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Single-photon switching in a Floquet waveguide-QED system
with time-modulated coupling constants
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The dynamical control of single-photon scattering in a one-dimensional waveguide coupled to a Floquet
atom-cavity system with time-modulated coupling constants is investigated. The analytical expressions for
determining the scattering properties are obtained by using an effective Floquet Hamiltonian in real space. The
photon transport is extremely sensitive to the time-modulated atom-cavity coupling strengths. Two cases, i.e.,
the effective Floquet Hamiltonian either includes or excludes a static coupling term, are discussed in detail.
The results show that, with such Floquet atom-cavity configuration, an active photonic switch with nearly ideal
switching contrast could be implemented. The transmission of the waveguide photons with different frequencies
can dynamically be switched on or off via adjusting the modulated amplitude or relative modulated phase
no matter whether the static coupling between the atom and the two cavity modes is considered or not. The
application of the dynamic modulated atom-cavity coupling strengths instead of a purely static one makes our
photonic switch more tunable. These results are expected to be applicable in quantum information processing
and in active quantum device design involving dynamical modulation.
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I. INTRODUCTION

Photons are considered as ideal information carriers for
optical information processing due to the fast propagation
speed and the ability to retain coherence over long distances
[1,2]. How to precisely control the photon propagation is
requisite for the efficient operation of quantum networks
[3]. Waveguide–quantum electrodynamic (waveguide-QED)
structure is one of the main physical platforms for controlling
photon transport in a one-dimensional waveguide coupled to
different quantum emitters [4–6]. The coupled emitter can
work as a tunable scatterer, which scatters the photons in
the waveguide into either the forward (transmission) mode
or the backward (reflection) mode. Recently, a number of
waveguide-based photon transport controlling schemes have
been proposed [7–19] and have been demonstrated exper-
imentally [20–24]. Most of these works are related to the
designs and fabrications of various quantum devices, such
as quantum switches or routers [25–37], single-photon isola-
tors [38–42], and quantum frequency converters or frequency
combs [43–47], etc., just to name a few as examples.

Quantum switches, which can coherently interconnect dif-
ferent quantum channels on a level of individual quanta,
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are one of the key devices in the fields of quantum net-
works. In this regard, a variety of theoretical and experimental
efforts have been devoted to the realization and develop-
ment of single-photon switches with high switching effi-
ciency [48–62]. These studies show that, in one-dimensional
waveguide-QED architectures, the coupled emitter can behave
as either a perfect mirror totally reflecting the waveguide
photons, or an ideal transparent medium allowing photons
to pass through, which can be used for the implementation
of a perfect single-photon switch. Typically, quantum emit-
ters with ladder-type, V-type, A-type, and four-level atomic
configurations can be utilized to perform the switching func-
tions toward the coupled waveguide photons by driving the
auxiliary atomic levels with a classical control field [48–53].
Additionally, a photonic switch with an ideal switching con-
trast can also be achieved based on atom-cavity systems
by manipulating either the atom-cavity and cavity-cavity
interactions or the waveguide-cavity couplings [26–28,54–
57]. However, in a solid-state physical system, the coupling
strengths depend strongly on the relative positions between
the atom and cavity, cavity and cavity, or waveguide and
cavity, which seems difficult to control well because the
relative positions and the corresponding system parameters
are fixed once the device is configured. Furthermore, most
of the previously proposed switching schemes can operate
well only for photons with selected frequencies, e.g., resonant
photons. Once the frequencies of the incident photons are
altered, the switching capabilities will rapidly diminish and
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even be lost completely, which restricts the applications of
the previous single-photon switches in quantum networks.
Therefore, how to effectively manipulate the photon transport
and then achieve a dynamically modulated photonic switch for
photons with different frequencies is highly desirable and vital
for practical applications in quantum information processing.

In this paper, we propose a scheme of a dynamically mod-
ulated single-photon switch based on a Floquet QED system
which consists of two single-mode cavities and a two-level
atom. Different from the previous works reviewed above,
where all the system parameters are constants, here the atom
couples to the two cavity modes with time-modulated cou-
pling strengths. We focus on exploring how to dynamically
control the single-photon scattering process by adjusting the
modulated parameters introduced into the coupling strengths.
Two cases, where the atom interacts with the cavity modes
with or without a static coupling term, are considered. It is
found that the Floquet atom-cavity system can act as an ideal
active photonic switch with nearly perfect switching contrast.
The waveguide photons can dynamically be switched on or off
via adjusting the modulated amplitude or relative modulated
phase of the atom-cavity coupling strengths. Furthermore, the
proposed active photonic switch is efficient for photons with
different frequencies even far away from the resonant point.
These results should be important and meaningful for design-
ing dynamical modulated photonic devices and applications
in future quantum network communication.

