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Signatures of cooperative emission in photon coincidence:
Superradiance versus measurement-induced cooperativity

Moritz Cygorek,1 Eleanor D. Scerri ,1 Ted S. Santana ,2 Zhe X. Koong ,1 Brian D. Gerardot,1 and Erik M. Gauger1

1SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
2National Physical Laboratory, Hampton Road, Teddington TW11 0LW, England, United Kingdom

(Received 15 August 2022; accepted 2 February 2023; published 17 February 2023)

Indistinguishable quantum emitters confined to length scales smaller than the wavelength of the light be-
come superradiant. Compared to uncorrelated and distinguishable emitters, superradiance results in qualitative
modifications of optical signals such as photon coincidences. However, recent experiments revealed that similar
signatures can also be obtained in situations where emitters are too far separated to be superradiant if correlations
between emitters are induced by the wave-function collapse during an emission-angle-selective photon detection
event. Here, we compare two sources for cooperative emission, superradiance and measurement-induced cooper-
ativity, and analyze their impact on time-dependent optical signals. We find that an antidip in photon coincidences
at zero time delay is a signature of interemitter correlations in general but does not unambiguously prove the
presence of superradiance. This suggests that photon coincidences at zero time delay alone are not sufficient
and time-dependent data are necessary to clearly demonstrate a superradiant enhancement of the spontaneous
radiative decay rate.
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I. INTRODUCTION

Spontaneous photon emission is one of the most elemen-
tary processes in quantum physics [1,2]. In many situations,
it is appropriately described by the conversion of excitations
of quantum emitters into photons with some fixed rate �

depending on the particular emitter [1]. However, a closer look
reveals that even spontaneous emission can reveal interesting
insights into fundamental aspects of quantum mechanics. For
example, it has been realized that radiative decay not only
depends on the emitters themselves but also on their photonic
environment. Drexhage et al. [3] famously observed substan-
tial changes of photon emission rates when emitters are placed
close to a mirror. Nowadays, photonic structures like waveg-
uides [4,5], optical microcavities [6,7], or photonic crystals
[8,9] have become key elements of solid-state quantum de-
vices relying on efficient photon extraction via the Purcell
effect or on spectral filtering via resonances in the photonic
environment [10–14].

Moreover, even the emission into free space can reveal
intricate effects of cooperative emission when multiple in-
distinguishable quantum emitters are involved, such as in the
case of superradiance [15–17]: On a semiclassical level, su-
perradiance can be understood by the fact that the spontaneous
emission rate of a single quantum emitter γ is proportional to
the modulus square of the transition dipole d. Confining N
emitters to volumes smaller than the wavelength of the light,
so that the light field effectively interacts with a single large
dipole D = Nd, hence yields a spontaneous emission rate of
up to N2γ as opposed to the emission from N individual
emitters, each with rate γ . A more detailed quantum-
mechanical treatment [15,16] reveals emission to take place

via a cascade through the Dicke ladder, a set of strongly
correlated states with excitations equally distributed across
many emitters. The superextensive light-matter coupling is
also the reason why the reverse process, superabsorption
[18,19], has been proposed for applications, e.g., in quantum
batteries [20].

Even though applications typically rely on cooperative
effects in the large-N limit, experiments can also provide
valuable insights for samples with only N = 2 or 3 emit-
ters as these often facilitate a direct control, e.g., varying
the degree of indistinguishability by tuning emitters in and
out of resonance [4,21,22]. In the low-N limit, photon co-
incidence measurements are particularly useful because the
violation of the upper bound of zero-delay coincidences
g(2)(0) � (N − 1)/N for uncorrelated emitters [23] is clear
proof for interemitter correlations (see Appendix B). For ex-
ample, values of g(2)(0) ≈ 1 have been used as the main piece
of evidence for superradiance of semiconductor quantum dots
(QDs) coupled to a nanophotonic waveguide in the case of
N = 2 emitters [4]. Similarly, for N = 3 quantum dots, values
exceeding g(2)(0) > 1 have been reported [21].

Recently, the radiation pattern of light scattering at two
identical trapped ions [24,25] has added yet another dimen-
sion to the discussion of cooperative emission. There, photon
coincidences g(2)(0) have been demonstrated to exceed or fall
below the expected value of 1/2 for two identical uncorrelated
emitters, depending on the detection angle. This can be ex-
plained by a measurement-induced preparation of a correlated
Dicke-like state by the first photon detection event, which
shapes the radiation pattern for the subsequent emission of
a second photon [26,27]. It is noteworthy that these results
are also found when the separation of the emitters exceeds the
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wavelength of the light, where superradiance, as discussed by
Dicke [15], is not expected.

We have recently demonstrated a solid-state quantum de-
vice where two semiconductor QDs can be electrically tuned
into resonance [22]. This device operates in a similar regime
as the experiments on trapped ions in that the emitters are
spectrally indistinguishable but the spatial separation exceeds
the value for which superradiance is expected. In contrast to
Refs. [24,25], we additionally investigated temporal aspects
such as free radiative decay for situations corresponding to
distinguishable and indistinguishable emitters, respectively,
using different driving conditions like continuous pumping
and pulsed excitation [22]. Detecting photons in the direction
perpendicular to the plane containing the QDs, we indeed
found signatures in photon coincidences resembling those
expected from superradiance, such as values of g(2)(0) > 1/2,
but at the same time no evidence of superradiant rate enhance-
ment was observed in the free radiative decay.

These observations raise important conceptual questions:
How exactly is the physical situation in Refs. [22,24,25] re-
lated to superradiance? If an antidip in g(2)(τ ) with g(2)(0)
exceeding the limit for independent emitters is not a unique
signature of superradiance, how can both situations be distin-
guished by measurement?

While many aspects of superradiance, measurement-
induced coherence, and interference of light emitted from
quantum emitters at fixed positions have been thoroughly
investigated (see, e.g., Refs. [26,28,29]), most previous works
either neglect dephasing or primarily focus on static quanti-
ties such as photon coincidences g(2)(0) at zero delay time
only. To obtain a realistic description of cooperative emis-
sion including coherent and time-dependent driving as well
as unavoidable dephasing in solid-state systems, we here
rephrase the emission dynamics employing an open quan-
tum systems framework for the density matrix of the emitter
system. This allows us to treat superradiance as well as
measurement-induced cooperative photon emission within a
single framework, and to discuss common features as well as
differences.

Before presenting our main results relating to time-
dependent optical signals, we introduce our framework
through a detailed pedagogical derivation, also applying it
to elementary examples and recovering well-known limiting
cases [15,28,29]. To preclude confusion, here, we stick to
definitions where we use the term “cooperative emission” to
refer to general situations where more than one emitter is in-
volved in a single-photon emission process, while we reserve
“superradiance” exclusively for situations where cooperative
emission additionally leads to an increase of the overall ra-
diative decay rate, i.e., to enhanced radiance. In these terms,
Dicke superradiance and measurement-induced cooperativity
by emission-angle-selective measurement can be viewed as
two different instances of cooperative emission, even though
the latter does not show any superradiant rate enhancement.

Once these concepts have been clarified, we use our
framework to present numerical and analytical calculations
of time-dependent photon coincidences for continuously
pumped emitters as well as for emitters under pulsed driv-
ing, while simultaneously properly accounting for effects of
dephasing. Our results elucidate how signatures of coopera-

tive emission manifest in experimentally relevant situations,
and highlight pitfalls relating to the correct interpretation of
measured data. As a key insight we find that, in the presence
of dephasing, the photon coincidence trace for measurement-
induced cooperativity is qualitatively remarkably similar to
that of superradiant decay. This reflects the fact that both rely
on the presence of correlations between emitters in general
rather than being an unequivocal indicator of a superradi-
ant decay rate enhancement. Similarly, care has to be taken
when interpreting time-integrated photon coincidences af-
ter pulsed driving: For single and indistinguishable emitters,
time-integrated coincidences are found to have the same value
as the corresponding zero-delay coincidences g(2)(0) for in-
coherently pumped emitters, but the link between these two
quantities generally does not carry over to cooperatively emit-
ting quantum emitters.

This paper is structured as follows: First we (re-)derive es-
tablished results for radiative decay and photon coincidences
from two emitters with identical dipoles in the cases of dis-
tinguishable and superradiant emitters. We then generalize
the treatment to obtain a framework in which general photon
emission as well as the effects of angle-resolved detection can
be discussed, which naturally leads to the observation of co-
operative emission due to selective measurement. Finally, we
calculate concrete optical signals such as the full delay-time
dependent photon coincidences g(2)(τ ) in this regime under
the assumption of incoherent continuous driving as well as
time-integrated coincidences for a system of emitters driven
by short laser pulses.

