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Ground-state bistability of cold atoms in a cavity
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We experimentally demonstrate an optical bistability between two hyperfine ground states of trapped, cold
atoms, using a single mode of an optical resonator in the collective strong coupling regime. Whereas in the
familiar case, the bistable region is created through atomic saturation, we report an effect between states of high
quantum purity, which is essential for future information storage. The source of nonlinearity is a cavity-assisted
pumping between ground states of the atoms and the stability depends on the intensity of two driving lasers.
We interpret the phenomenon in terms of the recent paradigm of first-order, driven-dissipative phase transitions,
where the transmitted and driving fields are understood as the order and control parameters, respectively. A
semiclassical mean-field theory is invoked to describe the nontrivial two-dimensional phase diagram arising
from the competition of the two drive. The saturation-induced bistability is recovered for infinite drive in one of
the controls. The order of the transition is confirmed experimentally by hysteresis in the order parameter when
either of the two control parameters is swept repeatedly across the bistability region.
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I. INTRODUCTION

Cavity quantum electrodynamics (CQED) is an outstand-
ing platform to study nonlinear atom-field dynamics and
phase transitions in driven-dissipative systems [1–3]. In its
natural setting, a CQED system is driven by external coherent
sources, e.g., by laser or microwave radiation; meanwhile the
energy is dissipated through a number of channels leading to
a steady state resulting from a dynamical equilibrium between
driving and loss [4]. One dissipation channel is the coupling
of the cavity field to external, freely propagating, spatially
well-defined modes, which can be efficiently collected for
detection. The outcoupled field then affords an indirect ob-
servable of the intracavity steady state [5], in the sense of
continuous weak quantum measurement.

Cavity QED schemes typically involve few degrees of free-
dom that are relevant to the atom-light interaction. The field is
composed of only a single or a few modes, and the interacting
atoms can be represented by a few electronic states. The
spatial dimension in which the geometrical size of the atomic
cloud can grow macroscopic is irrelevant as only the position
relative to the cavity mode antinodes matters. Although the
intracavity system size is small, in this sense, the continu-
ous measurement of the outcoupled field is a macroscopic
observable, and so it is an order parameter of the system.
Transitions between steady states can be affected by changing
drive parameters and monitored as a macroscopic change in
the recorded signal. Such driven-dissipative phase transitions
have been discussed and experimentally studied recently in
CQED [6–13].

In this paper we present a type of first-order phase tran-
sition [14–21] of an ensemble of cold atoms in an optical
Fabry-Pérot cavity [22–25]. Such a physical realizations of
CQED systems have a multitude of applications: the cavity

can enable sensitive measurement of the atomic dynamics or
state at spectroscopic sensitivity below the standard quantum
limit for coherent spin states [26,27], real-time monitoring of
the spatial distribution [28] or the atom number in evapora-
tive cooling of atoms [29]. Superradiance decoherence caused
by long-range Rydberg-atom pair interactions, too, has been
demonstrated by using cavity-assisted measurements [30].
Another prospect of strongly coupled atom-cavity systems is
given by optical lattice clocks which are based on lasing on a
narrow atomic transition within a resonator [31–34]. Finally,
the cavity mode can have a dynamical role such that the hybrid
atom-photon excitations introduce new features to nonlinear
optics. For example, in the case of multiple laser drives, the
suppression of polariton excitation by quantum interference
[35] and the proof of principle of a multiplexed quantum
memory based on spin waves [36] have been demonstrated.
In these systems, cold atoms can be held in a magneto-optical
trap (MOT), or loaded into a cavity-sustained optical dipole
trap, or be tightly confined in atom-chip based magnetic traps
[37]. In our experiment, we use atoms in a large magnetic
trap [38], and the cavity mode plays both a diagnostic and
dynamical role in the observed phase transition.

In the present study, the phase transition involves two con-
trol parameters provided by tunable laser drive powers. One
of the lasers is used to probe the transmission of the res-
onator, whose driven mode is coupled to an atomic transition,
whereas the other laser effectively repumps the atoms back
into the two-dimensional atomic subspace that is coupled to
the cavity. With infinitely strong repumper, the well-known
scenario of the atomic-saturation-induced optical bistability in
an effectively two-level system is recovered [39–42]. Decreas-
ing this control parameter, the system still exhibits bistability
with the cavity drive strength control parameter, however,
the role of saturation is taken over by populating another
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hyperfine ground state. Ultimately, the bistability develops
into the coexistence of two phases in which the internal
electronic state of the atoms in the laser-cooled cloud is a
pure state, namely, one or the other of the two hyperfine
ground states. In the extreme limit of zero repumper, the
temporal dynamics of the collapse of an unstable phase, the
so-called transmission-blockaded phase has been observed
recently [43]. Finite repumper stabilizes this phase, so, in this
paper, we go on to explore the full phase space spanned by the
two control parameters and reveal experimental signatures of
the phases and the transition between them.