The rest of the paper is organized as follows. In Sec. II,
we introduce the theoretical model of the Floquet waveguide-
QED system and derive the analytical expressions for
determining the photon transmission probability with a full
quantum mechanical method. In Sec. III, we investigate how
to dynamically manipulate the single-photon scattering pro-
cess by controlling the modulated amplitude and relative
modulated phase of the atom-cavity coupling strengths, and
show how an ideal photonic switch for photons with different
frequencies can be achieved. Finally, a conclusion is drawn in
Sec. IV.

II. MODEL AND BASIC THEORY

The model under consideration comprises a one-
dimensional waveguide, a two-level atom, and two single-
mode cavities (named cavity A and cavity B, respectively),
as schematically shown in Fig. 1. The two cavity modes
are coupled indirectly to each other via the two-level atom.
The coupling strengths between the atom and the cavity
modes are periodically modulated gj (t ) = g0 + η cos(νdt +
φ j ), ( j = a, b) with η the modulated amplitude, νd the mod-
ulated frequency, φ j the modulated phase, and g0 the static
coupling strength. In addition, the waveguide is side cou-
pled to cavity A at the position x = 0 with coupling strength
V . The total Hamiltonian of the compound system can be
written as

H = Hc + Hw + Ha + Hwc + Hca, (1)

where Hc, Hw, and Ha are the free Hamiltonian of the two cav-
ity modes, the waveguide photons, and the atom, respectively.
Hwc describes the interaction between the waveguide and the

FIG. 1. Schematic diagram of a single-photon scattering in a
one-dimensional waveguide side coupled to a Floquet quantum
system at x = 0 with coupling strength V . The Floquet quantum
structure contains a two-level atom (with transition frequency ωeg)
and two single-mode cavities (named cavity A and cavity B), wherein
the two cavity modes couple to the atom with a time-modulated
coupling strength. γa,b and γe denote the decay rates of the cavity
modes and the atom, respectively.

cavity mode. Finally, Hca refers to the interaction between the
atom and the cavity modes.

The Hamiltonian Hc of the two free cavities reads as

Hc =
(
ωa − i

γa

2

)
a†a +

(
ωb − i

γb

2

)
b†b, (2)

where a† (b†) and a (b) denote the bosonic creation and anni-
hilation operators of the cavity mode A (B), respectively. ω j

and γ j are the eigenfrequencies of the cavity modes and their
corresponding decay rates.

The free photonic Hamiltonian Hw in real space is given by

Hw = iυg

∫
dxc†

L

∂

∂x
cL(x) − iυg

∫
dxc†

R

∂

∂x
cR(x), (3)

where c†
R(x) [cR(x)] denotes creating (annihilating) a right-

moving photon and c†
L(x) [cL(x)] denotes creating (anni-

hilating) a left-moving photon at the position x in the
one-dimensional waveguide. υg is the group velocity of a
photon in the waveguide. The Hamiltonian for the free
atom is

Ha =
(
ωe − i

γe

2

)
σee + ωgσgg, (4)

where ωe (ωg) is the eigenfrequency of the excited (ground)
state |e〉 (|g〉), γe is the energy loss rate from the atom to
the free space, and σee = |e〉〈e|, σgg = |g〉〈g|. The interaction
Hamiltonian Hwc between the waveguide and the cavity mode
reads

Hwc = V
∫

dxδ(x)(c†
R + c†

L )a + H.c., (5)

where H.c. denotes the Hermitian conjugate. Hca takes the
form

Hca = ga(t )a†σge + gb(t )b†σge + H.c., (6)
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where σeg = |e〉〈g| (σge = |g〉〈e|) is the atomic raising (lower-
ing) ladder operator. According to the Floquet theory [63], we
assume the separation between the Floquet sidebands is large
enough to make all the high-order frequency components
far off-resonant, e.g., νd � g0, η, and δ (δ is the frequency
detuning between the atom and the cavity modes, which has
been assumed to be zero in the following discussion), so
the perturbation theory can be applied. The effective Floquet
Hamiltonian between the atom and the two cavity modes
can be obtained by the standard second-order perturbation as
[64–67] (see the Appendix)

H eff
ca = g0(a†σge + σega) + g0(b†σge + σegb)

+ iJeff (σee − σgg)(b†a − a†b), (7)

where Jeff = η2 sin(φa − φb)/2νd is the effective coupling
strength between the two cavity modes, which arises from
the time modulation and its value depends strongly on the
modulated amplitude, modulated frequency, and the relative
modulated phase.

It is worth noting that the effective interaction between the
two cavity modes is also related to the atomic state σz. It has
been shown in [68] that the atomic state σz plays two key
roles in manipulating the photon transmission in a closed loop
formed by three time-modulated cavities: (i) The probabilities
of the photon transmission are proportional to the populations
of the atom in the states |e〉 and |g〉; (ii) photons in one cavity
can be transferred to the other two cavities in two opposite di-
rections depending on the atomic states σz due to the fact that
the complex coupling coefficients between the three cavities
introduce an effective magnetic field in the closed loop, which
breaks the time-reversal symmetry. However, in the present
case (where only two cavities are considered), the closed
loop is broken, and the directional photon moving disappears.
Consequently, the main contribution of the atomic states σz

here is to manipulate the photon transmission probabilities,
which can be equivalently achieved by adjusting the modulat-
ing parameters, e.g., �φ = φa − φb.