II. RADIATIVE DECAY OF DISTINGUISHABLE
AND SUPERRADIANT EMITTERS

Throughout this paper, we consider the case of two emitters
located at positions r1 = −r/2 and r2 = r/2, respectively.
Modeling the ith emitter as a two-level system with ground
and excited states |gi〉 and |ei〉, respectively, and introducing
operators σ+

i = |ei〉〈gi| and σ−
i = |gi〉〈ei|, the total Hamilto-

nian of the emitter system coupled to the light field modes is

H = H0 + HI , (1a)

H0 =
∑
i=1,2

h̄ωiσ
+
i σ−

i +
∑
k,λ

h̄ωka†
k,λak,λ, (1b)

HI =
∑
k,λ

(hk,λa†
k,λ + h†

k,λak,λ), (1c)

hk,λ = h̄(g1,k,λ eik·r/2σ−
1 + g2,k,λ e−ik·r/2σ−

2 ), (1d)

where a†
k,λ and ak,λ are creation and annihilation operators of

photons with wave vector k and polarization λ, h̄ωk is the
energy of the respective photon mode, and h̄ωi is the funda-
mental transition energy of the ith emitter. Here, we assume
identical light-matter coupling strengths g1,k,λ = g2,k,λ = gk,λ

for both emitters and all photon modes k, where gk,λ = (d̂ ·
ek,λ)2g with constant g, normalized direction of the dipole
d̂ = d/|d|, and polarization vector ek,λ. For a more convenient
notation, we henceforth drop the polarization index λ unless
necessary.

If the emitters are spectrally distinguishable, i.e., there is
vanishing overlap between the spectral lines at h̄ω1 and h̄ω2,
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FIG. 1. Level scheme for radiative decay in distinguishable
(a) and superradiant (b) emitters. For ideal superradiance, γS = 2γ

while transitions involving the antisymmetric Dicke state are com-
pletely dark. (c) Time dependence of emitted intensity for cases
(a) and (b) assuming an initially prepared doubly excited state
|e1, e2〉.

radiative decay can be described by nondegenerate pertur-
bation theory using Fermi’s “golden rule,” which predicts a
decay rate

γi→ f = 2π

h̄

∑
k

|〈 f |hk|i〉|2δ(Ei − E f − h̄ωk ), (2)

where |i〉 and | f 〉 are the initial and final states of the decay
process, which are eigenstates of the unperturbed problem H0,
and Ei and E f are the corresponding energies. For two distin-
guishable emitters, the energy eigenstates are product states
of the emitters in ground or excited states |e1, e2〉, |e1, g2〉,
|g1, e2〉, and |g1, g2〉.

Assuming a flat photon density of states D(E ) =∑
k,λ δ(E − h̄ωk )(d̂ · ek,λ)2 = D within the range of the rele-

vant energies, the radiative decay rates for all processes where
one excitation is emitted as a photon, as depicted in Fig. 1(a),
are identical: γ = 2π h̄g2D.

For spectrally indistinguishable emitters with ω1 = ω2,
nondegenerate perturbation theory no longer applies and the
degeneracy has to be addressed explicitly. An important
special case is the superradiant regime, where the distance
between emitters is much smaller than the wavelength of the
light k · r ≈ 0. Then, the phase factors in the interaction term
hk are e±ik·r/2 ≈ 1 and one can replace hk = hS with

hS = h̄
√

2gσ−
S , (3)

with

σ−
S/A = 1√

2
(σ−

1 ± σ−
2 ) = |g1, g2〉〈ψS/A| + |ψS/A〉〈e1, e2|,

(4)

where |ψS/A〉 = 1√
2
(|e1, g2〉 ± |g1, e2〉) are the symmetric and

antisymmetric Dicke states, respectively. As the antisym-
metric state decouples from the dynamics, nondegenerate
perturbation theory can now be applied to the transitions be-
tween the remaining three-level system. With Fermi’s “golden
rule,” one finds a cascade of transitions through the symmetric
Dicke state |ψS〉, as depicted in Fig. 1(b), with rates γS = 2γ .
This rate γS is enhanced by a factor of 2 with respect to the
radiative decay rate of a single emitter γ , originating from
the enhanced dipole (by a factor of

√
2) in the interaction

hS in Eq. (3), which is a manifestation of the cooperation
of both emitters in both emission processes. Note that this
enhancement affects only the rate for individual transitions,
while the overall emission rate also depends on the number of
decay channels. As there are two channels for the first photon
emission in the situation of two distinguishable emitters, the
overall rate for the emission of a first photon is identical to
that in the superradiant case with only one channel at twice
the rate. It is the emission of the second photon, where in
both cases only a single channel exists, that the superradiant
rate enhancement leads to overall increased photon emission.
The cascaded emission through the superradiant three-level
system also leads to a distinct nonexponential dynamics of the
emitted intensity after excitation of the doubly excited state as
depicted in Fig. 1(c) (see Appendix E or Ref. [16] for explicit
expressions).

Finally, to assess signatures of superradiance on optical
signals, the photon detection process has to be modeled. A
pointlike detector in the far field at a displacement D with
respect to the center of the emitters picks up only photons
with a fixed wave vector k whose direction is parallel to D
and whose magnitude is determined by the detected energy
h̄ω = h̄c|k|. The detected intensity signal is given by

Ik(t ) = 1

�τM
〈a†

k(t )ak(t )〉, (5)

where �τM is a characteristic timescale of the measure-
ment, which depends on the detector (see discussion in
Appendix A). Then, the time integral

∫ t
t0

dt ′ Ik(t ′) yields the
expectation value of the number of clicks on the detector from
time t0 to time t .

A finite-size detector is described by a collection of point-
like detectors using the mask function ηk, which is ηk = 1 for
wave numbers k that are picked up by the detector and ηk = 0
otherwise. The corresponding intensity signal is

I (t ) =
∑

k

ηk

�τM
〈a†

k(t )ak(t )〉. (6)

Similarly, photon coincidences are given by

G(2)(t, τ ) =
∑
kk′

ηkηk′

�τ 2
M

〈a†
k(t )a†

k′ (t + τ )ak′ (t + τ )ak(t )〉, (7)

g(2)(t, τ ) = G(2)(t, τ )

I (t )I (t + τ )
, (8)

for unnormalized and normalized photon coincidences, re-
spectively.

In Appendix A, we derive in detail how the photon
emission can be expressed in terms of the state of the
emitter system for cases of distinguishable and indistinguish-
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able emitters. Defining the occupations of the states |e1, e2〉,
|e1, g2〉, |g1, e2〉, and |ψS〉, as ne1,e2 , ne1,g2 , ng1,e2 , and nS ,
respectively, the intensities from distinguishable and superra-
diant emitters are

Idist = I0

∑
i=1,2

〈σ+
i σ−

i 〉 = I0
(
2ne1,e2 + ne1,g2 + ng1,e2

)
, (9)

Isup =2I0〈σ+
S σ−

S 〉 = 2I0
(
ne1,e2 + nS

)
, (10)

respectively, where I0 = ∑
k ηkγ

single
k and γ

single
k =

2π h̄g2
kδ(h̄ωk − h̄ω) is the rate of photon emission from

a single emitter into the photon mode with wave vector k
derived in Appendix A.

The corresponding coincidences are

G(2)
dist(t, τ ) = I2

0

∑
i, j=1,2

〈σ+
i (t )σ+

j (t + τ )σ−
j (t + τ )σ−

i (t )〉,

(11)

G(2)
sup(t, τ ) = 4I2

0 〈σ+
S (t )σ+

S (t + τ )σ−
S (t + τ )σ−

S (t )〉. (12)

The normalized zero-delay coincidences g(2)(t, 0) can be
obtained noting that for the distinguishable case σ−

i σ−
i = 0

while σ−
j �=iσ

−
i = |g1, g2〉〈e1, e2|, so that

g(2)
dist(t, 0) = 2ne1,e2 (t )[

2ne1,e2 (t ) + ne1,g2 (t ) + ng1,e2 (t )
]2 , (13)

which, for initially uncorrelated emitters with excited-state
populations n1 and n2, respectively, becomes

g(2)
dist(t, 0) = 2n1(t )n2(t )

[n1(t ) + n2(t )]2
� 1

2
, (14)

where g(2)
dist(t, 0) = 1/2 for equally excited emitters n1(t ) =

n2(t ) with identical dipoles.
Equation (14) sets the limit for photon coincidences from

two independent emitters without involvement of correlations
between the emitters, irrespective of the driving or other sys-
tem parameters. As discussed in more detail in Appendix B,
a violation of Eq. (14) constitutes a clear signature of cooper-
ative effects, which requires emitters to be correlated at some
point during the photon emission.

For superradiant emitters, σ−
S σ−

S = |g1, g2〉〈e1, e2|, so the
zero-delay coincidences are

g(2)
sup(t, 0) = ne1,e2 (t )[

ne1,e2 (t ) + nS (t )
]2 , (15)

which, for initially uncorrelated and equally occupied emitter
states, becomes g(2)

sup(t, 0) = 1, a value that is twice as large as
the limit Eq. (14) for emission without cooperative effects.

