drops re-
flect Fourier spectrum of the semiclassical motion of photonic
condensate and of a nodding sleeping top. This opens a way
to observe directly the fingerprints of photonic condensates
emerging in the quantum metamaterials, as well as to use
QED circuits for a simulation of dynamics of the classical
mechanical systems.
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