Furthermore, we would like to point out that other than
modulating the coupling strengths between the atom and the
cavity modes, a similar effective Hamiltonian as shown in
Eq. (7) can also be obtained by alternatively modulating
the cavity frequencies with νc(t ) = ν + � sin(νdt + φc), c =
a, b (see the Appendix).

According to Eq. (7), the Hamiltonian in Eq. (1) of the
whole system becomes

Heff = Hc + Hw + Ha + Hwc + H eff
ca . (8)

Suppose that, at the initial time, the two-level atom was in
the ground state and the cavities were empty. Thus, the scat-
tering eigenstate for the Hamiltonian Heff can be expressed as

|�〉 =
∫

dxφr (x)c†
R(x)|υ〉 +

∫
dxφl (x)c†

L(x)|υ〉

+ μaa†|υ〉 + μbb†|υ〉 + μeσeg|υ〉, (9)

where φr (x) [φl (x)] denotes the probability amplitude of the
right- (left-) moving photon in the waveguide. μa, μb, and μe

are the excitation amplitudes of cavity A, cavity B, and the
atom, respectively. |υ〉 is the vacuum state, which represents

no photon in the waveguide and cavities, and the atom in
ground state |g〉.

From the eigenvalue equation Heff |�〉 = (ω + ωg)|�〉, five
coupled linear differential equations can be obtained:

−iυg
∂

∂x
φr (x) + V δ(x)μa = ωφr (x), (10)

iυg
∂

∂x
φl (x) + V δ(x)μa = ωφl (x), (11)

V φr (0) + V φl (0) + g0μe + iJeffμb =
(
ω − ωa + i

γa

2

)
μa,

(12)

g0μe − iJeffμa =
(
ω − ωb + i

γb

2

)
μb, (13)

g0μa + g0μb =
(
ω − ωeg + i

γe

2

)
μe, (14)

where ωeg = ωe − ωg is the transition frequency of the two-
level atom. For photons incident from the left, the amplitudes
φr (x) and φl (x) take the form

φr (x) = eikx[s(−x) + ts(x)],

φl (x) = e−ikxrs(−x), (15)

where k = ω/υg and s(x) is the step function with s(0) = 1/2.
t (r) denotes the photon transmission (reflection) amplitude in
the waveguide. Substituting Eq. (15) into Eqs. (10)–(14), one
can obtain

t = J2
eff ke + g2

0(ka + kb) − kakbke

J2
eff ke + g2

0(ka + kb + i) − kbke(ka + i)
, (16)

r = −i
(
g2

0 − kbke
)

J2
eff ke + g2

0(ka + kb + i) − kbke(ka + i)
, (17)

where  = V 2/υg denotes the coupling loss between cavity
A and the waveguide. k j=a,b = � j + iγ j/2 and ke = �eg +
iγe/2 with � j = ω − ω j (�eg = ω − ωeg) the frequency de-
tuning between the waveguide photons and the cavity modes
(atom). In the following discussions, without loss of gener-
ality, we assume that ωa = ωb = ωeg ≡ ωc, corresponding to
�a = �b = �eg ≡ �.

Furthermore, in order to quantitatively analyze the single-
photon scattering properties in the waveguide, we introduce
the dimensionless quantities T = |t |2 and R = |r|2 for de-
scribing the transmission and reflection probabilities, which
satisfies the conservation condition T + R = 1 when the dis-
sipations of the atom and the cavities to other modes are
ignored. However, in practice, the influence of the intrinsic
dissipative processes of the system should be taken into ac-
count, which makes the sum of T + R slightly smaller than 1.

III. RESULTS AND DISCUSSIONS

In this section, we investigate the properties of the single-
photon scattering for two possible cases (namely, the atom
interacts with the two cavity modes with or without a static
coupling term) based on the analytical expressions as shown
in Eqs. (16) and (17). We focus on exploring how the photon
scattering process is controlled by the time modulation. In
detail, we analyze the influences of the time-modulated sys-
tem parameters, including the modulated amplitude η and the
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(a)

(b)

FIG. 2. The transmission and reflection probabilities as a func-
tion of the frequency detuning �/ for two different values of the
relative modulated phases: �φ = 0 in (a) and �φ = π/2 in (b).
The other common parameters are η = 200, νd = 50η, g0 = 0, and
γe = γa = γb = 0.01, respectively.

relative modulated phase �φ = φa − φb of the atom-cavity
coupling strengths, on the photon transport, and show how
a dynamically modulated photonic switch with nearly ideal
switching contrast could be implemented.