Typically, photon coincidences are measured as a function
of the delay time τ , which additionally includes information
about the dynamics. As long as the photon environment is
not strongly structured as, e.g., in single-mode microcavities,
and, hence, does not show significant non-Markovian memory
effects, the time evolution can be well described by Lindblad
master equations. For single, distinguishable, and superradi-
ant emitters, which are pumped incoherently, the respective
master equations are

∂

∂t
ρsingle = γpD[σ+

1 ](ρsingle) + γD[σ−
1 ](ρsingle), (16)

∂

∂t
ρdist = γpD[σ+

1 ](ρdist ) + γpD[σ+
2 ](ρdist )

+ γD[σ−
1 ](ρdist ) + γD[σ−

2 ](ρdist ), (17)

∂

∂t
ρsup = γpD[σ+

1 ](ρsup) + γpD[σ+
2 ](ρsup)

+ γdD[σ+
1 σ−

1 ](ρsup) + γdD[σ+
2 σ−

2 ](ρsup)

+ γSD[σ−
S ](ρsup), (18)

respectively, where

D[L](ρ) = LρL† − 1
2 (L†Lρ + ρL†L) (19)

is the Lindblad superoperator, γ is the radiative decay rate
of a single emitter, γp is the pump rate, and γS = 2γ is the
superradiant decay rate. Additionally, in the superradiant case,
we have introduced local dephasing rates γd , which also leads
to the decay of interemitter correlations.

Generally, two-time correlation functions of the form
〈a†

k(t )a†
k′ (t + τ )ak′ (t + τ )ak(t )〉 are obtained using the quan-

tum regression theorem [30,31] by propagating a density
matrix according to the respective Lindblad master equa-
tions up to time t . Applying the respective operators, one
defines the unnormalized pseudo density matrices ρ ′(0) =
akρ(t )a†

k. The latter is then propagated using the same master
equation for a time τ , at which the correlation function is eval-
uated as 〈a†

k(t )a†
k′ (t + τ )ak′ (t + τ )ak(t )〉 = Tr[a†

k′ak′ρ ′(τ )].
With this approach, the delay-time dependent coincidences

g(2)(t, τ ) from the stationary state t → ∞ can be calculated
analytically for single and indistinguishable emitters as (see
Appendix C)

g(2)
single(∞, τ ) = 1 − e−(γ+γp)τ , (20)

g(2)
dist(∞, τ ) = 1 − 1

2 e−(γ+γp)τ . (21)

The coincidences for the superradiant case are calculated nu-
merically.

The delay-time dependence of g(2)(∞, τ ) for the three
cases are depicted in Fig. 2. As predicted analytically, the
coincidences for single and distinguishable emitters show a
dip at τ = 0 with g(2)

single(∞, 0) = 0 and g(2)
dist(∞, 0) = 1/2,

respectively. In contrast, coincidences in the superradiant case
feature an antidip with values g(2)

sup(∞, 0) > 1/2. The height
of the antidip g(2)

sup(∞, 0) depends on the driving conditions
like the pump rate γp as shown in Fig. 2(b). In line with
Eq. (15), g(2)

sup(t, 0) = 1 when the emitters are uncorrelated at
time t . This is the case for the stationary state at special driving
conditions γp = γ = γS/2. Alternatively, the stationary state
becomes uncorrelated if correlations introduced by driving
and losses are suppressed by strong dephasing. Indeed, as
depicted in Fig. 2(c), g(2)

sup(∞, 0) approaches 1 with increasing
dephasing rate γd .

III. COOPERATIVE EMISSION
BEYOND SUPERRADIANCE

So far, we have discussed distinguishable and superradi-
ant emitters, which are limiting cases of the Hamiltonian
in Eq. (1) where the phase factors e±ik·r in the light-matter
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(a) (b) (c)

FIG. 2. Photon coincidences g(2)(t, τ ) from the stationary state (t → ∞) of continuously and incoherently pumped emitters for (a) a single
emitter and two distinguishable emitters (for γp = γ ) and (b) two superradiant emitters with superradiant decay rate γS = 2γ and different
pump rates γp without additional dephasing γd = 0. (c) Superradiant emission from two emitters with additional local dephasing γd at pump
rate γp = 0.5γ .

coupling are either irrelevant or unity. We now consider the
more general regime of spectrally indistinguishable emitters
where the condition for free-space superradiance, namely
interemitter distances r 
 λ being much smaller than wave-
length of the light, is dropped. Then, the phase factors in
the coupling play a crucial and nontrivial role. At the same
time, the condition ω1 = ω2 for spectrally indistinguishable
emitters again precludes a straightforward application of
nondegenerate perturbation theory to describe the emission
process. Here, we solve this problem by describing the inter-
action with each light field mode labeled by its wave vector
k as an independent decay channel. For each channel, a situ-
ation analogous to that in the superradiant case emerges. The
overall dynamics then follows from interference between the
individual decay processes.

A. Radiative decay

In analogy to the superradiant case, we express the interac-
tion Hamiltonian as

HI =
∑

k

h̄
√

2gk(σ−
k a†

k + σ+
k ak ), (22)

where we define the lowering and raising operators

σ−
k = 1√

2
(eik·r/2σ−

1 + e−ik·r/2σ−
2 ) (23)

and σ+
k = (σ−

k )†, which describe transitions

σ−
k = |g1, g2〉〈ψk| + |ψk〉〈e1, e2| (24)

through the intermediate state

|ψk〉 = 1√
2

(e−ik·r/2|e1, g2〉 + eik·r/2|g1, e2〉). (25)

Thus, for a fixed vector k, the state |ψk〉 plays a similar
role as the symmetric Dicke state |ψS〉 in the superradiant
case [compare Fig. 3(a) with Fig. 1(b)], albeit with different
intermediate states |ψk〉 and |ψk′ 〉 for different wave vectors k
and k′. Each wave vector k constitutes a decay channel from
the doubly excited state to the ground state via an intermediate
state |ψk〉, which is described by a Lindblad term γkD[σ−

k ](ρ)

with rate (see Appendix A)

γk = 4π h̄g2
kδ(h̄ωk − h̄ωi ). (26)

This description serves several purposes: On the one hand,
the decay channels characterize the extraction of k-dependent
emitted intensities and, thus, link the radiation pattern to the
quantum state of the emitter system. On the other hand, due
to conservation of excitations, the free radiative decay of the
emitter system can be obtained by summing over the Lindbla-
dians of all decay channels:

∂

∂t
ρ =

∑
k

γk

(
σ−

k ρσ+
k − 1

2
(σ+

k σ−
k ρ + ρσ+

k σ−
k )

)
. (27)

(a)

(b)

(c)

FIG. 3. (a) Radiative decay processes for general indistinguish-
able emitters involving a single-photon wave vector k and (b) its
overall effect using a density-matrix description. (c) Effective emis-
sion rate γ eff

2 of the second photon as a function of the distance r
between the emitters for detection angle θm ≈ 54.74◦.
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With the concrete expressions for operators σ±
k in Eq. (23),

we can alternatively write this master equation

∂

∂t
ρ = γsupD[σ−

S ](ρ) + γind{D[σ−
1 ](ρ) + D[σ−

2 ](ρ)} (28)

in terms of effective decay channels of the form of superradi-
ant and independent decay, respectively, with rates

γsup =
∑

k

γkeik·r, (29)

γind =
∑

k

γk
1

2
(1 − eik·r ) = γ − 1

2
γsup, (30)

where γ is again the radiative decay rate of a single emitter.
Ignoring the radiation pattern of the dipole, i.e., assuming

k-independent couplings gk = g, integration over k yields

γsup = 2γ

∑
k δ(h̄ωk − h̄ω)eik·r∑

k δ(h̄ωk − h̄ω)
= 2γ

sin(kr)

kr
. (31)

Including dipole radiation of identical emitters by account-
ing for light polarization ek,λ ⊥ k perpendicular to the wave
propagation via gk,λ = g(d̂ · ek,λ)2, where d̂ denotes the nor-
malized direction of the dipoles, and summing over λ = 1, 2
yields [16,32]

γsup = 3γ

{[
1 − (d̂ · r)2

r2

]
sin kr

kr

+
[

1 − 3
(d̂ · r)2

r2

][
cos kr

(kr)2
− sin kr

(kr)3

]}
. (32)

For simplicity, here, we focus on the situation of dipoles tilted
by an angle θm ≈ 54.74◦ with respect to the distance vec-
tor between the emitters, where (d̂ · r)2/r2 = cos2 θm = 1/3,
where Eq. (31) is obtained as a special case of Eq. (32).

In this case, it is particularly clear that the master equa-
tion (28) reproduces the radiative decay terms in Eqs. (17)
and (18) in the respective limits r  λ, where γind = γ and
γsup = 0, and r 
 λ, where γind = 0 and γS = γsup = 2γ .