The paper is structured as follows. In Sec. II we present
a model system of competing dynamical optical pumping
processes to establish a framework in which to describe our
experiments. In Sec. III the phase diagram is mapped out
by solving the mean-field equations of the model and new
features of the bistability domain are pointed out. We make
a clear distinction with respect to the well-known case of
absorptive optical bistability. In Sec. IV the experimental
scheme is described and the correspondence to the theoretical
model is established. Section V is devoted to measurements
on the long-time behavior of the system and to the dynami-
cal signatures of the bistability. Both dynamical oscillations
and enhanced fluctuations of the order parameter are demon-
strated. In Sec. VI we show that adiabatic ramp cycles of the
control parameters lead to hysteresis, which is clear evidence
of a first-order phase transition in the system [20]. In Sec. VII
we experimentally verify the interpretation of the observed
bistability, i.e., that it is based on the competition of two
concurrent optical pumping processes. Finally, we conclude
in Sec. VIII.

II. MODEL OF TWO-WAY OPTICAL PUMPING OF ATOMS
IN THE CAVITY

We consider N atoms interacting with a single mode of a
linear optical resonator, as represented schematically in Fig. 1.
The cavity mode is driven by a laser with effective amplitude,
η, and angular frequency, ω. This latter is close to the mode
resonance, ωC , such that the detuning �C ≡ ω − ωC � κ ,
where κ is the mode linewidth (HWHM). The cavity field cou-
ples to the electric dipole transition |g〉 ↔ |e〉, with coupling
constant g (single-photon Rabi frequency). The excited atomic
state, |e〉, decays mostly to |g〉 with rate γ (HWHM); however,
a weak decay channel exists in another state, | f 〉, with rate
� � γ . There is a repumper laser illuminating the atoms from
the side which performs optical pumping on the atoms back
to the state |g〉 at a rate λ. The atomic detuning, �A, is large
so the 	-atom scheme does not result in electromagnetically
induced transparency [44].

The steady state of this system manifests a nontrivial phase
diagram as a function of the control parameters η and λ.
Bistability originates from the competition of the two optical
pumping processes, where one of them involves a nonlinear
cavity-assisted population transfer. A single atom in state
|g〉 detunes the cavity mode resonance by an amount δ. For
large-enough atom number, the collective dispersive shift of
the atom cloud, N δ, can push the mode out of resonance,
|�C − Nδ| � κ , so that the drive η is ineffective in exciting
the cavity mode. As there is no field in the cavity, the atoms
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FIG. 1. (a) The configuration of our CQED scheme. Cold atoms
are loaded into a linear cavity and kept in a magnetic quadrupole trap.
The cavity is driven with variable effective amplitude, η, through
an incoupling mirror and the transmitted light detected with an
avalanche photodiode. The atoms are illuminated from the side by a
repump laser of variable power, characterized by the pumping rate, λ.
(b) The relevant part of the atomic level scheme. The transition
from the ground state, |g〉, to the excited state, |e〉, couples to the
cavity mode, resulting in an effective drive amplitude, gα, where α

is the field mode amplitude. The transversely injected repump laser
drives the transition from | f 〉 to |g〉 via other excited states (not
indicated). Panels show the cavity transmission accompanying the
optical pumping into the states | f 〉 and |g〉. (c) Atoms in state |g〉
detune the cavity mode resonance with respect to the laser frequency
set on resonance with the empty cavity.

are not excited from the state |g〉. This solution, dubbed “trans-
mission blockade,” is a steady state. However, it becomes
unstable for very large drive strength η. The Lorentzian cutoff
does not eliminate perfectly the transmission. The blockade
may break down in a runaway process: for increased cavity
drive amplitude, the tiny amount of light infiltrating the cavity
excites atoms to |e〉, which, in turn, results in a reduction of the
collective resonance shift and in even more light entering the
cavity. This positive feedback amounts to a run-away optical
pumping toward the state | f 〉. The extent to which the atoms
accumulate in state | f 〉 depends on the repump rate λ. For
weak λ, they accumulate; for strong λ, the atoms are pumped
back to |g〉 and restore the blockading regime. In between,
there is a bistability domain where the two steady states can
coexist in the form of a statistical mixture.