A. Scattering spectra of a single photon without static
atom-cavity coupling g0 = 0

First, we study how the transmission and reflection spectra
vary with the relative modulated phase �φ for a given mod-
ulated amplitude η = 200 and show how a phase-sensitive
single-photon switch with nearly ideal switching contrast
could be implemented in the absence of static coupling (i.e.,
g0 = 0). In Fig. 2, we plot the photon transmission and
reflection probabilities (T and R) as a function of the fre-
quency detuning �/ for two different cases: namely, the
two coupling strengths ga and gb are modulated in phase
(i.e., �φ = 0), or out of phase (i.e., �φ �= 0). For the case
of �φ = 0, the reflection (transmission) spectrum displays a
Lorentzian (inverted Lorentzian) line shape with R ≈ 1 (T ≈
0) at the resonance point [see the blue dashed (red solid) line
in Fig. 2(a)], which implies that the resonantly incident photon
is nearly perfectly reflected and the transmission vanishes.
This can be explained from the effective interaction Hamil-
tonian H eff

ca shown in Eq. (7). Under the conditions g0 = 0
and �φ = 0 [corresponding to Jeff = η2 sin(φa − φb)/2νd =
0], H eff

ca becomes zero; the effective atom-cavity and cavity-
cavity interactions disappear. This means that both the atom
and cavity B are decoupled from cavity A, and the whole
considered system is degenerated into a one-dimensional
waveguide side coupled by a single-mode cavity. It is well
known that, in this case, the single-mode cavity can act as a
perfect mirror due to the destructive interference between the
incident photons and the reemitted one, which leads to the
cancellation of the photon transmission.

FIG. 3. The contour map of the transmission (a) and reflection
(b) spectrum as a function of both �/ and �φ. Other common
parameters are the same as those shown in Fig. 2.

For the case of �φ �= 0 (i.e., �φ = π/2), the transmis-
sion line shape transits from an inverted Lorentzian profile to
the so-called coupled-resonator-induced transparency profile,
quantified by a transparent resonance peak and two symmetric
sideband dips [see the red solid line in Fig. 2(b)]. The rea-
son is that the effective coupling strength between the two
cavity modes becomes nonzero (i.e., Jeff = 2) when �φ =
π/2, which leads to the normal mode splitting in the present
double-cavity system. Consequently, a resonantly incident
single photon with � = 0 is far detuned from the frequencies
of the two normal modes, resulting in the single photon in the
waveguide transmitting completely (T ≈ 1) without reflecting
(R ≈ 0). Thus, from Fig. 2, one can come to a conclusion that
the considered Floquet atom-cavity system can behave as a
nearly perfect active photonic switch based on the relative
modulated phase. When the two coupling strengths ga and
gb are modulated in phase, �φ = 0, the transmission of a
resonantly incident waveguide photon almost vanishes, which
means that the device is switched off. On the contrary, when
ga and gb are modulated out of phase, �φ �= 0, the transmis-
sion of the incident photon is switched on with T ≈ 1 at the
resonance point.

In order to illustrate how to control the switching prob-
ability through varying the relative modulated phase in a
more general case, the variations of T and R versus both
�/ and �φ for a selected modulated amplitude η = 200

are plotted in Figs. 3(a) and 3(b), respectively. It is shown
that, for the resonantly incident single photon with � = 0,
the device persists in switching on with T ≈ 1 except at the
in-phase points, i.e., �φ = nπ, n = 0,±1,±2, · · ·, which is
consistent with that shown in Fig. 2. Furthermore, it can be
found that the switching window and the optimal switch-
ing points are phase sensitive. The transmission or reflection
bandwidth of the photons scattered by the Floquet atom-cavity
structure can be dynamically modulated by controlling the
relative modulated phase. For instance, increasing �φ from
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(a) (b)

(d)(c)

FIG. 4. The transmission and reflection probabilities as a func-
tion of the relative modulated phase for different photon frequencies
with �/ = 0, 0.5, 1, 2 in (a–d), respectively. Other common pa-
rameters are the same as those shown in Fig. 2.

0 to π/2, the on-resonance transmission peak becomes flat
[see the bright red zone in Fig. 3(a)] and the two sideband
dips shift toward both sides [see the two bright blue zones in
Fig. 3(a)].

The physical mechanism of this phase-dependent single-
photon switch can further be explained in the normal mode
picture [69]. As is well known, the interactions between
two cavities and an atom will result in the generation of a
pair of standing wave modes A and B, which are the su-
perposition of the two cavity modes, i.e., A = (a + b)/

√
2

and B = (a−b)/
√

2. As discussed above, under the condi-
tion g0 = 0 and �φ �= 0, the time-modulated atom-cavity
system is equivalent to two coupled cavities. Thus, in the
new normal mode representation, the effective Hamiltonian
of the whole system can be reduced to the form Heff →
h̄(ωc + Jeff )A†A + h̄(ωc − Jeff )B†B with ωc the frequency of
the cavity modes. One can find that the resonant frequencies
of the normal modes A and B are modified as ωA = ωc + Jeff

and ωB = ωc − Jeff , respectively. Thus, an incident photon
on resonance with the normal mode A or B will be nearly
completely reflected without transmission [which corresponds
to the reflection peaks or transmission dips in Fig. 2(b)] due
to the destructive interference. Moreover, both ωA and ωB are
closely related to the phase difference �φ = φa − φb due to
the fact that Je f f = η2 sin(φa − φb)/2νd . This suggests that,
for given η and νd , one can tune the frequency values where
perfect switching is attained by altering the relative modulated
phase between the two atom-cavity couplings. This also im-
plies that a dynamically modulated high-efficiency photonic
switch for photons with different frequencies can be realized.