The net effect of the master equation (28) for a system
initially prepared in the doubly excited state |e1, e2〉 can be
visualized [see Fig. 3(b)] as transitions involving an interme-
diate state expressed as a mixed-state density matrix ρinterm.
This is obtained by equating the right-hand side of Eq. (28)
evaluated for ρ = |e1, e2〉〈e1, e2| with γ eff

1 ρinterm, where ρinterm

is normalized to trace 1 and the norm defines the effective first
photon emission rate γ eff

1 . This yields

ρinterm =
∑

k

γk

2γ
|ψk〉〈ψk|

= 1

2

[
|e1, g2〉〈e1, g2| + |g1, e2〉〈g1, e2|

+ sin(kr)

kr
(|e1, g2〉〈g1, e2| + |g1, e2〉〈e1, g2|)

]
.

(33)

The first photon emission rate γ eff
1 = 2γ , irrespective of the

distance between emitters. The emission of a second photon
from the intermediate state, on the other hand, depends on
the overlap of the intermediate state with the respective decay

(a) (b)

FIG. 4. Sketch of photon coincidence setups. (a) Coincidences
recorded from two detectors. The detectors D1 and D2 predominantly
register photons with wave vectors k close to reference wave vectors
k(i)

0 , which are determined by the relative positioning of the detectors
with respect to the emitters. (b) Hanbury Brown–Twiss setup measur-
ing coincidences of photons in the same direction k(1)

0 = k(2)
0 = k0.

Photons with different wave vectors k �= k(1)
0 , k(2)

0 are relevant for the
dynamics as they take part in radiative decay processes, but do not
contribute to the detected signals.

channel:

γ eff
2 =

∑
k

γk〈ψk|ρinterm|ψk〉 = γ

[
1 +

(
sin(kr)

kr

)2]
. (34)

The effective second photon emission rate γ eff
2 is shown

in Fig. 3(c) as a function of the distance between the emitters.
For small distances r 
 λ, one recovers the superradiant limit
with γ eff

2 = γ eff
1 = 2γ . At finite distances, the second photon

emission rate decreases and eventually reaches values around
γ eff

2 = γ eff
1 /2 = γ at r � λ/2.

Thus, for large distances, the free radiative decay of two
indistinguishable emitters behaves just like that of distin-
guishable or independent emitters, where two emitters can
contribute to the first emission process, while, once one emit-
ter is deexcited, only the remaining emitter contributes to
the emission of the second photon. No sign of cooperative
emission is found in this regime when only the free radiative
decay is considered.

B. Photon coincidences

The reason why radiative decay alone does not lead to
visible cooperative emission effects is related to the integra-
tion over all accessible light field modes (summation over
k). This situation changes markedly when k-resolved quan-
tities are considered [24,25]. For example, measuring photon
coincidences using two detectors, as depicted in Fig. 4, one
usually collects photons emitted into a limited solid angle
determined by the optical beam path as well as the position
of the detectors relative to the emitters. Here, we assume two
detectors with detection efficiencies η

(1)
k and η

(2)
k with finite

support narrowly localized around reference wave vectors k(1)
0

023718-6



SIGNATURES OF COOPERATIVE EMISSION IN PHOTON … PHYSICAL REVIEW A 107, 023718 (2023)

and k(2)
0 , respectively, i.e.,

η
(l )
k =

{
η0, k ≈ k(l )

0 ,

0, else.
(35)

The measured coincidence signal for wave-vector-selected
photons can then be expressed as

g(2)
sel (t, τ ) = G(2)

sel (t, τ )

Isel(t )Isel(t + τ )
, (36)

G(2)
sel (t, τ ) =

∑
k,k′=k(1)

0 ,k(2)
0

〈σ †
k (t )σ †

k′ (t + τ )σk′ (t + τ )σk(t )〉,

(37)

Isel(t ) =
∑

k=k(1)
0 ,k(2)

0

〈σ †
k (t )σk(t )〉. (38)

Because σk(2)
0

σk(1)
0

= |g1, g2〉〈ψk(2)
0

|ψk(1)
0

〉〈e1, e2| with

〈ψk(2)
0

|ψk(1)
0

〉 = cos [(k(2)
0 − k(1)

0 ) · r/2], the zero-delay
coincidences become

g(2)
sel (t, 0) =

(
3

4
+ 1

4
cos

[(
k(2)

0 − k(1)
0

) · r
])

× 4ne1,e2 (t )[
2ne1,e2 (t ) + nk(1)

0
(t ) + nk(2)

0
(t )

]2 , (39)

where nk = 〈σ †
k σk〉 are the occupations of the state |ψk〉. Note

that the geometric factor (1 + cos [(k(2)
0 − k(1)

0 ) · r]) can also
be understood as interference of photons emitted from the two
emitters much like in a double-slit experiment [26,28,29].

Specifically, for coincidence measurements with k(2)
0 =

k(1)
0 = k0 as obtained by a Hanbury Brown–Twiss (HBT)

setup [33] as depicted in Fig. 4(b), one finds

g(2)
sel (t, 0) = ne1,e2 (t )[

ne1,e2 (t ) + nk0 (t )
]2 , (40)

which is g(2)
sel (t, 0) = 1 for initially uncorrelated and equally

occupied emitters. Notably, this result, which coincides with
that for superradiant emitters, is independent of the distance r
between the dots and is therefore found even for r � λ, where
the free radiative decay shows no superradiant enhancement.

This finding can be understood as follows: Having de-
tected a single photon from two indistinguishable emitters,
no information is gained about the exact origin of the pho-
ton, i.e., whether it was emitted from emitter 1 or emitter
2. Consequently, when the system is initially in the doubly
excited state, the detection event at detector 1 indicates a
collapse of the wave function of the two-emitter system to the
maximally entangled state |ψk(1)

0
〉. In contrast to the situation

for an uncorrelated statistical mixture of excitations in either
emitter, emission of the second photon from the correlated
state |ψk(1)

0
〉 has an oscillator strength that strongly depends

on the emission direction k(2)
0 of the second photon due to

the overlap 〈ψk(2)
0

|ψk(1)
0

〉 = cos [(k(2)
0 − k(1)

0 ) · r/2]. Thus, the

emission rate for the second photon in the direction k(2)
0 =

k(1)
0 is enhanced without a concomitant enhancement of the

overall radiative decay rate by diverting oscillator strength
from other emission directions k(2)

0 , in particular from those

for which (k(2)
0 − k(1)

0 ) · r is close to an odd multiple of π ,
for which g(2)

sel (t, 0) ≈ 0. This gives rise to a distinct radiation
pattern for photon coincidences, which has been measured in
Refs. [24,25].

Finally, it is noteworthy that, although the distance r be-
tween the emitters is not relevant for the discussion of ideal
wave-vector-resolving HBT experiments (k(2)

0 = k(1)
0 = k0),

there are practical limitations: A realistic detector picks up
wave vectors k = k0 + δk in a finite range δk ∈ � around
the reference wave vector k0. Assuming that the detection
efficiency ηk is constant and nonzero only in �, the regis-
tration of a photon at the detector from an initially doubly
excited two-emitter system can be described as a collapse of
the system to the mixed state:

ρav = 1
2 [|e1, g2〉〈e1, g2| + |g1, e2〉〈g1, e2|
+ ξ |e1, g2〉〈g1, e2| + ξ ∗|g1, e2〉〈e1, g2|] (41)

with

ξ = e−ik0·r
∫

�

dδk
�

e−iδk·r. (42)

Consequently, the photon coincidences at zero delay for ini-
tially uncorrelated and equally occupied emitters are found
to be

g(2)
av (t, 0) = 1 + |ξ |2

2
. (43)

|ξ |2 can be regarded as a measure for the precision of the
wave-vector selection. As such, it determines how well coop-
erative effects of the emission from indistinguishable emitters
are resolved by the detectors. Ideal detectors resolving single
wave vectors k0 in a HBT setup produce |ξ |2 = 1 and there-
fore g(2)(t, 0) = 1, whereas for detectors with finite detection
ranges �, |ξ |2 is reduced due to cancellation, which becomes
significant for large distances r � 2π/δkmax, where δkmax is
of the order of the maximal spread of wave vectors within the
detectable range �.

Thus, for realistic detectors and for large distances between
the emitters, ξ approaches zero leading to zero-delay photon
coincidence g(2)(t, 0) = 1/2, similar to that for distinguish-
able emitters. This sets a natural limitation for the detection
of cooperative effects, which is, however, much less stringent
that the condition r < λ for superradiance.

