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Pump depletion in optical parametric amplification
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We derive analytic solutions for Heisenberg evolution under the trilinear parametric Hamiltonian which are
correct to the second order in the interaction strength but are valid for all pump amplitudes. The solutions allow
pump depletion effects to be incorporated in the description of optical parametric amplification in experimentally
relevant scenarios and the resulting phenomena to be rigorously described.
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I. INTRODUCTION

Optical parametric amplification [1] is the workhorse of
quantum optics, being a source for single photons in the weak
amplification regime [2,3] and a source of squeezed states in
the strong amplification regime [4,5]. A simple description of
this interaction for the nondegenerate (two-mode squeezing)
case is given by the unitary [6]

U = exp{−iχ (a†b†α + abα∗)}, (1)

where a and b are annihilation operators in the rotating frame
describing the squeezed modes, χ is the interaction strength,
and α is the amplitude of the coherent pump field. Both χ

and α are dimensionless. Applying this unitary to the vacuum
produces the well-known two-mode squeezed state

|λ〉ab = U |0〉 =
√

1 − λ2
∑

λn|n〉a|n〉b, (2)

where λ = tanh χα. Alternatively, the Heisenberg evolution
of the annihilation operators is given by

a0 = U †aU = a cosh χα − ib† sinh χα,

b0 = U †bU = b cosh χα − ia† sinh χα. (3)

Being quadratic in the operators, the squeezing unitary is
Gaussian, i.e., mapping Gaussian states to Gaussian states,
and so the first and second moments of the Heisenberg
operators and their Hermitian conjugates are sufficient to com-
pletely characterize squeezed states [7].

Sophisticated models based on this interaction can be built
that successfully describe a large range of devices and proto-
cols in quantum optics [8,9], quantum communication [10],
quantum computing [11], and quantum metrology [12,13].
Yet at a fundamental level this interaction is unphysical as
it is not energy conserving. This is because the pump laser
is treated as a reservoir that is unaffected, i.e., undepleted,
by the interaction. Under typical experimental conditions this
is a good approximation, as the efficiency of the interaction
is very low; however, efficiencies are improving all the time
and experiments are moving into the regime where depletion
effects cannot be neglected [14,15]. Whilst full numerical

solutions have been known for many years [16,17] and have
been used in theoretical studies [18–20] in conjunction with
short time perturbative approaches, these rapidly become in-
tractable when treating realistic systems where the pump
power is large. Specifically, numerical simulation stops being
practical when α � 30.

In this work we derive Heisenberg equations of motion
which include the lowest-order nontrivial corrections to the
standard equations due to pump depletion in a consistent man-
ner that allows for large pump powers. Although nonlinear in
the mode operators, our equations are straightforward to work
with and allow an exploration of the physics that arises and a
description of the most accessible experimental signatures of
pump depletion. We note that some work on pump depletion
has been carried out with respect to the microwave domain
by the superconducting circuit community (e.g., Ref. [21]);
however, the physics can be somewhat different there, and
here we focus on the optical domain.

II. HEISENBERG EVOLUTION
BY THE TRILINEAR HAMILTONIAN

A better approximation for the unitary describing the para-
metric amplification process is given by

U = exp{−iχ (a†b†c + abc†)}. (4)

This unitary is obtained using the rotating wave approxima-
tion (RWA) [as in Eq. (1)], which is not strictly justified due to
the large detuning of the pump from the nearest excited state.
However, at optical frequencies, the only effect of including
non-RWA terms is a change to the effective value of the
interaction strength χ (as shown explicitly for the related case
of the Raman laser [22,23]). Given that χ is introduced as a
parameter, the RWA is justified. Notice that the approximation
that leads us back from Eq. (4) to the quadratic form in Eq. (1)
is the replacement c → 〈c〉 = α. We want to know the full
form of operators a, b, c in the Heisenberg picture, however
we no longer obtain the simple closed-form linear equations of
Eq. (3). Nevertheless, they can be evaluated to any desired
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order using the Baker-Campbell-Hausdorff formula [24],

ao = eGae−G

= a + [G, a] + 1
2! [G, [G, a]] + 1

3! [G, [G, [G, a]]] + · · ·
(5)