To show this clearly, the transmission spectrum T and
the reflection spectrum R varying with �φ for an incident
single photon with a series of selected frequencies, i.e.,
�/ = 0, 0.5, 1, 2, are plotted in Fig. 4. It can be seen
from Figs. 4(a) and 4(b) that when the incident single photon
has frequencies around the resonant point, the photon can be

FIG. 5. The contour map of the transmission (a) and reflection
(b) spectrum as the function of both �/ and η/. Other common
parameters are the same as those shown in Fig. 2, except that �φ =
π/2.

tuned from nearly completely reflection (i.e., R ≈ 1, T ≈ 0)
to totally transmission (i.e., R ≈ 0, T ≈ 1) depending on �φ,
and vice versa. This means that a nearly ideal photonic switch
for photons with different frequencies can be implemented
by properly designing and adjusting the relative modulated
phase. However, we would like to point out that the reflected
photons cannot be tuned to transmit with a perfect transmis-
sion probability (i.e., T < 1) as the detuning |�| becomes
larger [see the red solid line in Figs. 4(c) and 4(d)], which
implies that when the selected frequencies of the incident
photons are far away from the resonant point, the efficiency
of the phase-sensitive single-photon switch decreases. In gen-
eral, this shortcoming could be overcome by further adjusting
the modulated amplitude η.

Below, we demonstrate how to control the single-photon
scattering through varying the modulated amplitude η for a
given �φ = π/2. The transmission and reflection probability
versus both the frequency detuning �/ and the modulated
amplitude η are plotted in Figs. 5(a) and 5(b), respectively.
It is obvious from Fig. 5 that the transmission and reflec-
tion spectrum are closely related to the modulated amplitude.
When η is very small, T and R remain nearly unchanged
with the increase of η, i.e., T ≈ 0 and R ≈ 1 at � = 0, which
means that both the transmission and reflection probabilities
are insensitive to the modulated amplitude. This is because,
when η is extremely weak, the composite Floquet atom-cavity
system is reduced to a single-mode cavity, which agrees well
with that discussed in Fig. 2(a). With η gradually increasing,
Jeff becomes nonzero; the effective coupling between the two
cavity modes plays an essential role in the spectral line shapes
and gives rise to a splitting of the resonant dip and peak, as
shown by the two bright blue and red zones in Figs. 5(a)
and 5(b), respectively. The width between the two dips or
peaks increases with the increase of η. According to what is
discussed in Figs. 3 and 4, this behavior suggests that the op-
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(a)

(b)

(c)

FIG. 6. The transmission and reflection probabilities as a func-
tion of the modulated amplitude for different photon frequencies with
�/ = 0.5, 1, 2 in (a–c), respectively. Other common parameters
are the same as those shown in Fig. 2, except that �φ = π/2.

timal switching point can be further shifted toward both sides
depending on η. Consequently, by carefully manipulating the
modulated amplitude, the proposed single-photon switch is
also efficient for the incident photons with frequencies far
away from the resonant point.

For further insight into this remarkable feature, we spe-
cially demonstrate how to control the switching probabilities
T and R by the modulated amplitude η for the case of a series
of selected frequencies, i.e., �/ = 0.5, 1, 2. It can be seen
from Fig. 6 that the transmission (reflection) probability of
photons with different frequencies can be tuned from T ≈ 0
(R ≈ 1) to T ≈ 1 (R ≈ 0) by increasing η. This implies that
the switching on and off state of the incident photons can
be effectively controlled by properly adjusting the modulated
amplitude, and a nearly ideal photonic switch for photons with
different frequencies far away from the resonant point can
be achieved. Furthermore, one can find that, as the photonic
frequency detuning |�| increases, a relatively high value of η

for the ideal photonic switch is needed. In principle, the pro-
posed dynamically modulated single-photon switch is valid
for photons within arbitrary frequency regimes.

B. Scattering spectra of a single photon with static
atom-cavity coupling g0 �= 0

In previous discussions, we mainly focused on how a
nearly ideal photonic switch can be realized and be controlled
by the time modulations in the absence of the static cou-
pling with g0 = 0. However, physically, the coupling strength
between the atom and the cavity modes plays an important
role in the photon scattering process. In what follows, the
dynamical modulations of such an ideal photonic switch are

FIG. 7. The contour map of the transmission spectrum as a
function of both �/ and g0/ for a series of modulated param-
eters, i.e., (η = 200, �φ = π/8), (η = 200, �φ = π/2), and
(η = 300, �φ = π/2) in (a–c), respectively. Other common pa-
rameters are the same as those shown in Fig. 2.

further demonstrated by considering the influences of the
static coupling with g0 �= 0.