C. Delay-time dependence of photon coincidences

We now consider the delay-time dependence of photon
coincidences in the case of an ideal HBT setup (k(2)

0 =
k(1)

0 = k0, |ξ |2 = 1) in the nonsuperradiant regime r � λ of
cooperative emission by selective measurement. We assume
continuously and incoherently driven identical emitters sub-
ject to radiative decay and additional dephasing with rate γd

(e.g., due to interactions with a phonon bath), whose free
evolution is described by the Lindblad master equation

∂

∂t
ρsel = γpD[σ+

1 ](ρsel ) + γpD[σ+
2 ](ρsel )

+ γdD[σ+
1 σ−

1 ](ρsel ) + γdD[σ+
2 σ−

2 ](ρsel )

+ γD[σ−
1 ](ρsel ) + γD[σ−

2 ](ρsel ). (44)
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The analysis can be simplified by considering identical emit-
ters with identical occupations ne1,g2 = 〈e1, g2|ρ|e1, g2〉 =
〈g1, e2|ρ|g1, e2〉 = ng1,e2 and choosing eik0·r = 1. Note that,
for fixed k0, a nonzero phase can be eliminated by redefining
the phase of state |e2〉. With this choice of phase, the only
nonzero off-diagonal element of the four-level density matrix,
the interemitter coherences c = 〈e1, g2|ρ|g1, e2〉, remain real
c∗ = c and the intermediate state |ψk0〉 coincides with the
symmetric Dicke state |ψS〉. Furthermore, the trace condition
Tr(ρ) = 1 is used to express the ground-state population as
ng1,g2 = 1 − ne1,e2 − 2ne1,g2 . Noting further that the Lindblad
master equation (44) never introduces coherences between
states with different numbers of excitations, the dynamics can
be fully described by the degrees of freedom ne1,e2 , ne1,g2 , and
c, which obey the equation of motion

∂

∂t

⎛
⎝ne1,e2

ne1,g2

c

⎞
⎠ = A

⎛
⎝ne1,e2

ne1,g2

c

⎞
⎠ +

⎛
⎝ 0

γp

0

⎞
⎠, (45)

A =
⎛
⎝ −2γ 2γp 0

(γ − γp) −γ − 3γp 0
0 0 −γ − γp − γd

⎞
⎠. (46)

First of all, we see that the coherences decouple from the
dynamics of the remaining degrees of freedom and initial
coherence c(0), e.g., introduced by the measurement process,
simply decays according to

c(t ) = c(0)e−(γ+γp+γd )t . (47)

The remaining two-dimensional linear inhomogeneous or-
dinary differential equation can, in principle, be solved
analytically. Especially compact results are found in the
special case of equal pumping and decay γp = γ , where
the singly excited-state population ne1,g2 is decoupled from
the doubly excited-state population ne1,e2 . The corresponding
equation

∂

∂t
ne1,g2 = − 4γ ne1,g2 + γ (48)

is solved by

ne1,g2 (t ) = 1
4 + (

ne1,g2 (0) − 1
4

)
e−4γ t . (49)

This expression acts as a driving term in the equation for the
doubly excited-state populations:

∂

∂t
ne1,e2 = − 2γ ne1,e2 + 2γ ne1,g2 , (50)

which is solved by

ne1,e2 (t ) = 1
4 + (

ne1,e2 (0) + ne1,g2 (0) − 1
2

)
e−2γ t

+ (
1
4 − ne1,g2 (0)

)
e−4γ t . (51)

Due to our choice of phase eik0·r = 1, the optical signals
are described by

G(2)
sel (t, τ ) = 4I2

0 〈σ+
S (t )σ+

S (t + τ )σ−
S (t + τ )σ−

S (t )〉, (52)

Isel(t ) = 2I0〈σ+
S (t )σ−

S (t )〉
= 2I0

[
ne1,e2 (t ) + ne1,g2 (t ) + c(t )

]
, (53)

where we have used nS = 1
2 (ne1,g2 + ng1,e2 + c + c∗) =

ne1,g2 + c.
To obtain the normalized coincidences g(2)

sel (t, τ ) for emis-
sion from the stationary state at t → ∞, G(2)

sel (t → ∞, τ ) and
Isel(t → ∞) can be analyzed individually. First, observing
that the Lindblad master equation (44) reduces coherences,
one finds c(t → ∞) → 0, so the stationary intensity Isel =
2I0(ne1,e2 + ne1,g2 ) = 2I0ne1 becomes identical to Idist for two
distinguishable emitters.

Applying operators σ±
S at time t , one finds two nonzero

contributions to the unnormalized coincidences G(2)
sel (t, τ ) in

Eq. (52).
(i) With probability 2I0ne1,e2 (t ), a photon originating from

the doubly excited state is detected. This measurement process
leads to the collapse of the wave function to the state |ψS〉,
which serves as the initial state for the delay-time propagation
with n′

e1,e2
(τ = 0) = 0 and n′

e1,g2
(τ = 0) = c′(τ = 0) = 1/2,

where n′
e1,e2

, n′
e1,g2

, and c′ refer to the occupations and co-
herences of the pseudo density matrix ρ ′ in the quantum
regression theorem.

(ii) With probability 2I0nS (t ), a photon originating from
the single-excitation manifold is detected and the system
collapses onto the ground state implying n′

e1,e2
(τ = 0) =

n′
e1,g2

(τ = 0) = c′(τ = 0) = 0 for the delay-time propaga-
tion. In total, we find for γp = γ

g(2)
sel (∞, τ ) = 1 − 1

2 e−2γ τ + 1
2 |ξ |2e−(γ+γp+γd )τ︸ ︷︷ ︸

c′(τ )

, (54)

where we have reintroduced the factor |ξ |2 � 1 accounting for
the finite range of wave vectors detected by a realistic detector.

It is noteworthy that the first two terms in Eq. (54) are
identical to Eq. (21) for distinguishable emitters, which leads
to a dip at τ → 0 with g(2)

dist(∞, 0) = 1/2. Here, however, the
last term in Eq. (54) provides an additive contribution that
directly reflects the measurement-induced correlations c′(τ )
brought about by the collapse of the wave function due to
photon detection from the doubly excited state and leaving the
emitters in the correlated states |ψS〉. Perfect state preparation
|ξ |2 = 1, thus, leads to an antidip at τ → 0 with g(2)

sel (∞, 0) =
1 and with a width determined by a combination of pump,
decay, and dephasing rates.

While Eq. (54) is derived for the special driving condition
of equal pump and decay rates γp = γ , a more comprehensive
picture is gained by solving Eq. (44) numerically. In Figs. 5(a)
and 5(b), photon coincidences for the situation of cooperative
emission due to selective measurement are depicted for dif-
ferent values of dephasing rates γd (for γp = γ ) and pumping
rates γp (for γd = 10γ ), respectively. In the absence of de-
phasing γd = 0, coincidences remain g(2)(∞, τ ) = 1 for all
delay times τ , which also follows from the cancellation of
the second and the last terms in Eq. (54). For finite dephasing
γd �= 0, the cancellation is incomplete, effectively leading to
an antidip similar to that observed in the superradiant case.
The width of the antidip decreases with increasing dephasing
rate. Increasing the pump rate γp leads to a faster recovery of
the stationary coincidences with values g(2)(∞, τ ) = 1.

It is interesting to note that the zero-delay coincidences in
Figs. 5(a) and 5(b) remain g(2)(∞, 0) = 1 for all dephasing
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(a) (b) (c)

FIG. 5. Delay-time dependence of photon coincidences g(2)(t → ∞, τ ) for cooperative emission due to selective measurement. (a) Coin-
cidences for incoherent pumping with rate γp = γ and for different dephasing rates γd . (b) Incoherent pumping with different rates γp at fixed
dephasing rate γd = 10γ . (c) Coincidences for coherently driven indistinguishable emitters with dephasing rate γd = 10γ for different Rabi
frequencies �. The driving either couples to both emitters with the same phase (“sym.”) or with opposite phases (“antisym”).

rates γd and pump rates γp. This is due to the fact that the
zero-delay coincidences are fully determined by the station-
ary state and the measurement operators and do not probe
dynamical aspects. Here, the stationary state is uncorrelated
as the Lindblad master equation (44) contains no term intro-
ducing correlations. According to Eq. (40), this entails unity
zero-delay coincidences. In contrast, the master equation (18)
for the superradiant case includes the superradiant decay de-
scribed by the operator σ−

S , which does lead to correlations
in the stationary state, hence deviations from g(2)(∞, 0) = 1
were found in Fig. 2.

However, nonunity values of the zero-delay coincidences
may be obtained also in the case of cooperative emission in
the absence of superradiance, as long as correlations in the
stationary state are introduced by other means, e.g., by co-
herent driving of the two-emitter system. To demonstrate this,
we present in Fig. 5(c) results for the coincidences obtained
when the incoherent pumping is replaced by coherent driving
described by the Hamiltonian

Hsym = h̄

2
�[(σ+

1 + σ−
1 ) + (σ+

2 + σ−
2 )] (55)

for driving of emitters with equal phases and

Hantisym = h̄

2
�[(σ+

1 + σ−
1 ) − (σ+

2 + σ−
2 )] (56)

for driving with opposite phases.
For weak coherent driving with equal phases, we find

zero-delay coincidences g(2)
sel (∞, 0) < 1. Increasing the driv-

ing strength eventually leads to shoulders at finite delay times
indicative of Rabi oscillations, yet the zero-delay coincidences
remain suppressed compared to incoherent pumping. How-
ever, weak driving with opposite phases indeed results in
zero-delay coincidences exceeding one. This can again be
explained by Eq. (40), which predicts that large values of
coincidences are favored by settings where the stationary oc-
cupations ne1,e2 
 1 while still nS 
 ne1,e2 . Such a situation
can be achieved by weakly driving the doubly excited state
via the antisymmetric Dicke state |ψA〉.