The competition between the two optical pumping pro-
cesses can be described by a semiclassical mean-field model
[45]. The operator variables in the Heisenberg-Langevin equa-
tions are replaced by c-numbers. Let us use the cavity mode
amplitude, α, and the collective atomic polarization, M =∑

i |gi〉〈ei|, where the atoms are indexed by i = 1, . . . , N . The
populations in the states |g〉, |e〉, and | f 〉 are denoted by Ng, Ne,
and Nf , respectively. The mean-field equations of motion read

α̇ = (i�C − κ )α + gM + η,

Ṁ = (i�A − γ − �)M + g[Ne − Ng]α,

Ṅe = −g[α∗M + M∗α] − 2(γ + �)Ne,

Ṅg = g[α∗M + M∗α] + 2γ Ne + λNf ,

Ṅ f = 2�Ne − λNf . (1)

The first equation describes the cavity mode as a driven os-
cillator which is coupled to the atomic polarization with the

023713-2



GROUND-STATE BISTABILITY OF COLD ATOMS IN A … PHYSICAL REVIEW A 107, 023713 (2023)

strength given by the single-photon Rabi frequency, g. The
second accounts for the atomic polarization due to the cavity
field, this process includes saturation nonlinearity. This sys-
tem of equations is written in a frame rotating with the cavity
drive frequency, ω, so the relevant atomic frequency is the de-
tuning �A = ω − ωge, with ωge being the transition frequency
between states |g〉 and |e〉. With these parameters, a single
atom induces a cavity resonance shift δ = g2�A/(�2

A + γ 2),
which can be approximated by g2/�A in the large atomic
detuning regime (|�A| � γ ). In the rest of this paper, we
consider the case of resonant driving of the empty cavity,
�C = 0. Finally, the last three equations represent the evolu-
tion of the populations. Besides the cavity-atom interaction
and the spontaneous emission term with γ , here the decay
from state |e〉 to | f 〉 at a rate � and the repumping of the
state |g〉 from | f 〉 at a rate λ are included. The collective
variables refer only to the internal degrees of freedom. This
model is a mean-field approach replacing the effect of the indi-
vidual atoms at different positions and moving with different
velocities by the effect of a number of N “average” atoms.
In the thermal cloud at the temperature around 100 μK, the
timescale for the atoms to cross the trap volume is in the range
of milliseconds. Therefore, the collective mean variables can
describe the dynamics according to the above equations on a
timescale longer than ms.

Although the model is heavily simplified, it is sufficient to
capture the main features of the steady-state phase diagram.
In particular, the reason why we consider the repumper acting
only on the populations of states |g〉 and | f 〉, without creating
polarization between them will be explained in Sec. IV.

III. STEADY-STATE PHASE DIAGRAM

The driven-dissipative system defined by Eqs. (1) evolves
towards a steady state that can be calculated by setting the
temporal derivatives to zero, and solving the inhomogeneous
nonlinear system of equations. Figure 2 presents a color map
of the cavity transmittance in the steady state as a function of
the two drive strengths, cavity drive amplitude η and repump
rate λ. The transmittance is the transmitted intensity normal-
ized to that of the empty resonator with exactly the same
drive η, ω. One can clearly observe the blockaded regime
for small η, where the cavity field mode is not populated
(dark blue region) as well as a “bright” phase with high
transmission (yellow region). These phases are separated by
a bistable domain (white stripe), where the system has two
stable steady states. These solutions are plotted in Fig. 3 for
cross sections of fixed η and λ values, indicated by dotted and
dashed lines in Fig. 2, respectively.

The transmittance exhibits the well-known S-shaped curve
as a function of the cavity drive, known from classical optical
bistability [cf. Figs. 3(b) and 3(c)]. There are two stable steady
states and one unstable solution. In the present case of a
three-level 	 scheme, a similar multivalued domain occurs
if the repumper power is varied, as shown in Fig. 3(a). This
highlights the crucial role of the repumper and the third level
| f 〉 in the system. The distinctive feature with respect to the
well-known case of optical bistability can be revealed by
investigating the populations in the three atomic levels in the
steady-state solutions, shown in the bottom row of panels

FIG. 2. Phase diagram of the transmission blockade breakdown
in the steady state. The color map shows the cavity transmittance
referenced to the resonant empty cavity transmission as a function
of the cavity drive amplitude, η, and repumping rate, λ. The lat-
ter quantity is rescaled with a monotonically increasing function,
G ≡ (1 + 2�/λ)−1, which tends to G = 1 for λ → ∞. The white
stripe in the middle corresponds to the domain where the system of
equations admits multiple stable solutions. There are distinct phases
to the left and right of this boundary which are the blockaded and the
bright states of the cavity field, respectively.

in Figs. 3(d)–3(f). In the transmission-blockaded phase, the
atoms are dominantly in the state |g〉, i.e., Ng � Nf , Ne inde-
pendently from the repumper and the cavity pump strength.
When the blockade is broken down and there is a finite trans-
mittance approaching unity, the populations strongly depend
on the repumping rate.