In Fig. 7, the variations of the transmission proba-
bility T versus both �/ and g0 with different modu-
lated amplitudes and relative modulated phases are plotted,
i.e., (η = 200, �φ = π/8), (η = 200, �φ = π/2), and
(η = 300, �φ = π/2) in Figs. 7(a)–7(c), respectively. It
can be seen from Fig. 7 that the existence of the static coupling
strength modifies the transport behaviors of the waveguide
photons. There are two peaks (see the two bright red zones)
and three dips (see the three bright blue zones) in the trans-
mission spectrum, which is in sharp contrast to the obtained
results shown in Figs. 2 and 3. The underlying physics can be
explained as below. By dynamically modulating the coupling
strengths between the atom and the cavity modes with g0 = 0,
the effective coupling between the two cavity modes splits
the resonant transmission dip into two sideband dips, which
has been shown in Fig. 2. If the static coupling g0 �= 0 is
taken into account, the transmission peak [denoted by the red
solid line in Fig. 2(b)] can be further split into two sideband
ones due to the well-known Rabi splitting originating from the
interactions between the atom and the cavity modes [70]. As
a result, the three transmission dips denoted by the bright blue
zones in Fig. 7 correspond to three nondegenerate eigenmodes

with frequencies located at � = 0 and � = ±
√

J2
eff + 2g2

0

[with Jeff = η2 sin(φa − φb)/2νd ], respectively.
Obviously, the width between different dips (or the width

of each transmission peak) is sensitive to both the static
coupling strength and the dynamical modulated parameters.
Figure 7 shows that, increasing g0, the two sideband dips shift
toward both sides for a pair of selected η and �φ. Comparing
Figs. 7(a) and 7(b), for fixed g0 and η, a similar behavior
can be obtained by increasing the relative modulated phase
to �φ = π/2, and the width can be further broadened by
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FIG. 8. The transmission probabilities as a function of the static
coupling strength g0/ for different photon frequencies with �/ =
1, 1.5, 2. Other common parameters are the same as those shown in
Fig. 2, except that �φ = π/8.

tuning the modulated amplitude from η = 200 to η = 300

[as shown in Fig. 7(c)].
On the basis of what was discussed in Sec. III A, the ex-

istence of transmission peaks (or dips) with neighboring dips
(or peaks) in the photon scattering spectra is a key premise
for photon switching, and the increased number of the trans-
mission peaks and dips is beneficial for switching photons
with different frequencies. Thus, it is clear from Fig. 7 that
a dynamically modulated photonic switch for photons with
different frequencies far away from the resonant point can
still be achieved in the presence of the static coupling with
g0 �= 0. For further insight, the transmission probability ver-
sus the static coupling strength and the dynamical modulated
parameters are given in Figs. 8 and 9, respectively.

FIG. 9. The transmission probabilities as a function of the rel-
ative modulated phase with different modulated amplitudes. Other
common parameters are the same as those shown in Fig. 2, except
that g0 = .

In Fig. 8, we show how a high-efficiency photonic switch
for photons with different frequencies, i.e., �/ = 1, 1.5, 2,
can be implemented by manipulating the static coupling
strength g0. It can be seen that, for fixed η = 200 and �φ =
π/8, the static coupling g0 plays an important role in manip-
ulating the photonic switching. The transmission probability
can be tuned from T ≈ 0 to T ≈ 1 by increasing g0, which
means that the incident photons can effectively be switched on
or off through varying the static coupling strength. This result
is similar to that obtained in the previous static atom-cavity
systems, where the photonic switch is realized by tuning
the atom-cavity interaction strengths from the weak coupling
regimes to the strong ones (which might not be easy to real-
ize experimentally). However, we highlight that the proposed
switching scheme here can be effectively implemented within
the regime g0 <  (and even close to zero).

In Fig. 9, we further demonstrate how to achieve the
photonic switching by controlling the modulated parameters
with a fixed static coupling strength g0 = . The results
show again that the transmission probability T is a periodic
function of the relative modulated phase �φ in the presence
of the static coupling. The single-photon transport in the
waveguide can be switched on or off periodically by adjusting
the relative modulated phase. Within a period, the photons
with a selected frequency, i.e., � = 1.4, can be tuned from
nearly completely reflection to transmission with T ≈ 0.95;
see the red solid line. The switching probability can be further
improved to T ≈ 1 by increasing the modulated amplitude
to η = 300 (see the blue dashed line), which implies that
an ideal single-photon switch with nearly perfect switching
contrast is realized.

C. Physical implementation

In this section, we provide a brief discussion on the
experimental feasibility of our scheme under the existing ex-
perimental techniques. Different technologies and platforms
for physical implementation, realistic parameter values in
experiment, and possible experimental errors are addressed,
respectively.