D. Photon coincidences from pulsed driving

Beside continuous driving conditions, photon coincidences
are also frequently investigated using pulsed laser excitation
[34,35], e.g., to assess the quality of on-demand single-photon
sources [6,7,36] or for quantum state tomography of sources
of polarization-entangled photon pairs [37,38]. In contrast
to continuous driving, photon coincidences G(2)(t, τ ) under
pulsed excitation depend explicitly on the detection time t
of the first photon. While suitably time-integrated and nor-
malized coincidences agree with the zero-delay coincidences
obtained under continuous driving in the special cases of
single and distinguishable emitters (see below), care has to be
taken when interpreting more complex situations, where the
results may differ drastically depending, e.g., on the choice of
time integration windows [37,38]. Therefore, we now derive
photon coincidences under pulsed excitation for superradiant
and cooperatively emitting emitters.

We consider emitters excited by a train of deltalike π

pulses with repetition time T . This time is chosen to be T 
1/γ larger than the radiative decay time so that all excitations
induced by one pulse have decayed before the next pulse
arrives. Typically, one integrates over the arrival time t of the
first photon. The recorded histogram as a function of the delay
time is proportional:

Ḡ(2)(τ ) :=
∫ T/2

−T/2
dt G(2)(t, τ ), (57)

where we extend the domain of τ to negative delay times by
setting Ḡ(2)(−τ ) = Ḡ(2)(τ ).

The signal Ḡ(2)(τ ) has the form of a series of distinct peaks
as a function of the delay time τ as depicted in Fig. 6. The
peak around τ = 0 originates from excitations during a single
pulse. The peaks around τ = nT with integer n �= 0 are due to
excitations generated from different pulses. Hence, the peaks
at n �= 0 correspond to independent emission events and can
be used as a normalization reference for photon coincidences
of the zeroth-order peak.

There are two common ways to extract concrete figures of
merit from the delay-time-dependent function Ḡ(2)(τ ) given
by (i) the heights and (ii) the integrals of the respective peaks.
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(a) (b) (c)

FIG. 6. Delay-time dependence of photon coincidences Ḡ(2)(τ ) after deltalike excitation with a pulse train with repetition time T = 10/γ

for (a) single and two distinguishable emitters, (b) superradiant emitters without γd = 0 and with dephasing γd = 10γ , and (c) cooperative
emission due to selective measurement.

Both can be defined as

ḡ(2)
�τ := Ḡ(2)

0,�τ

Ḡ(2)
1,�τ

(58)

in terms of the delay-time integral

Ḡ(2)
n,�τ :=

∫ nT +�τ/2

nT −�τ/2
dτ Ḡ(2)(τ ), (59)

with delay-time integration window of width �τ . The peak
heights (i) are obtained in the limit �τ → 0, whereas the
integrals over peaks (ii) are obtained for �τ → T .

First, we focus on the calculation of Ḡ(2)
1,�τ for peak n =

1. The assumption T  1/γ implies that the first and sec-
ond detected photons originate from different pulses and the
emitters had relaxed to the ground state in the time be-
tween emission events. Thus, the states of the system at
times t and t + τ are uncorrelated, so correlation functions
〈σ+

i (t )σ+
j (t + τ )σ−

k (t + τ )σ−
l (t )〉 factorize into the product

〈σ+
i (t )σ−

l (t )〉〈σ+
j (t + τ )σ−

k (t + τ )〉. Consequently,

G(2)(t, t + τ ) = I (t )I (t + τ ), τ � T (60)

and one obtains

Ḡ(2)
1,�τ→0 = �τ

∫ T/2

0
dt I2(t ), (61)

Ḡ(2)
1,�τ→T =

[ ∫ T/2

0
dt I (t )

]2

, (62)

for short and long integration windows, respectively.
For the zeroth-order peak, the correlation functions have to

be calculated explicitly as

Ḡ(2)
0,�τ→0 = �τ

∫ T/2

0
dt G(2)(t, 0) (63)

Ḡ(2)
0,�τ→T = 2

∫ T/2

0
dt

∫ T/2

0
dτ G(2)(t, τ ). (64)

In the case of a single emitter [see Fig. 6(a)], the assump-
tion of deltalike short pulses makes reexcitation impossible, so
that at all times at most one excitation is present in the system.
Hence, G(2)

single(t, τ ) = 0 and also ḡ(2)
�τ,single = 0, irrespective of

the integration window and other details.

For two distinguishable emitters which are only subject to
individual radiative decay [see Fig. 6(a)],

Idist(t ) = 2I0n(0)e−γ t , (65)

G(2)
dist(t, τ ) = 2I2

0 n2(0)e−γ t e−γ (t+τ ), (66)

where n(0) is the excited-state occupation per emitter imme-
diately after the pulse. This directly results in

ḡ(2)
�τ,dist = 1

2 (67)

irrespective of the integration window �τ . The fact that this
value coincides with g(2)

dist(∞, 0) for continuously driven emit-
ters is a direct consequence of the independent dynamics of
both emitters and the effects of time averaging being equal
for numerator and denominator of Eq. (58), because the time
dependence of both is given by an exponential decay with the
same rate.

However, the similarity between ḡ(2)
�τ and the zero-delay co-

incidences under continuous driving g(2)(∞, 0) does not carry
over to cases with more complex dynamics. In Appendix D,
we derive the integrated coincidences for two superradiant
emitters in absence of additional dephasing:

ḡ(2)
�τ→0,sup = ne1,e2 (0)

5
4 n2

e1,e2
(0) + 1

2 n2
S (0) + 3

2 ne1,e2 (0)nS (0)
, (68)

ḡ(2)
�τ→T,sup = 2ne1,e2 (0)[

2ne1,e2 (0) + nS (0)
]2 . (69)

Here, the values for different integration windows differ
and are also not comparable to g(2)

sup(∞, 0) for the continu-
ously driven superradiant system derived in Eq. (15). This is
primarily due to the nonexponential dynamics of the sym-
metric Dicke state occupations, which results in different
time-averaging effects in numerator and denominator of ḡ(2).
Note also that the results depend on the exact values of occu-
pations of doubly excited and symmetric Dicke states created
by the driving pulse. For example, if the doubly excited state
is fully occupied, one finds ḡ(2)

�τ→0,sup = 4
5 and ḡ(2)

�τ→T,sup = 1
2 .

The latter value is the same as for distinguishable emitters.
Thus, ḡ(2)

�τ→T fails to clearly indicate cooperative emission
even for ideal superradiance.

In Fig. 6(b), we present numerical calculations of Ḡ(τ ) in
the superradiant case obtained using the master equations (18)
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without and with dephasing with rate γd , where, instead of
pumping (γp = 0), the state of the emitter is periodically reset
to the doubly excited state with repetition time T = 10/γ . In-
deed, the ratio between the heights of the zeroth-order versus
first-order peaks is ḡ(2)

�τ→0,sup = 1.25 in the absence of de-
phasing. We have checked that the ratio between the integrals
of the first and second peaks also reproduces the analytical
value of ḡ(2)

�τ→T,sup = 0.5. It is noteworthy that numerical
simulations with dephasing γd = 10γ reveal an increase of
ḡ(2)

�τ→0,sup extracted from the peak heights to a value of about
1.03, while the ratio between the integrals remains the same:
ḡ(2)

�τ→T,sup = 0.5.
The time-integrated coincidences for the case of coop-

erative emission by selective measurement are derived in
Appendix E. If the emitters are uncorrelated immediately after
excitation, these reduce to

ḡ(2)
�τ→0,sel = 1, (70)

ḡ(2)
�τ→T,sel = 1

2

[
1 + γ

γ + γd

]
. (71)

Here, we find that photon coincidences after pulsed excitation
with short delay-time integration windows lead to similar
results as g(2)

sel (∞, 0) obtained under continuous driving. For
wider windows, dephasing eventually reduces the integrated
intensities, bringing them closer to the value of 1

2 for inde-
pendent emitters in the limit γd → ∞. Numerically simulated
Ḡ(τ ) depicted in Fig. 6(c) show that, in the absence of de-
phasing, the zeroth-order peak is identical to the first-order
peak, hence ḡ(2)

�τ→0,sel = ḡ(2)
�τ→T,sel = 1. Dephasing with rate

γd = 10γ only narrows the width of the zeroth-order peak,
resulting in the same heights ḡ(2)

�τ→0,sel = 1 but smaller inte-

grals ḡ(2)
�τ→T,sel = 6

11 ≈ 0.55 < 1.