In the low-λ limit (λ � �), the cavity photons optically
pump the atoms to the other ground state | f 〉, resulting
in Nf � Ng, Ne (see the bottom-right inset scheme in the
phase diagram in Fig. 2). This is the interesting limit of
bistability, represented by Fig. 3(e): the two stable steady
states correspond to electronic ground states, |g〉 or | f 〉,
with high purity, and the cavity-transmitted photocurrent en-
ables a direct monitoring of which ground state the atoms
are in. Such a bistability, dubbed transmission-blockade-
breakdown (TBB) [43], can be considered the extension of
the photon-blockade-breakdown (PBB) phenomenon, known
from single- or few-atom CQED [46,47], to many-atom
CQED systems. Whereas with PBB, a large cooperativity C =
g2/(γ κ ) is needed on the single-atom level (g � κ, γ ), for
TBB the large cooperativity C = Ng2/(|�A| κ ) is achieved by
increasing the number of atoms (“collective strong coupling
regime”).

As a reference, we display the case of classical bistability
[48–50] which is reproduced in the limit of λ → ∞, G ≡
(1 + 2�/λ)−1 = 1, when the strong repumper confines the
atomic state to the two-level manifold spanned by |e〉 and
|g〉 (corresponding to the top-right inset scheme in Fig. 2).
Figure 3(f) shows that the bright cavity phase is connected to
a full mixture of the atomic state Ne ≈ Ng, while Nf ≈ 0. This
means that cavity photons saturate the atoms in the two-level
manifold, while state | f 〉 is effectively eliminated from the
dynamics by the strong repumper. This model thus reveals that
the control parameter λ bridges the well-known saturable ab-
sorber optical bistability and the much more recent paradigm
of first order dissipative phase transitions, that has been shown
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FIG. 3. Cavity transmittance and atomic populations as a function of pumping rates. Transmission is first considered with respect to varying
repump rates, with the cavity drive fixed at η = 300γ , (a). Second, we consider transmission as a function of the cavity drive amplitude for fixed
repumping rates G = 0.1, (b), and G = 1, (c). Similarly, the relative steady-state populations, Nf (dash-dotted green), Ne (dashed blue), and
Ng (solid orange) are plotted with respect to the same pumping rates, (d–f). All the plots show a crossing of the bistability domain, represented
by the white stripe, in Fig. 2 along a vertical (a, d) and horizontal (b, c, e, f) axis. Where the control parameters, η and λ, give rise to multiple
solutions, the dotted lines correspond to unstable solutions, the rest to stable steady states.

to be represented by the photon-blockade-breakdown bistabil-
ity.

In the following, we present experimental results obtained
from measurements on a CQED system which is more in-
volved than the above-discussed abstract model. However, we
will show that the main features of the interaction are properly
captured by the model, and the phase diagram presented in
Fig. 2 underlies the actual CQED system of the experiment.

IV. EXPERIMENT

An ensemble of cold 87Rb atoms was loaded into the mode
of a high-finesse resonator by magnetically transporting the
atoms from a magneto-optical trap (MOT) to the cavity. After
the MOT cycle, the atoms were cooled by polarization gra-
dient cooling to temperatures of T ≈ 120 μK. Subsequently,
they are magnetically polarized by optical pumping into the
(F, mF ) = (2, 2) hyperfine ground state to allow capture with
a magnetic quadrupole trap. The magnetically trapped atomic
cloud was then transported into the cavity by adiabatically
displacing the trap center. The cavity was l = 15 mm long,
and the mode waist was w = 127 μm, an order of magnitude
smaller than the atomic cloud in this direction. Approximately
N ∼ 105 atoms were loaded into the mode volume. The
cavity linewidth was measured to be κ = 2π × 3.92 MHz
(HWHM), and the single-atom coupling constant was cal-
culated as g = 2π × 0.33 MHz on the (F, mF ) = (2, 2) ↔
(3, 3) hyperfine transition of the D2 line. A single mode of the
actively stabilized resonator was resonantly driven, �C = 0,
with a laser tuned below the F = 2 ↔ 3 atomic resonance

by �A = −2π × 29 MHz. Along with a circularly polarized
drive field, σ+, the single-atom frequency shift was δ ≈ 2π ×
3 kHz, such that N ≈ 104 relevant atoms could shift the mode
by more than 10κ from resonance.

A mapping between the abstract model of Eq. (1) and the
actual level scheme of 87Rb is presented in Fig. 4, together
with the given configuration of laser drives. The state |g〉
corresponds to the hyperfine ground state (F, mF ) = (2, 2) in
52S1/2, whereas the excited state |e〉 is realized by (F, mF ) =
(3, 3) in 52P3/2. This is a closed-cycle transition within the
D2 line for σ+ circular polarization. As the atoms are in