Our scheme is composed of two single-mode cavities,
a two-level atom, and a one-dimensional waveguide. This
system can be achieved in superconducting circuits [71],
where the two-level atom can be a superconducting qubit,
the cavities can be two superconducting resonators, and the
waveguide can be a superconducting transmission line. In our
model, a key element is the time-modulated coupling between
the atom and the two cavity modes, which can be realized by
embedding a superconducting quantum interference device
(SQUID) between the qubit and the two resonators [72–74].
The effective coupling between the two resonators can be
realized and controlled through tuning the SQUIDs. Thus,
if the superconducting transmission line can be effectively
connected by the resonator, then the single-photon switch may
be demonstrated in the proposed system. Furthermore, this
scheme may also be implemented in optomechanical circuits
or a photonic-crystal resonator lattice, where the dynamical
modulation can be realized by applying an external time
periodic driven field via an auxiliary qubit or an intermediate
resonator [75,76].
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Next, we examine the realistic parameter space for physical
implementation of the dynamical single-photon switch in a
circuit-QED system. A key requirement for this physical im-
plementation is that the effective coupling strength between
the two resonators should be larger than the decoherence
rates of the resonators and the qubit, such that a photon can
propagate in the time-modulated system before it is damped.
Using the parameters presented in the numerical simulation,
we can obtain Jeff = 2. By setting /2π ≈ 5 MHz [77], the
effective coupling strength Jeff/2π is about 10 MHz, which is
well above the intrinsic decay rate of the resonators and the
qubit, estimated as ≈ 0.05 MHz. We note that the effective
coupling strength Jeff is proportional to the ratio of η2/νd .
As discussed in [78], νd ≈ 5η is large enough to separate the
Floquet bands. Thus, by setting η/2π ≈ 100 MHz as a typical
coupling constant attainable with modern circuit-QED tech-
nologies [79,80], one can also arrive at Jeff/2π ≈ 10 MHz.

Finally, we provide some remarks on the possible experi-
mental errors in the physical implementations. As discussed
in [65,81,82], the possible experimental error sources of our
scheme may include imperfections in the fabrication of the
sample; decoherence; possible inaccuracy in measuring the
system parameters, e.g., qubit-resonator coupling strengths;
and nonideality of the two modulation parameters (the ampli-
tude η and the frequency νd ). Among these, the nonideality of
the modulation parameters (which are limited by the dynami-
cal range of the hardware tunability) may be one of the main
sources of the total error. Fortunately, the hardware tunability
may be improved in the near future, and this nonideality error
can be significantly reduced by increasing η and νd .

IV. CONCLUSION

In conclusion, we have theoretically investigated
the single-photon scattering characteristics in a Floquet
waveguide-QED system which consists of a one-dimensional
waveguide, two single-mode cavities, and a two-level
atom. Different from previous works, where all the system
parameters are constant, we proposed an effective proposal to
control the single-photon scattering process by dynamically
modulating the coupling strength between the two-level atom
and the cavity modes. The results indicate that the scattering
properties of photons along the waveguide can effectively
be controlled by the side coupled Floquet atom-cavity
system, and an ideal single-photon switch with nearly perfect
switching efficiency for photons with different frequencies
can be achieved by dynamically manipulating the modulated
amplitude and the relative modulated phase, regardless of
whether the static coupling between the atom and the two
cavity modes is considered or not. The application of a
dynamical modulated atom-cavity coupling strength instead
of a purely static one makes our photonic switch more
tunable, which should be important and meaningful for future
quantum network communication.

Furthermore, we would like to note that the proposed dy-
namical mechanism for controlling single-photon transport is
general, which can easily and efficiently be applied to var-
ious types of nano- or microscale hybrid quantum systems
involving multiple photons and even other neutral polari-
tons. On the other hand, our proposal might be extended to

many-body quantum systems, e.g., photonic resonator lattices,
which offers an ideal platform for quantum simulations in
high-dimensional topological physics.
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APPENDIX: DERIVATION OF EFFECTIVE HAMILTONIAN

In order to obtain the effective Hamiltonian shown in
Eq. (7), the Hamiltonian of the considered atom-cavity system
can be rewritten as

Hg
S = 1

2
h̄ωegσz +

∑
c=a,b

h̄ωcavc†c +
∑

c=a,b

[h̄gc(t )c†σge + H.c.].

(A1)

The first two terms are the Hamiltonians of the atom and
the two cavities, respectively. The last term is the interaction
between the cavity mode and the atom. ωeg is the atomic tran-
sition frequency and ωcav is the cavity frequency. σge = |g〉〈e|
and σz = |e〉〈e| − |g〉〈g| are the atomic lowering operator and
the z-component Pauli matrix, respectively. c† and c (c = a, b)
denote the bosonic creation and annihilation operators of the
cavity mode. The coupling strengths between cavity c and
the atom are periodically modulated gc(t ) = g0 + η cos(νdt +
φc), (c = a, b) with η being the modulating amplitude, νd

the modulating frequency, φc the modulating phase, and g0

the static coupling constant. Such time-modulated coupling
constants are usually found in Hamiltonians describing the
generation of synthetic magnetic fields in superconducting-
circuit and photonic resonator lattices [75,81,83].