The Heisenberg operators get very complicated as we include
terms of higher and higher orders. The evolved operators
up to order χ8 are given explicitly in Appendix A. The
first few terms of this expansion have been studied since
the 1970s [25–27]. However, we find that a brute force ex-
pansion in orders of χ is not the most tractable approach
in situations of experimental interest. This is because, for
typical experimental parameters, not all terms with the same
power of χ contribute equally when we calculate expecta-
tion values. To see this, we can write the pump operator as
c = α + δc, where the expectation value of c, 〈c〉 = α, is
the coherent amplitude of the pump, which we assume to be
real here; δc is an operator representing the noise/quantum
part of the pump; and 〈δc〉 = 0 by definition. If we carry out
this expansion, then, for example, the first few terms of ao

become

ao = a − iχαb† − iχb†δc

+ χ2

2!
(−ab†b + aα2 + αaδc† + αaδc + aδc†δc)

+ · · · (6)

α can be much larger than 1, whereas χ is a small number
much less than 1. We assume αχ is of order unity. In this case
we see that terms like −χ2

2! ab†b, which is of the order χ2, will

contribute much less than terms like χ2

2! α
2a, which is of the

order (αχ )2 ∼ 1. The result is that we need to consider both
α and χ when doing the expansion, and the size of a term
is determined by the difference in powers between α and χ .
In the end we wish to derive consistent Heisenberg operator
equations which can be used to evaluate first-, second-, and
third-order expectation values that are accurate to the second
order in χ and to all orders in χα.

Hence, we perform the c = α + δc expansion and only
keep terms of the forms αnχn and αn−1χn, and ignore any
other terms (there are also no terms where the power of α is
higher than the power of χ ). Then the operator for the signal
looks like

ao

= a

(
1 + α2χ2

2!
+ α4χ4

4!
+ α6χ6

6!
+ α8χ8

8!
+ · · ·

)

+ a(δc + δc†)

(
αχ2

2!
+ 2α3χ4

4!
+ 3α5χ6

6!
+ 4α7χ8

8!
+ · · ·

)

− ib†

(
αχ + α3χ3

3!
+ α5χ5

5!
+ α7χ7

7!
+ · · ·

)

− ib†δc

(
χ + 2α2χ3

3!
+ 3α4χ5

5!
+ 4α6χ7

7!
+ · · ·

)

− ib†δc†

(
α2χ3

3!
+ 2α4χ5

5!
+ 3α6χ7

7!
+ · · ·

)
, (7)

where we have collected terms with the same operators,
leading to several expansions in αχ . We see a clear pattern
from each of the expansions. Assuming the pattern persists
(checked to order χ15), we can write the terms in each
bracket as infinite sums, which are found to have closed-form
expressions. The coefficients of each operator are

a :
∞∑

n=0

α2nχ2n

(2n)!
= cosh αχ,

a(δc + δc†) :
∞∑

n=1

α2n−1χ2nn

(2n)!
= χ

2
sinh αχ,

−ib† :
∞∑

n=0

α2n+1χ2n+1

(2n + 1)!
= sinh αχ,

−b†δc :
∞∑

n=0

α2nχ2n+1(n + 1)

(2n + 1)!

= iχ

2
cosh αχ + i

2α
sinh αχ,

−b†δc† :
∞∑

n=1

α2nχ2n+1n

(2n + 1)!
= iχ

2
cosh αχ − i

2α
sinh αχ.

(8)

These terms give us expressions that are valid up to order χ .
Now, we are interested in the second-order moments which
will be to order χ2, hence to be safe we should expand to order
χ2 in a similar way to what we have done when expanding
to order χ . This full expansion is presented in Appendix B.
However, the vast majority of the second-order terms derived
in the Appendix do not contribute to the expectation values at
O(χ2). We find that for the purpose of calculating expectation
values, we may take

ao = a

[
cosh χ ′ + (δc + δc†)

χ

2
sinh χ ′

]

− ib†

[
sinh χ ′ + χ

2
cosh χ ′(δc + δc†)

+ χ

2χ ′ sinh χ ′(δc − δc†)

]
+ χ2(iAb† + Ba), (9)

bo = b

[
cosh χ ′ + (δc + δc†)

χ

2
sinh χ ′

]

− ia†

[
sinh χ ′ + χ

2
cosh χ ′(δc + δc†)

+ χ

2χ ′ sinh χ ′(δc − δc†)