52S1/2

52P3/2

3, 33, 23, 1

2, 1 2, 2

2, 2

1, 1

ΔA

|f
|g

|e

σ−
σ+

FIG. 4. The 87Rb levels behind the simplified model in Fig. 1.
Red arrows represent cavity field excitations and the green arrow
the repumper. Other states in the hyperfine manifold with smaller
magnetic quantum numbers are not shown.
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FIG. 5. Magnetic field lines and orientation with respect to the
cavity axis (red lines representing the cavity mode waist in the x-y
plane). In the x-z plane, the quadrupole trap creates field lines that
bend away from the origin and that are cylindrically symmetric
around the z axis (green lines). Perpendicular to this, within the x-y
plane of the cavity axis (gray), the magnetic field lines (thin blue
arrows) point radially outward. The quantization axis (thick blue
arrows), within the cavity mode, is then parallel to the cavity axis
but with opposite orientation in the two halves of the mode.

a magnetic quadrupole trap, the magnetic field defining the
local quantization axis varies in space. In the plane of the cav-
ity mode, the magnetic field lies in the same plane, pointing
radially outward from the trap center which coincides with the
center of the cavity (Fig. 5). Therefore, the magnetic field is
oriented, to a good approximation, parallel to the cavity axis
within the mode. However, in the two halves of the mode vol-
ume, being on the two opposite sides of the mode center, the
magnetic field is pointing in opposite directions. Therefore,
the circularly polarized cavity drive field is effectively σ+ in
one half, and σ− in the other half of the mode volume with
respect to the local quantization axis.

The σ− polarized field generates transitions from |g〉 to
the (F, mF ) = (2, 1) in 52P3/2, which has a much smaller
Clebsch-Gordan coefficient than the σ+ transition (ratio 1

15 ).
Nevertheless, excitation to the (F, mF ) = (2, 1) implies that
the atoms can decay into (F, mF ) = (1, 1) which is the state
| f 〉. The decay can also lead to the other hyperfine state
(F, mF ) = (1, 0). However, this state can be incorporated into
| f 〉. The coupling between the ground-state manifolds F = 1
and F = 2 includes a spontaneous emission process in both
directions, therefore only the populations, not coherences be-
tween the states | f 〉 and |g〉, |e〉 play a role. The repumper res-
onantly drives the transition from the (F, mF ) = (1, 1) ground
state to the (F, mF ) = (2, 2) excited state with σ+ polarized
light, which amounts to an optical pumping into the state |g〉.
This is considered as a population pumping with rate λ in
Eq. (1). The other simplification in the semiclassical model
is that the state | f 〉 is populated directly from the state |e〉
rather than introducing additional variables to include the state
(F, mF ) = (2, 1). The population in this latter is proportional
to that of |e〉, since both of them are excited by the cavity
field from the state |g〉. Therefore, the crucial dependence on

the cavity field intensity and the population in |g〉 is captured
by the model with a phenomenological rate, �, determined
previously as � = 0.93 × 10−3γ , by fitting the numerical
simulation to the observed transition dynamics [43].

The mean-field model, appropriately accounting for the
cavity-assisted optical pumping processes, does not include
the atom loss from the trap. The total atom number, N , in
Eqs. (1) is not a conserved quantity. The loss is due to re-
coil heating, background gas collisions, etc. There are other
processes which follow from the dynamics: when the atom
is in state | f 〉, the magnetic trap potential vanishes for the
(F, mF ) = (1, 0) and is repulsive for the (1, 1) states. Be-
cause of the atom loss, the system ultimately evolves into the
resonant empty-cavity transmission on a slow timescale of a
few 100 ms (cf. measurement results below). Note also that
atoms in the magnetic trap but outside the mode can enter
the mode volume. However, these atoms adapt their internal
state on a timescale of ms to the actual global phase of the
system determined by the control parameters. Therefore, this
reloading process can be treated together with the losses by
embedding them into an effective loss.

V. DRIVEN-DISSIPATIVE PHASE TRANSITIONS

The end of the atom transport into the cavity mode defines
the time t = 0. The cavity drive was switched on at t = 3 ms
at the chosen power level. We measure the cavity transmis-
sion recorded by an avalanche photodiode until t = 5 s. In
all the measurements, the atoms were initially in the ground
state, |g〉 ↔ (F, mF ) = (2, 2). Therefore, the transmission at
the beginning of the interaction, with N ∼ 105 atoms in state
|g〉, was always suppressed by the dispersive shift of the mode
with respect to the fixed drive frequency by more than ten
times the linewidth. Depending on the strength of the cavity
drive and that of the repumper, this state could be the stable
phase or an unstable one, according to the phase diagram in
Fig. 2.

Figure 6 shows the cavity transmission as a function of
time for 3 × 3 different pairs of fixed values of the control
parameters η, λ. The cavity drive strength η increases from
left to right, whereas the rescaled repumping rate G increases
from bottom to top. The left column represents a weak cavity
drive compared to the effect of the repumper. According to
the phase diagram in Fig. 2, the stable phase is the block-
aded one with atoms in |g〉, which is the initially prepared
state of the system. In this case, only atom loss can lead to
the transparent cavity state. Indeed, the left column shows
that the transition is independent of the repumper strength
and takes place on a long timescale of about 350 ms. This
timescale can be attributed to the situation that even atoms in
state |g〉 were gradually lost from the trap, due to the above
described mechanisms not contained in our idealized theoret-
ical model of Sec. II. On increasing the cavity drive intensity
(middle column of panels), an earlier and faster emptying of
the trap can be observed. This indicates that the steady state is
still the transmission blockade, and the cavity drive merely
increases the population in the states |e〉 and | f 〉, thereby
speeding up the atom loss.