Assuming V g
0 = h̄ωcavσz/2 + h̄ωcav(a†a + b†b), we can

transform the Hamiltonian in Eq. (A1) into a frame rotating
with V g

0 ,

Hg
I = U0(t )Hg

SU −1
0 (t ) − V g

0 (A2)

where U0(t ) = exp[
∫

i
h̄V0dt ′] is the unitary evolution opera-

tor. Thus, the resultant Hamiltonian reduces to

Hg
I = 1

2
h̄δσz + h̄

∑
c=a,b

[gc(t )c†σge + H.c.], (A3)

where δ = ωeg − ωcav. By substituting gc(t ) into Eq. (A3), we
can expand this Hamiltonian as a sum Hg

I = Hg
0 + Hg

±1e±iνd t

with

Hg
0 = 1

2
h̄δσz + h̄g0

∑
c=a,b

(c†σge + σegc), (A4)

Hg
±1 = h̄

η

2

∑
c=a,b

(c†σge + σegc) exp(±iφc). (A5)
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Note that Hg
±1 are not Hermitian themselves, but Hg

+1 is the
Hermitian conjugate of Hg

−1. According to the Floquet theory
[63], for the sake of simplicity, we assume the separation
between the Floquet sidebands is large enough to make all
the high-order frequency component far off resonant, e.g.,
νd � g0, η, and δ, so the perturbation theory can be ap-
plied. The effective Hamiltonian can be obtained by standard
second-order perturbation as [64–67]

Hg
eff = Hg

0 + Hg
2nd, (A6)

with

Hg
2nd = 1

h̄νd

[
Hg

+1, Hg
−1

]

= ih̄Jeff (σee − σgg)(b†a − a†b), (A7)

where Jeff = η2

2νd
sin(φa − φb). Combing Eqs. (A4)–(A7) and

given δ = 0, we can derive

Hg
eff = h̄g0

∑
c=a,b

(c†σge + σegc)

+ ih̄Jeff (σee − σgg)(b†a − a†b), (A8)

which is the desired effective Hamiltonian shown in
Eq. (7).

It is worth pointing out that, other than modulating the
coupling strengths between the atom and the cavity modes,
such effective Hamiltonian can also be obtained by al-
ternatively modulating the cavity frequencies νc(t ) = ν +
� sin(νdt + φc), c = a, b with � being the modulating ampli-
tude, νd the modulating frequency, φc the modulating phase,
and ν the cavity idle frequency.

Under the rotating-wave approximation, the Hamiltonian
of the system can now be written as

H cav
S = 1

2
h̄ωegσz +

∑
c=a,b

h̄νc(t )c†c +
∑

c=a,b

h̄gν (σegc + H.c.).

(A9)

Along a similar line as above, we can transform the
Hamiltonian H cav

S into a frame rotating with V cav
0 = h̄νσz/2 +

h̄ν(a†a + b†b); then the Hamiltonian has the following

form:

H cav
I = 1

2
h̄δegσz +

∑
c=a,b

h̄gν (σegcei f cos(νd t+φc ) + H.c.).

(A10)

Here δeg = ωeg − ν is the detuning between the atom
and cavity idle frequency; f = �/νd is the cavity mod-
ulating parameter. Using the relationship ei f cos(νd t+φc ) =∑∞

n=−∞ inJn( f )ein(νd t+φc ), where Jn( f ) is the nth − order
Bessel’s function of the first kind, we expand the interaction
Hamiltonian into a Fourier series,

H cav
I = H cav

0 +
±∞∑
n �=0

H cav
n einνd t , (A11)

with

H cav
0 = h̄δegσz/2 + h̄gνJ0( f )

∑
c=a,b

(σegc + H.c.),

H cav
n = h̄gν inJn( f )

∑
c=a,b

[σegc + (−1)nc†σge]einφc . (A12)

H cav
n is the Hermitian conjugate of H cav

−n . Here n should
be integers running from negative infinity to positive infinity
and n �= 0. Under the condition νd � √

Ngν and δeg, with N
being the total excitation number of the atom and photons, the
perturbation theory is valid. The effective Hamiltonian can be
obtained by standard second-order perturbation as [63–67]

H cav
eff = H cav

0 + H cav
2nd, (A13)

with

H cav
2nd =

∞∑
n=1

1

h̄nνd
[Hn, H−n]

= ih̄κσz(b†a − a†b), (A14)

where κ = g2
νβ( f )/νd and β( f ) =∑∞

n=1 2J2
n ( f ) sin[n(φa − φb)]/n. Thus, given δeg = 0, a

similar effective Hamiltonian can be obtained as

H cav
eff = h̄gνJ0( f )

∑
c=a,b

(σegc + H.c.) + ih̄κσz(b†a − a†b).

(A15)
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