IV. DISCUSSION

We have investigated cooperative emission from two two-
level quantum emitters, where both emitters contribute to both
photon emission events. We compared two sources of cooper-
ativity, superradiance and the preparation of correlated states
by emission-angle-selective measurement. Superradiance and
measurement-induced cooperativity require the emitters to
be spectrally indistinguishable, but the former has stricter
requirements in terms of spatial indistinguishability: A super-
radiant enhancement of the radiative decay rate necessitates
that the electromagnetic environment cannot distinguish be-
tween emission from either dot. This can be achieved by
confining emitters into regions much smaller than the wave-
length of the emitted light [15,16] or by exploiting photonic
structures like waveguides [4,21]. In contrast, measurement-
induced cooperativity merely requires the detectors not to
differentiate between photons from either dot, which depends
more on the optical beam path than on the concrete spatial
separation and, hence, can be found even when emitters in
free space are separated by distances r � λ larger than the
wavelength of the light.

The most tangible difference between the two forms of
cooperative emission is that, in the case of superradiance,
the radiative decay rate is enhanced, whereas the overall free
decay rate after measurement-induced cooperativity remains

the same as for independent emitters. However, the induced
correlations shape the radiation pattern [24,25], so that a sec-
ond photon is more likely funneled into the direction of the
detectors at the expense of other emission directions. This dif-
ference makes both cases distinguishable via time-resolving
measurements of the free radiative decay.

On the other hand, analyzing photon coincidences under
continuous driving for superradiance as well as for coopera-
tive emission due to selective measurement, we find that both
have similar signatures on g(2)(∞, τ ). In particular, in both
cases, g(2)(∞, τ ) has the form of an antidip, where zero-delay
coincidences significantly exceed the limit of two indepen-
dently emitting emitters g(2)(∞, 0) � 1

2 . Thus, a violation of
this limit is not a unique fingerprint for superradiance. Instead,
it indicates more generally the involvement of correlations
between emitters during the emission process, which provides
the basis for the cooperation of both emitters in both photon
emission processes.

Furthermore, although specifics of the system like driving
and dephasing generally affect superradiance and cooperative
emission due to selective measurement differently, the trends
are subtle, which prohibits clearly distinguishing between
both underlying mechanisms of cooperative emission from the
measured photon coincidences g(2)(∞, τ ) alone.

The assessment of time-integrated coincidences ḡ(2)
�τ for

emitters driven by short pulses reveals that these can serve as
a proxy for instantaneous coincidences g(2)(∞, 0) for single
and independent identical emitters. For measurement-induced
cooperativity, this only holds for small delay-time integration
windows �τ , because dephasing can have a large effect on
signals time integrated over wider windows. The situation is
even more complex for spontaneously decaying superradiant
emitters, where time integration over the nonexponential dy-
namics obfuscates the relation to instantaneous coincidences
g(2)(∞, 0).

Summarizing, we find that photon coincidence measure-
ments can signal the presence of correlations between emitters
in the decay process as an antidip in g(2)(t, τ ) as a function of
τ with values of zero-delay coincidences g(2)(t, 0) exceeding
the limit for uncorrelated emitters. However, the origin of
these correlations may be superradiance, cooperative emission
without superradiance due to emission-angle-selective photon
detection, or initial correlations induced by the driving. To
clearly distinguish between these situations, additional infor-
mation is required. A direct observation of a nonexponential
behavior of the overall emitted intensity is likely the most
promising strategy to unambiguously prove the presence of
superradiance.
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APPENDIX A: MICROSCOPIC DERIVATION OF
k-DEPENDENT EMISSION AND DETECTION

Here, we show how photon observables for a single-photon
mode k such as 〈a†

kak〉 and the corresponding intensity Ik
are related to emitter observables in Markovian emission
processes induced by the light-matter interaction in the Hamil-
tonian in Eq. (1). This naturally leads to the picture that
the interaction with light field mode k gives rise to a decay
channel. From the Heisenberg equations of motion, it follows
that

∂

∂t
〈a†

kak〉 = i

h̄
〈[H, a†

kak]〉

= − i
√

2gk〈σ−
k a†

k〉 + i
√

2gk〈σ+
k ak〉, (A1)

where we have used the definition of σ±
k in Eq. (23). The light-

matter correlations are determined by

∂

∂t
〈σ−

k a†
k〉 = i(ωk − ω)〈σ−

k a†
k〉 + i

√
2gk〈[σ+

k ak, σ
−
k a†

k]〉

≈ i(ωk − ω)〈σ−
k a†

k〉 + i
√

2gk〈σ+
k σ−

k 〉, (A2)

where we have simplified

〈[σ+
k ak, σ

−
k a†

k]〉 = 〈σ+
k σ−

k 〉 + 〈[σ+
k σ−

k − σ−
k σ+

k ]a†
kak〉 (A3)

by neglecting the second term involving higher-order contri-
butions. Integrating the equation of motion for the light-matter
correlations yields

〈σ−
k a†

k〉 = i
√

2gk

∫ t

−∞
dτ ei(ωk−ω)(t−τ )〈σ+

k σ−
k (τ )〉

≈ i
√

2gkπδ(ωk − ω)〈σ+
k σ−

k 〉, (A4)

where we have used the Markov approximation 〈σ+
k σ−

k (τ )〉 ≈
〈σ+

k σ−
k (t )〉 and neglected the frequency renormalization, i.e.,

the imaginary part of∫ t

−∞
dτ ei(ω−ωk )(τ−t ) = πδ(ω − ωk ) − i

ω − ωk
. (A5)

Using 〈σ−
k a†

k〉 = 〈σ+
k ak〉∗, we arrive at the equation of

motion for photon observables

∂

∂t
〈a†

kak〉 = γk〈σ+
k σ−

k 〉 (A6)

with rate

γk = 2π h̄ 2g2
kδ(h̄ωk − h̄ω). (A7)

Applying the same steps to the situation of a single emitter,
where the interaction Hamiltonian is

∑
k h̄gk(σ−a†

k + σ+ak ),
one obtains a similar result but with a rate

γ
single
k = 2π h̄g2

kδ(h̄ωk − h̄ω), (A8)

which is half of γk in Eq. (A7).
For two spectrally distinguishable emitters, one has to ac-

count for two different light-matter correlations 〈σ−
1 a†

k〉 and
〈σ−

1 a†
k〉 oscillating with different frequencies (ωk − ω1) and

(ωk − ω2), resulting in

∂

∂t
〈a†

kak〉 = γ
(1)

k 〈σ+
1 σ−

1 〉 + γ
(2)

k 〈σ+
2 σ−

2 〉, (A9)

with

γ
(i)

k = 2π h̄g2
kδ(h̄ωk − h̄ωi ). (A10)

In addition to the time evolution induced by the light-
matter interaction and described by Eqs. (A6) and (A9),
respectively, the dynamics of the photon mode occupations
〈a†

kak〉 is also affected by the destructive measurement at
the detectors. We model the continuous destructive measure-
ment of photons, e.g., using a single-photon detector [39],
by a periodic projective measurement of 〈a†

kak〉 at time in-
tervals with width �τM corresponding to the time scale of
the measurement, which is determined by characteristics of
the detector, such as the timing jitter. The destructive char-
acter of the measurement implies that the photon state is
reset to the vacuum state with 〈a†

kak〉 = 0 immediately after
the measurement, irrespective of the outcome. The proba-
bility of detecting a photon per time interval �τM with a
pointlike detector measuring photon mode k is, hence, deter-
mined by the accumulated excitation transfer from the emitter
system:

Ik(t ) = 1

�τM

∫ t+�τM

t
dt ′

(
∂

∂t ′ 〈a†
k(t ′)ak(t ′)〉

)

≈ ∂

∂t
〈a†

k(t )ak(t )〉 (A11)

where we have assumed that the source terms, i.e., the emitter
occupations, do not change noticeably on the time scale �τM .
Concretely, for single, two spectrally distinguishable, and two
indistinguishable emitters, we arrive at

Isingle
k (t ) = γ

single
k 〈σ+σ−(t )〉, (A12)

Idist
k (t ) = γ

(1)
k 〈σ+

1 σ−
1 (t )〉 + γ

(2)
k 〈σ+

2 σ−
2 (t )〉, (A13)

I indist
k (t ) = γk〈σ+

k σ−
k (t )〉, (A14)

respectively.

APPENDIX B: INVOLVEMENT OF CORRELATIONS
WHEN g(2)(t, 0) > 1

2

We now show why, for a system of two emitters subject
to Markovian emission processes, a violation of g(2)(t, 0) � 1

2
indicates the presence of interemitter correlations.