Qualitatively different behavior of the transition is de-
picted in the right column of panels where the cavity drive is
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FIG. 6. The time evolution of the system with respect to varying control parameters, as monitored by the cavity transmission (blue lines,
left scale) and the excess noise (red lines, right scales). The cavity drive amplitude increases from left to right (η/γ = 25, 117, 236) and the
repumping rate decreases from top to bottom (λ/γ = 5.9 × 10−3, 0.85 × 10−3, 0.27 × 10−3), such that G = 0.76, 0.31, and 0.13, respectively.
The dynamics of the transition between the blockaded phase (close to zero transmission) and the transparent steady state (transmittance reaches
the maximum corresponding to a driven empty resonator) illustrate different domains of stability in the selected time windows. The transition
changes from a smooth one induced by inevitable atom loss from the trap (weak cavity drive, left column of panels) to a sharp runaway
dynamics for strong drive (i), and oscillatory behavior for stronger repump (f). The excess noise (in cavity photon number) accompanying
the transitions is shown by the red curves. When the control parameters are in the bistability domain, the single-mode cavity field manifests
significantly enhanced fluctuations during the transition between the steady states.

strongest. For the bottom right panel [Fig. 6(i)], the repumper
drive intensity is so weak that the stable phase is the transpar-
ent resonator with atoms in | f 〉. However, the system, initially,
is prepared in the other, transmission blockaded phase with all
atoms in |g〉. Before considerable atom loss can take place, the
system undergoes a nonlinear runaway process to transition
into the stable phase. This is clearly the case in Fig. 6(i),
and traces of this dynamics can be observed in Fig. 6(h).
So the bottom row shows that the transition varies from an
atom-loss-dominated smooth transition (bottom left panel) to
a phase-transition-like switch on increasing the intensity of
the cavity drive. This effect has been thoroughly analyzed in
a recent paper [43].

The key new observation is represented mostly by panels
Fig. 6(f) and 6(c). Rather than a fast, monotonic switching to
the stable phase, as in Fig. 6(i), stronger repumping leads to an
oscillatory transition in Fig. 6(f) and, somewhat less clearly, in
Fig. 6(c). The strong dynamical oscillations are indications of
the competition of the opposing optical pumping processes.
They appear only in a limited range of the control parameters
for which, on losing atoms, the system goes into the bistability
region of the phase diagram. However, when monitoring the
transmitted intensity, the effect of bistability is partly covered
by atom loss. One can unravel the dynamical signatures of
the transition which are beyond the effects of the atom loss
by analyzing the intensity fluctuations. An alternative method,
which we present in the next section, is to vary the system
parameters on a timescale shorter than that of the loss.

The bistability is confirmed by the increased intensity of
fluctuations in the detected transmitted signal when the system
transitions between phases. The single-mode cavity field is

considered as a displaced thermal (chaotic) state for which
the width of the intensity distribution can be characterized by
a thermal photon number. This latter can be inferred from the
recorded intensity noise following the procedure described in
Ref. [43]. The excess noise corresponds to fluctuations of the
mean-field amplitude, α, and is thus beyond the scope of the
mean-field model.

The atom-loss-dominated transition to the transparent
phase (left column of panels) does not exhibit excess noise
during the transition [note that the fluctuations including even
negative photon numbers in Figs. 6(a), 6(d), and 6(g) indicate
the finite accuracy of the method close to zero mean value of
the field, i.e., uncertainty is below 0.5 photon]. There is some
excess noise generated during the transition with increased η

(middle column), while significantly enhanced intensity fluc-
tuations accompany the transition for strong cavity drive (right
column). An equivalent of 20 and 100 thermal photons charac-
terize the width of the photon number distribution in the cavity
mode during the limited time period when the system is in the
transmission blockade breakdown and the bistability region,
Figs. 6(i) and 6(f), respectively. This is comparable, but in
addition to the Poissonian noise of about 100 photons at the
observed mean photon number around 104. The enhancement
of fluctuations depends systematically on the control parame-
ters. For example, consider the rows of Fig. 6 in which only
the cavity drive varies. Expressing this enhancement in terms
of a thermal photon number, it shows a power law dependence
on the cavity drive as seen on the log-log plot in Fig. 7,
where the drive is also expressed as the photon number the
drive would generate in an empty cavity. The exponent varies
with repumper strength (numerical values given in the figure
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FIG. 7. The magnitude of the excess noise (in thermal cavity
photon number) with respect to the cavity drive power (empty cavity
photon number). Different colours and line styles correspond to
different repumper strengths, G = 0.127 (dash-double-dotted blue),
0.144 (dotted orange), 0.542 (solid green), 0.632 (dashed red), and
0.708 (dash-dotted purple). Each point represents the average of ten
measurements. The linear fits in the log-log scale reveal power laws
with exponents 1.19 ± 0.15, 1.58 ± 0.11, 2.73 ± 0.27, 2.68 ± 0.11,
and 2.49 ± 0.36, respectively.