]
+ χ2(Bb + iAa†), (10)

co = αo + δco = α − χ

2χ ′ sinh2 χ ′ + χ3C

+ δc − (a†a + b†b)
χ

2χ ′ sinh2 χ ′

− ia†b† χ

2

(
1 − 1

χ ′ sinh χ ′ cosh χ ′
)

− iab
χ

2

(
1 + 1

χ ′ sinh χ ′ cosh χ ′
)

+ χ2Dδc†, (11)
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where

A = −5χ ′ cosh χ ′ + 2 sinh χ ′ − χ ′2 sinh χ ′ + sinh 3χ ′

8χ ′2 ,

B = −− cosh χ ′ − χ ′2 cosh χ ′ + cosh 3χ ′ − 3χ ′ sinh χ ′

8χ ′2 ,

C = −3 − 4χ ′2 + (2 − 4χ ′2) cosh 2χ ′ + cosh 4χ ′ − 2χ ′ sinh 2χ ′

32χ ′3 ,

D = −1 − cosh 2χ ′ + χ ′ sinh 2χ ′

4χ ′2 ,

and χ ′ = αχ . The third-order term in co can lead to a
second-order term in the expectation values due to cross-
multiplication with α [see Eq. (12)]. This is the only
third-order term in our model that contributes to correla-
tions at second order (or third order). These are “effective
operators” in the sense that they give the correct re-
sults for all normally ordered second-order moments, i.e.,
〈a†

oao〉, 〈aobo〉, 〈δc†
oδco〉, 〈δcoδco〉, and α2

o , and therefore all
variances calculated from these operators are correct. Terms
that arise in any calculation that are not normally ordered
must first be reordered using the standard Boson commuta-
tor relations, e.g., [ao, a†

o] = 1, before proceeding with the
calculation.

Equations (9)–(11) are the main results of this paper. They
provide a tractable and physically intuitive way to investi-
gate the lowest-order corrections to the behavior of two-mode
squeezing when pump depletion becomes significant.

III. EXPECTATION VALUES

We are now in a position to investigate the physics of
the pump-depleted squeezer. Let us first consider the photon
number in the pump and the squeezed modes. Assuming the
pump is initially in a coherent state and the squeezed modes
are initially in vacuum states, the photon number in the pump
after the interaction is given by

〈c†
oco〉 = α2

o + 〈δc†
oδco〉 = α2 − sinh2 χ ′ +

(
χ

2χ ′

)2

sinh4 χ ′

+ 2χ2χ ′C + χ2

4

(
1 − 2

χ ′ sinh χ ′ cosh χ ′

+ 1

χ ′2 sinh2 χ ′ cosh2 χ ′
)

. (12)

As expected, the pump is now depleted by the interaction with
〈c†

oco〉 < α2. In addition, there is now a coherent contribution
to the photon number, α2

o , and an incoherent contribution,
〈δc†

oδco〉. The photon numbers in the squeezed modes are
given by

〈a†
oao〉 = 〈b†

obo〉 = sinh2 χ ′ − 2χ2 sinh χ ′A

+ χ2

4

(
cosh2 χ ′ − 2

χ ′ sinh χ ′ cosh χ ′

+ 1

χ ′2 sinh2 χ ′
)

. (13)

The photon numbers in the squeezed modes are also
lower than predicted by the undepleted pump model. It is

straightforward to confirm that energy conservation now
holds as

〈c†
oco〉 + 1

2 (〈a†
oao〉 + 〈b†

obo〉) = α2, (14)

where we have taken into account that the energy of the
squeezed mode photons is half that of the pump photons.

The other nonzero expectation values up to the third order
can also be calculated and give

〈aobo〉 = − i

2
sinh 2χ ′ + iχ2

16χ ′2 [−4χ ′ − 6χ ′ cosh 2χ ′

+ (1 − 4χ ′2) sinh 2χ ′ + 2 sinh 4χ ′],

〈δcoδco〉 = 1

32

[
− 8χ2

(
1 + 1

χ ′ sinh 2χ ′
)

+ χ2

χ ′2 (8 cosh 2χ ′ + cosh 4χ ′ − 9)

]
,

〈aoboδco〉 = iχ

2χ ′ sinh χ ′ cosh3 χ ′ − iχ

2
cosh2 χ ′,

〈aoboδc†
o〉 = iχ

2χ ′ sinh3 χ ′ cosh χ ′ − iχ

2
sinh2 χ ′. (15)