Note that the derivation of this limit in Eq. (14) is based
on two assumptions: (i) absence of initial correlations and
(ii) photon coincidences are given by Eq. (11), which is the
expression for a distinguishable emitter.

The former case (i) trivially involves correlations. An
example is a situation with ne1,g2 = ng1,e2 = 0, where
g(2)

dist.(t, 0) = 1/[2ne1,e2 (t )]. Then, photon coincidences can
reach arbitrarily high values when ne1,e2 is small.

As discussed in Appendix A, (ii) is valid for Markovian
emission processes if the emitters are spectrally distinguish-
able. Thus, for (ii) to break down, the emitters must have the
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same transition frequencies ω1 = ω2. Because of the Marko-
vian outcoupling as well as the conservation of the number of
excitations, photon coincidences must be described as

G(2)(t, τ ) ∝
∑
j, j′

〈ς+
j (t )ς+

j′ (t + τ )ς−
j′ (t + τ )ς−

j (t )〉, (B1)

in terms of two pairs of raising and lowering operators ς±
j

with respect to the emitter state, which are linear combinations
ς−

j = α jσ
−
1 + β jσ

−
2 and ς+

j = α∗
j σ

+
1 + β∗

j σ
+
2 of operators

σ±
1 and σ±

2 for the first and second emitter, respectively (com-
pare with Appendix A). If, for all contributions j, either α j or
β j is zero, one recovers Eq. (11). Thus, the only situation that
remains to be discussed is that where there is at least one j for
which ς−

j is a genuine linear combination of σ−
1 and σ−

2 with
both α j and β j nonzero.

Noting also that a nonzero contribution to zero-delay coin-
cidences G(2)(t, 0) is due to occupations of the doubly excited
state ne1,e2 due to conservation of the number of excitations,
we observe that ς−

j applied to |e1, e2〉 yields

ς−
j |e1, e2〉 = α j |g1, e2〉 + β j |e1, g2〉. (B2)

As both α j and β j are nonzero, the intermediate state after
the emission of a first photon possesses finite interemitter
correlations of magnitude |α jβ

∗
j |.

Thus, if g(2)(t, 0) > 1
2 , correlations are involved in the

emission process in the initial state, in the intermediate state
after the emission of the first photon, or both.

APPENDIX C: CONTINUOUS INCOHERENT PUMPING
OF SINGLE AND DISTINGUISHABLE EMITTERS

The excited-state population ni of a single emitter subject
to radiative decay with rate γ and incoherently pumped with
a rate γp can be described by

∂

∂t
ni = γp(1 − ni ) − γ ni, (C1)

where (1 − ni ) is the population of the ground state. This
equation of motion is solved by

ni(t ) = γp

γ + γp
+

[
ni(0) − γp

γ + γp

]
e−(γ+γp)t . (C2)

Photon coincidences from a single emitter require the
detection of a first photon at time t , which occurs with a prob-
ability I0n1(t ) and implies a collapse of the emitter state onto
the ground state, which defines the initial value n1(τ = 0) = 0
for the propagation for the delay time τ . Therefore,

G(2)
single(t, τ ) = I2

0 〈σ+
1 (t )σ+

1 (t + τ )σ−
1 (t + τ )σ−

1 (t )〉

= I2
0 n1(t )

γp

γ + γp
(1 − e−(γ+γp)τ ). (C3)

Evaluating the coincidences from the stationary state
t → ∞ and normalizing by the squared intensity I2

0 (∞) =
I2
0 [γp/(γp + γ )]

2
, one obtains

g(2)
single(∞, τ ) = 1 − e−(γ+γp)τ . (C4)

For two distinguishable emitters, the photon coincidences
are

G(2)
dist(t, τ ) = I2

0

∑
i, j=1,2

〈σ+
i (t )σ+

j (t + τ )σ−
j (t + τ )σ−

i (t )〉

= I2
0

∑
i

〈σ+
i (t )σ+

i (t + τ )σ−
i (t + τ )σ−

i (t )〉

+ I2
0

∑
i, j �=i

〈σ+
i (t )σ−

i (t )〉〈σ+
j (t + τ )σ−

j (t + τ )〉

= 2G(2)
single(t, τ ) + 2Isingle(t )Isingle(t + τ ). (C5)

With Idist(t ) = 2Isingle(t ), the normalized coincidences from
the stationary state are

g(2)
dist(∞, τ ) = 1 − 1

2 e−(γ+γp)τ . (C6)

APPENDIX D: TIME-INTEGRATED COINCIDENCES
FOR SUPERRADIANT EMITTERS

We consider the free radiative decay of a superradiant
two-emitter system after optical excitation without additional
dephasing. The equations of motion for the occupations of
the doubly excited state ne1,e2 and the symmetric Dicke state
nS are

∂

∂t
ne1,e2 = − γSne1,e2 , (D1)

∂

∂t
nS = γS

(
ne1,e2 − nS

)
, (D2)

with superradiant rate γS = 2γ . These equations are solved by

ne1,e2 (t ) = ne1,e2 (0)e−γSt , (D3)

nS (t ) = [
nS (0) + γSt ne1,e2 (0)

]
e−γSt . (D4)

The instantaneous emitted intensity according to Eq. (10) is

Isup(t ) = 2I0
[
ne1,e2 (t ) + nS (t )

]
= 2I0

[
ne1,e2 (0) + nS (0) + γSt ne1,e2 (0)

]
e−γSt . (D5)

With Eqs. (61) and (62), we find for the superradiant photon
coincidences defined by Eq. (12)

Ḡ(2)
1,�τ→0 = �τ4I2

0

5
2 n2

e1,e2
(0) + 3ne1,e2 (0)nS (0) + n2

S (0)

2γS
,

(D6)

Ḡ(2)
1,�τ→T = 4I2

0

[
2ne1,e2 (0) + nS (0)

γS

]2

. (D7)

The only term contributing to coincidences is the initially
doubly excited-state occupation ne1,e2 , which radiatively de-
cays for time t , is then translated into occupations of the
symmetric Dicke state nS by applications of operators σ±

S , and
subsequently decays from there. This results in

Ḡ(2)
0,�τ→0 = �τ4I2

0

∫ T/2

0
dt ne1,e2 (0)e−γSt

= �τ4I2
0

γS
ne1,e2 (0), (D8)
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Ḡ(2)
0,�τ→T = 8I2

0

∫ T/2

0
dt

∫ T/2

0
dτ ne1,e2 (0)e−γS (t+τ )

= 8I2
0

γ 2
S

ne1,e2 (0). (D9)

APPENDIX E: TIME-INTEGRATED COINCIDENCES
FOR SELECTIVELY MEASURED EMITTERS

In the case of cooperative emission due to selective mea-
surement with two identical emitters, the relevant quantities
are the occupation of the doubly excited state ne1,e2 , the oc-
cupation of exactly one site ne1,g2 = ng1,e2 , as well as the
correlations c between the states with exactly one excitation.

The equations of motion are

∂

∂t
c = − (γ + γd )c, (E1)

∂

∂t
ne1,e2 = − 2γ ne1,e2 , (E2)

∂

∂t
ne1,g2 = − γ ne1,g2 + γ ne1,e2 , (E3)

which are solved by

c(t ) = c(0)e−(γ+γd )t , (E4)

ne1,e2 (t ) = ne1,e2 (0)e−2γ t , (E5)

ne1,g2 (t ) = [
ne1,g2 (0) + ne1,e2 (0)

]
e−γ t − ne1,e2 (0)e−2γ t . (E6)

The emitted intensity is

Isel.(t ) = 2I0
[
ne1,e2 (t ) + ne1,g2 (t ) + c(t )

]
= 2I0

{[
ne1,g2 (0) + ne1,e2 (0)

]
e−γ t + c(0)e−(γ+γd )t

}
,

(E7)

which yields

Ḡ(2)
1,�τ→0 = �τ4I2

0

[[
ne1,g2 (0) + ne1,e2 (0)

]2

2γ

+ 2
[
ne1,g2 (0) + ne1,e2 (0)

]
c(0)

2γ + γd
+ c2(0)

2γ + 2γd

]
,

(E8)

Ḡ(2)
1,�τ→T = 4I2

0

[
ne1,g2 (0) + ne1,e2 (0)

γ
+ c(0)

γ + γd

]2

. (E9)

The coincidences are determined by the decay of ne1,e2 until
time t , which is collapsed onto the symmetric Dicke state for
which n′

e1,g2
(τ = 0) = c′(τ = 0) = 1

2 ne1,e2 (t ). These occupa-
tions and correlations then decay for time τ . This yields

Ḡ(2)
0,�τ→0 = �τ4I2

0
1

2γ
ne1,e2 (0), (E10)

Ḡ(2)
0,�τ→T = 4I2

0
1

2γ
ne1,e2 (0)

[
1

γ
+ 1

γ + γd

]
. (E11)
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