caption). A deeper theoretical interpretation of this experi-
mental observation requires the description of higher-order
quantum correlations in the atom-light interaction, which is
beyond the scope of the mean-field approximation of the
Heisenberg-Langevin equations and will be studied else-
where.

VI. HYSTERESIS

As suggested above, the atom number, N , evolves in time
due to loss processes not included in the theoretical model.
As such, these changes are not reflected in the phase di-
agram of Fig. 2. As atoms are being lost, the bistability
domain of the diagram shifts toward smaller cavity drive
strengths, i.e., the transmission-blockaded phase gradually
shrinks. Nevertheless, the atom loss process is slow enough
that the multistability of the system is still apparent for quickly
varying probe light, in the form of hysteresis [20]. To this
end, the control parameters were swept repeatedly across
the bistability domain. The intensities were varied using an
acousto-optical modulator (AOM), ramping the drive voltage
up and down linearly. For the cavity probe laser, η, the ramp
times were 30 ms up, and 10 ms down, while for the repumper,
the corresponding values were 15 and 5 ms, respectively. Fig-
ure 8 presents the cavity transmission for ramping, [Fig. 8(a)]
the cavity drive, and [Fig. 8(b)] the repumper intensity five
times, while the other control parameter was kept fixed. An
individual trajectory of the order parameter is depicted, since
the bistability must be manifested at this level of single runs.
With the current parameters we experienced little variation
between runs, so the presented sample was typical. The atoms
were initially prepared in state |g〉, so the cavity transmission
was initially suppressed. The first ramping cycle of the cavity
drive did not move the system out of this phase [cf. Fig. 8(a)]
because even if this phase becomes unstable for high cavity
drive, when the bistability domain is crossed during the ramp,

FIG. 8. Hysteresis in the cavity transmittance when the cavity
drive power (a) and the repump power (b) sweep across the bistability
domain back and forth five times. The corresponding sweep axis in
the phase diagram is shown in the small panels to the right. The
temporal order of the ramps is indicated by the blue, orange, green,
red, and purple lines, respectively, and the ramp direction by the
arrows. For (b) we use a log10 scale.

the transition from such a steady state takes place randomly
on a long timescale. At this first ramp, it happened to be
longer than the sweep period. During the second ramp-up
(orange curve), the transition to the transparent phase, atoms
in | f 〉, did occur. Hence, during the ramp-down, there is a
higher cavity transmission at the same drive strength. This is
persuasive evidence of bistability. It is only at the end of the
ramp down period that the repumper transfers the atoms back
to state |g〉, reinstating the blockaded phase. At the beginning
of the next ramp up period (green), this is still the ongoing
direction of optical pumping until the cavity drive starts to
dominate. Accordingly, the corresponding transmission curve
(green) is slightly below that of the preceding ramp-down
period (orange). This ramp cycle, with the same features,
could be observed three more times before the atoms were
lost from the cavity. Where we reemphasize that the hysteresis
window shrinks for consecutive cycles due to the decreasing
number of atoms.

The hysteresis was confirmed by varying the repumper
intensity, as a control parameter, with cavity drive fixed.
Considering the transition across the bistability domain, the
repumper powers are widely varied that a logarithmic scale
is used on the horizontal axis. In Fig. 8(b) the curve starts at
the large repumper limit, where the initial state of atoms in
|g〉 corresponds to the stable phase. Within a sweep cycle, the
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FIG. 9. The time evolution of the cavity transmission without
repumping (thick blue), with repumping (thin green) and with pulsed
repumping (orange with medium linewidth). When the repumper is
switched off, the system starts to evolve in a runaway process toward
the bright phase at a given time near t = 0.04 s. With the repumper
on, however, the system undergoes the transmission blockade break-
down at a later time than without it. As the repumper is strong in
this case, the transition to the high transmittance phase, with atoms
in state | f 〉, takes place only when the atom number is significantly
reduced due to other loss processes. With pulsed repumping, the
transition occurs every 5 ms, because the repumper brings the atoms
back from state | f 〉 to state |g〉 (the blockaded phase): switching
between the two hyperfine ground states.