From these we can calculate other interesting observables
such as the quadrature variances of the output pump beam.
The amplitude variance is given by

Vxc = 〈(δco + δc†
o )2〉 = 2〈δc†

oδco〉 + 〈δcoδco〉 + 〈δc†
oδc†

o〉 + 1

= 1 − χ2

χ ′ sinh 2χ ′ + χ2

8χ ′2 (−5 + 4 cosh 2χ ′ + cosh 4χ ′),

(16)

whilst the phase variance is given by

Vpc = −〈(δco − δc†
o )2〉

= 2〈δc†
oδco〉 − 〈δcoδco〉 − 〈δc†

oδc†
o〉 + 1

= 1 − χ2

(
sinh2 χ ′

χ ′2 − 1

)
. (17)

We notice that the output pump has Vp < 1 < Vx, indicating
it has become phase squeezed through the interaction. Be-
cause 〈aoao〉 = 〈bobo〉 = 0, the quadrature variances of the
signal and idler are isotropic and given by Vx j = Vpj = 1 +
2〈 j†

o jo〉, where j = {a, b}. Given the phase convention we
have adopted, the correlations between the signal and idler
exist between orthogonal quadratures. Hence, the difference
(V −

xp) and sum (V +
xp) squeezing between the signal and idler

are given by

V ±
xp = 〈[ao + a†

o ± i(b†
o − bo)]2〉

2
= 2〈a†

oao〉 ∓ 2i〈aobo〉 + 1

= 1

16
(cosh χ ′ ∓ sinh χ ′) ×

{
− 3χ2

χ ′2 cosh 3χ ′

+
[

3χ2

χ ′2 ∓ 20χ2

χ ′ + 8(2 + χ2)

]
cosh χ ′

+ 2

[
± 5χ2

χ ′2 (1 + cosh 2χ ′)

+ 2χ2

χ ′ ∓ 4(2 + χ2)

]
sinh χ ′

}
. (18)
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We find V +
xp < 1 < V −

xp, indicating entanglement between the
signal and idler beams as expected.

In contrast to the undepleted case, neither the output pump
or signal and idler are in minimum uncertainty states. That is,
we find VxcVpc > 1 and V +

xpV −
xp > 1. Given the overall unitarity

of the interaction, this indicates that either non-Gaussianity
or entanglement, or both, is emerging between the pump and
the signal and idler. Indeed, it is both. There is no correla-
tion between the pump or signal or idler in the second-order
moments, as would be required if Gaussian entanglement was
emerging. Instead, we find a correlation between the pump
and signal and idler in the third-order moments, indicating
non-Gaussian entanglement. In particular, we can consider the
quadrature correlations Vabc = 〈XaxXbpδXcx〉 and show

Vabc = 〈i(ao + a†
o)(b†

o − bo)(δco + δc†
o )〉

= −2i(〈aoboδco〉 + 〈aoboδc†
o〉)

= χ

2

(
1

χ ′ cosh χ ′ sinh χ ′ − 1

)
(cosh2 χ ′ + sinh2 χ ′).

(19)

The fact that this moment is nonzero (whilst all related first-
order moments are zero) indicates a non-Gaussian quantum
correlation, i.e., entanglement.

IV. STRONG PUMP REGIME

A parameter regime which is expected to be relevant for
experimental tests of these effects is the strong pump regime.
That is, we take α sufficiently large that χ ′ > 1, such that the
positive power exponentials in our sinh and cosh terms dom-
inate the negative power exponentials, whilst still insisting χ

is sufficiently small that our second-order expansion remains
valid. We note that although this regime is inaccessible to
numerical approaches, it is easily explored with our analyt-
ical expressions. By neglecting the negative exponentials in
our cosh and sinh terms and keeping only the largest of the
positive exponentials, we can significantly simplify our ex-
pectation values. The average photon numbers of the pump,
signal, and idler become

〈c†
oco〉 = α2 − e2χ ′

4
+ χ2

16χ ′2 e4χ ′
(20)

and

〈a†
oao〉 = 〈b†

obo〉 = e2χ ′

4
− χ2

16χ ′2 e4χ ′
. (21)

The pump amplitude quadrature variance becomes

Vxc = 1 + χ2

16χ ′2 e4χ ′
, (22)

whilst the phase quadrature remains at the quantum noise
level, Vpc = 1, given this approximation. The sum squeezing
between the signal and idler is given by

V +
xp = e−2χ ′ + χ2

16χ ′2 e2χ ′
, (23)

FIG. 1. Amplitude and phase variances of the output pump as a
function of input pump amplitude α: (a) the amplitude variance is the
upper trace and the phase variance is the lower trace. The red dashed
line is the quantum noise limit. Here χ = 0.02. A small amount
of squeezing is seen for these parameters, which are plotted using
Eqs. (16) and (17). (b) the amplitude variance is shown as the upper
trace and the phase variance is the lower trace. Here χ = 0.001. The
stronger pump powers in this regime mean that now Vpc = 1 and Vxc

is given by Eq. (22). The insets show the depletion of the pump for
the same parameters as the main figures.

whilst the difference squeezing is given by

V −
xp = e2χ ′ − χ2

4χ ′2 e4χ ′
. (24)

Notice that this leads to the uncertainty product V −
xpV +

xp =
1 + χ2

16χ ′2 e4χ ′
, indicating the departure from a pure Gaussian

entangled state. Note that to be confident that higher-order
terms [> O(χ2)] can be neglected, we require that the en-
tire correction term remains small, meaning (for fixed χ )
χ ′ cannot be too large in these expressions. In Fig. 1 we
show the effect of the interaction on the pump variance for
both quadratures for two different values of χ . We also show
the corresponding decrease in the pump photon number. In
Appendix C we present additional plots highlighting effects
on the pump and the signal and idler squeezing.

Perhaps surprisingly, the strongest effect is seen in the
third-order correlations. The quadrature correlation between
the phase quadrature of the idler and the amplitude quadra-
tures of the signal and pump becomes

Vabc = χ

16χ ′ e4χ ′−χ

4
e2χ ′

. (25)
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FIG. 2. Third-order correlation Vabc [Eq. (19)] as a function of
input pump amplitude α. Here χ = 0.001. Significant effects are
seen at relatively low pump amplitude.

In the absence of pump depletion this term would be zero.
Its nonzero value indicates tripartite entanglement between
the pump, signal, and idler, and non-Gaussian statistics. As
the lowest-order correction to this moment is linear in χ , it
should be the first quantum effect to become observable as
we enter the pump depletion regime at high pump powers.
In Fig. 2 we illustrate this effect by plotting the third-order
correlation [Eq. (19)] against pump amplitude. A significant
deviation from the Gaussian case of zero correlation is seen
for relatively low pump amplitude. We remind the reader that
the equations in this section are only valid when χ ′ > 1, so it

is only in the region where α > 1000 that Eq. (25) becomes a
good approximation to the plot in Fig. 2.

V. CONCLUSION

We have derived nonlinear Heisenberg equations describ-
ing the evolution of quantum fields through the trilinear
Hamiltonian, which models parametric amplification with
pump depletion. Unlike previous treatments, we perform our
perturbative expansion in such a way as to allow the strong
pump regime to be explored. We expect our results to be
immediately useful in describing and motivating squeezing
experiments in the strong pump regime. Being Heisenberg
picture equations, they provide good intuition about the
physics and can be easily adapted to account for imperfections
such as loss and excess noise and/or to model different states
of the input fields. We also expect our solutions to stimulate
investigations into novel quantum protocols and technologies
which may be enabled by the non-Gaussian correlations [28]
that emerge as we push further into the depleted pump regime
of squeezing.

Note added. Recently, we became aware of a related but
distinct approach to pump depletion in single-mode squeezing
following a Schrödinger picture approach [29].
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APPENDIX A: FULL MODE EXPANSIONS TO χ8

The exact unitary describing the parametric amplification process is given by

U = exp{−iχ (a†b†c + abc†)}.
Notice that the approximation that leads us back to the quadratic form in Eq. (1) of the main text is the replacement c → 〈c〉 = α.
We want to know the full forms of operators a, b, c in the Heisenberg picture, which we denote ao, bo, co. We no longer obtain
the simple closed-form linear equations of Eq. (3), nevertheless these Heisenberg operators can be evaluated to any desired order
using the Baker-Campbell-Hausdorff formula. For example, the signal mode is

ao = eGae−G = a + [G, a] + 1

2!
[G, [G, a]] + 1

3!
[G, [G, [G, a]]] + · · ·

In this case G = iχ (a†b†c + abc†). For reference, the Heisenberg operator for the signal mode ao to order χ8 is

ao = a − iχb†c + χ2

2!
(−ab†b + ac†c) + iχ3

3!
(2a†ab†c − b†c†c2 + b†c + b†2bc − 2a2bc†)