value of the repumper power was below the bistability domain
for short times only. Therefore, the transition to the states | f 〉
did not happen in the first cycle (blue) but only in the second
one (orange). In this cycle, a partial population transfer to the
states | f 〉 was accomplished within the ramp-down time and
a part of the atoms remained in the blockading state |g〉. The
cavity transmission increased noticeably, but to a value well
below the empty cavity reference. At subsequent cycles, the
atom number was smaller due to loss, and a full transfer from
the state |g〉 to | f 〉 has been achieved during the period where
the repumper intensity was decreased below the bistability
domain. At these smaller atom numbers, on the other hand,
the mode frequency shift did not reach the level necessary
to suppress the transmission. Therefore, the red and purple
curves do not go down to zero for strong repumper at the right
side of the plot. Nevertheless, hysteresis was clearly observed
in these cycles, implying the presence of bistability.

VII. THE ROLE OF THE REPUMPER

Finally, we performed a measurement in order to outline
the role of the repumper and to detect the atomic state in the
transparent phase. The repumper was pulsed between zero and
a large value, G = 0.44, with a period of 5 ms (on/off ratio
1). The time evolution of the cavity transmission is plotted in
Fig. 9, where the blue (thick) curve represents the evolution
of the system without repumping, while green (thin) gives
the transmission with constant repumping, for the same value
of G. These configurations correspond qualitatively to
Figs. 6(i) and 6(c), respectively. In the prior case, the system
with atoms in |g〉 is prepared in a phase which is unstable at
finite cavity drive and without repumper. Therefore the system
switches to the stable phase in a runaway process at a random

time. With repumper on, the blockaded phase is stabilized to
some extent, and the runaway transition is delayed until fewer
atoms are present, due to inevitable atom loss from the trap.
The observed curve for the pulsed repumper demonstrates
that the atoms can be transferred back to the state |g〉 by
means of the repumper. The blockade was reinstated repeat-
edly, following the pulse sequence exactly. This shows that
when the cavity transmission blockade was broken down, the
atoms were shelved in the state | f 〉, from where they could
be pumped back to the blockading state |g〉. This proves, on
the one hand, that the cavity transmissivity is not due to an
atomic saturation effect on the |g〉 ↔ |e〉 transition. On the
other hand, since the repumper reinstated the blockade at the
same level as it was a period of 5 ms earlier, there is no
significant light-induced loss of atoms from the trap during the
timescale 40 ms of the observed transition. There is of course
loss on the longer timescale, as can be seen, for example,
in Fig. 6(g) corresponding to weak drive and repump, on a
timescale of several hundreds of milliseconds.

In addition, this measurement served for the calibration of
the model parameter, λ, characterizing the AOM-controlled
repumper intensity. When there is a sudden increase of the
cavity transmittance (repumper is off), the magnitude of its
change gives information on the depletion of the population in
|g〉. One can safely assume that these atoms are accumulated
in the state | f 〉. On switching on the repumper, from the initial
slope of the transmittance drop, it is possible to deduce the
rate of change in the population of | f 〉. It is given by −λNf ,
according to the last term in Eqs. (1), from which the rate λ

can be obtained.

VIII. CONCLUSION

We have experimentally demonstrated bistability in a cold
atom-cavity QED system, where the steady states correspond,
dominantly, to hyperfine ground states. Having explored the
runaway pumping processes involved, we described the phe-
nomenon in terms of a driven-dissipative phase transition,
with two optical driving intensities as control parameters and
cavity transmission as the order parameter of the system. Cru-
cially, by exploring different combinations of optical pump
intensities, we showed that the steady state of the system de-
pends on the history. This observed hysteresis, in both control
parameters, not only confirms the bistability but that the tran-
sition is a first-order effect. In fact, for high pumping intensity
in one of the control beams, we recover the original, widely
known, optical bistability, such that our system encompasses
this effect as a special case.

Considering future directions, we note that the system size
is characterized by the cooperativity, i.e., the collective cou-
pling strength between the atomic cloud and the cavity mode.
In our system, the cooperativity, C, was about 100, which is
comparable with the one reached in the circuit QED systems
with single artificial atoms [47]. However, in this 	 atom
scheme, the cooperativity can be increased by the number of
atoms, so one can better approach the thermodynamic limit.
One possible solution is to use Bose condensed gases, for
which the steady states would be entirely quantum in all
degrees of freedom. Beyond this, the observed effect is also
a promising step towards realizing first-order quantum phase
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transitions. As the cavity transmittance is associated with
hyperfine states, which can be coherently manipulated with
microwave radiation, the system shows analogy with single-
atom based quantum switches [51] and quantum birefringence
systems [52]. Within a many-body systems, the observed ef-
fect suggests a pathway for bringing microscopic quantum
effects to a mesoscopic system size.

Note added in proof. Recently, another paper has been
published about a different, but closely related nonlinear

effect based on cavity-assisted optical pumping between
ground states of atoms [53].
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