+ χ4

4!
(4a†b†2c2 + 4a†a2b†b − 4a†a2c†c + ab†b − 10ab†bc†c + ab†2b2 − 7ac†c + ac†2c2)

+ iχ5

5!
(28a†ab†c†c2 − 16a†ab†c − 28a†ab†2bc + 8a†a3bc† − 8a†2a2b†c + 25b†c†c2 − b†c†2c3 − b†c

+ 14b†2bc†c2 − 3b†2bc − b†3b2c + 16a2b†b2c† + 12a2bc† − 16a2bc†2c)

+ χ6

6!
(44a†b†2c†c3 − 72a†b†2c2 − 44a†b†3bc2 − 28a†a2b†b + 216a†a2b†bc†c − 44a†a2b†2b2

+ 68a†a2c†c − 44a†a2c†2c2 − 72a†2ab†2c2 − 16a†2a3b†b + 16a†2a3c†c − ab†b + 216ab†bc†c

− 91ab†bc†2c2 − 3ab†2b2 + 91ab†2b2c†c − ab†3b3 + 41ac†c − 85ac†2c2 + ac†3c3 − 40a3b2c†2)
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+ iχ7

7!
(−1386a†ab†c†c2 + 270a†ab†c†2c3 + 98a†ab†c − 1204a†ab†2bc†c2 + 598a†ab†2bc

+ 270a†ab†3b2c − 416a†a3b†b2c† − 128a†a3bc† + 416a†a3bc†2c + 160a†2b†3c3

− 496a†2a2b†c†c2 + 144a†2a2b†c + 496a†2a2b†2bc − 32a†2a4bc† + 32a†3a3b†c

− 401b†c†c2 + 264b†c†2c3 − b†c†3c4 + b†c − 602b†2bc†c2 + 135b†2bc†2c3 + 7b†2bc

− 135b†3b2c†c2 + 6b†3b2c + b†4b3c − 338a2b†b2c† + 700a2b†b2c†2c − 138a2b†2b3c†

− 70a2bc† + 910a2bc†2c − 138a2bc†3c2)

+ χ8

8!
(−4680a†b†2c†c3 + 408a†b†2c†2c4 + 1104a†b†2c2 − 2064a†b†3bc†c3 + 1752a†b†3bc2

+ 408a†b†4b2c2 + 168a†a2b†b − 11 616a†a2b†bc†c + 7272a†a2b†bc†2c2 + 936a†a2b†2b2

− 7272a†a2b†2b2c†c + 408a†a2b†3b3 − 840a†a2c†c + 4536a†a2c†2c2 − 408a†a2c†3c3

+ 896a†a4b2c†2 − 3216a†2ab†2c†c3 + 3264a†2ab†2c2 + 3216a†2ab†3bc2 + 272a†2a3b†b

− 3872a†2a3b†bc†c + 912a†2a3b†2b2 − 496a†2a3c†c + 912a†2a3c†2c2 + 1088a†3a2b†2c2

+ 64a†3a4b†b − 64a†3a4c†c + ab†b − 3602ab†bc†c + 10 410ab†bc†2c2 − 820ab†bc†3c3

+ 7ab†2b2 − 4134ab†2b2c†c + 3414ab†2b2c†2c2 + 6ab†3b3 − 820ab†3b3c†c + ab†4b4

− 239ac†c + 3607ac†2c2 − 810ac†3c3 + ac†4c4 + 1392a3b†b3c†2 + 1792a3b2c†2 − 1392a3b2c†3c) + · · ·
And the time-evolved operator for the idler mode bo can be found by swapping a and b in the above formula. The formula for
the pump mode is

co = c − iχab + χ2

2
(−a†ac − b†bc − c) + iχ3

3!
(2a†b†c2 + a†a2b + ab†b2 + ab − 2abc†c)

+ χ4

4!
(10a†ab†bc − 4a†ac†c2 + 3a†ac + a†2a2c − 4b†bc†c2 + 3b†bc + b†2b2c − 4c†c2 − 4a2b2c† + c)

+ iχ5

5!
(8a†b†c†c3 − 20a†b†c2 − 16a†b†2bc2 − 14a†a2b†b2 − 3a†a2b + 28a†a2bc†c − 16a†2ab†c2

− a†2a3b − 3ab†b2 + 28ab†b2c†c − ab†2b3 − ab + 40abc†c − 8abc†2c2)

+ χ6

6!
(216a†ab†bc†c2 − 148a†ab†bc − 91a†ab†2b2c + 148a†ac†c2 − 16a†ac†2c3 − 7a†ac + 44a†a3b2c†

− 40a†2b†2c3 − 91a†2a2b†bc + 44a†2a2c†c2 − 6a†2a2c − a†3a3c + 148b†bc†c2 − 16b†bc†2c3 − 7b†bc

+ 44b†2b2c†c2 − 6b†2b2c − b†3b3c + 60c†c2 − 16c†2c3 + 44a2b†b3c† + 60a2b2c† − 72a2b2c†2c − c)

+ iχ7

7!
(−704a†b†c†c3 + 32a†b†c†2c4 + 222a†b†c2 − 416a†b†2bc†c3 + 490a†b†2bc2 + 138a†b†3b2c2

+ 208a†a2b†b2 − 1204a†a2b†b2c†c + 135a†a2b†2b3 + 7a†a2b − 1022a†a2bc†c + 496a†a2bc†2c2

− 416a†2ab†c†c3 + 490a†2ab†c2 + 700a†2ab†2bc2 + 135a†2a3b†b2 + 6a†2a3b − 270a†2a3bc†c

+ 138a†3a2b†c2 + a†3a4b + 7ab†b2 − 1022ab†b2c†c + 496ab†b2c†2c2 + 6ab†2b3 − 270ab†2b3c†c

+ ab†3b4 + ab − 522abc†c + 848abc†2c2 − 32abc†3c3 + 160a3b3c†2)

+ χ8

8!
(−17 472a†ab†bc†c2 + 3872a†ab†bc†2c3 + 1826a†ab†bc − 7272a†ab†2b2c†c2 + 3246a†ab†2b2c

+ 820a†ab†3b3c − 3768a†ac†c2 + 3376a†ac†2c3 − 64a†ac†3c4 + 15a†ac − 2064a†a3b†b3c†

− 1512a†a3b2c† + 3216a†a3b2c†2c − 896a†2b†2c†c4 + 2384a†2b†2c3 + 1392a†2b†3bc3

− 7272a†2a2b†bc†c2 + 3246a†2a2b†bc + 3414a†2a2b†2b2c − 2736a†2a2c†c2 + 912a†2a2c†2c3

+ 25a†2a2c − 408a†2a4b2c† + 1392a†3ab†2c3 + 820a†3a3b†bc − 408a†3a3c†c2 + 10a†3a3c

+ a†4a4c − 3768b†bc†c2 + 3376b†bc†2c3 − 64b†bc†3c4 + 15b†bc − 2736b†2b2c†c2 + 912b†2b2c†2c3
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+ 25b†2b2c − 408b†3b3c†c2 + 10b†3b3c + b†4b4c − 744c†c2 + 1552c†2c3 − 64c†3c4 − 1512a2b†b3c†

+ 3216a2b†b3c†2c − 408a2b†2b4c† − 744a2b2c† + 6384a2b2c†2c − 1088a2b2c†3c2 + c) + · · ·

APPENDIX B: FULL OUTPUT OPERATORS TO O(χ2 )

We perform a c = α + δc expansion, and retain only the terms of the form αnχn (assumed to be of order 1) and αn−1χn ([of
O(χ )]. For example, with the pump mode co, only a small number of terms could potentially contribute at O(χ ):

co = c − iχab + χ2

2
(−c − a†ac − b†bc) + iχ3

3!
(2a†b†c2 − 2abc†c) + χ4

4!
(−4c†c2 − 4a†ac†c2 − 4b†bc†c2)

+ iχ5

5!
(8a†b†c†c3 − 8abc†2c2) + χ6

6!
(−16c†2c3 − 16a†ac†2c3 − 16b†bc†2c3)

+ iχ7

7!
(32a†b†c†2c4 − 32abc†3c3) + χ8

8!
(−64c†3c4 − 64a†ac†3c4 − 64b†bc†3c4) + · · ·

Now substitute c = α + δc (and therefore c† = α + δc†), keeping only O(χ ) terms, we have

co = α + δc − iχab + χ2

2!
(−α − αa†a − αb†b) + iχ3

3!
(2α2a†b† − 2α2ab) + χ4

4!
(−4α3 − 4α3a†a − 4α3b†b)

+ iχ5

5!
(8α4a†b† − 8α4ab) + χ6

6!
(−16α5 − 16α5a†a − 16α5b†b)

+ iχ7

7!
(32α6a†b† − 32α6ab) + χ8

8!
(−64α7 − 64α7a†a − 64α7b†b) + · · ·

Group the terms according to the operators they are multiplied to:

⇒ co = α −
(

αχ2

2!
+ 4α3χ4

4!
+ 16α5χ6

6!
+ 64α7χ8

8!
+ · · ·

)
+ δc − (a†a + b†b)

(
αχ2

2!
+ 4α3χ4

4!
+ 16α5χ6

6!
+ 64α7χ8

8!
+ · · ·

)

+ ia†b†

(
2α2χ3

3!
+ 8α4χ5

5!
+ 32α6χ7

7!
+ · · ·

)
− iab

(
χ + 2α2χ3

3!
+ 8α4χ5

5!
+ 32α6χ7

7!
+ · · ·

)
.

Note that just as we decomposed c = α + δc, we can decompose the Heisenberg operator into an amplitude part and a
noise part, co = αo + δco, where both parts are time dependent. We see from above that the first line of co consists only
of pure numbers and no operators, and is therefore the amplitude αo; anything on the second line and below are the noise
part δco.

There are clear patterns to the first few terms of each of the infinite series above. Assuming the patterns persist indefinitely
(checked to order α14χ15), we may express each infinite series as a sum, and use MATHEMATICA to find the closed forms of
these series:

αχ2

2!
+ 4α3χ4

4!
+ 16α5χ6

6!
+ · · · =

∞∑
n=1

α2n−1χ2n × 4n−1

(2n)!
= χ

2χ ′ sinh2 χ ′,

2α2χ3

3!
+ 8α4χ5

5!
+ 32α6χ7

7!
+ · · · =

∞∑
n=1

α2nχ2n+1 × 2 × 4n−1

(2n + 1)!
= −χ

2
+ χ

2χ ′ sinh χ ′ cosh χ ′,

χ + 2α2χ3

3!
+ 8α4χ5

5!
+ 32α6χ7

7!
+ · · · = χ

2
+ χ

2χ ′ sinh χ ′ cosh χ ′,

where we again defined χ ′ ≡ αχ . So co is

co = αo + δco = α − χ

2χ ′ sinh2 χ ′ + δc − (a†a + b†b)
χ

2χ ′ sinh2 χ ′

− ia†b† χ

2

(
1 − 1

χ ′ sinh χ ′ cosh χ ′
)

− iab
χ

2

(
1 + 1

χ ′ sinh χ ′ cosh χ ′
)

,

where we see that

αo = α − χ

2χ ′ sinh2 χ ′,

and δco = δc − (a†a + b†b)
χ

2χ ′ sinh2 χ ′ − ia†b† χ

2

(
1 − 1

χ ′ sinh χ ′ cosh χ ′
)

− iab
χ

2

(
1 + 1

χ ′ sinh χ ′ cosh χ ′
)

.
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For a fully self-consistent model capable of calculating nontrivial expectation values, we need to include the O(χ2)
terms in the output modes ao, bo, co as well. That is, after the c = α + δc expansion, on top of the αnχn and αn−1χn

terms, we now also retain terms of the form αn−2χn. This introduces many additional infinite series. For illustrative pur-
poses, let us focus on a couple of them. In co, consider terms proportional to a†ac†ncm, the terms that could contribute
are

co = · · · − χ2

2
a†ac − χ4

4!
4a†ac†c2 − χ6

6!
16a†ac†2c3 − χ8

8!
64a†ac†3c4 + · · · ,

now performing the c = α + δc expansion, we have

co = · · · − a†a

[
χ2

2
(α + δc) + χ4

4!
4(α + δc†)(α + δc)2 + χ6

6!
16(α + δc†)2(α + δc)3 + χ8

8!
64(α + δc†)3(α + δc)4 + · · ·

]

= · · · − a†a

(
χ2

2
α + 4χ4

4!
α3 + 16χ6

6!
α5 + 64χ8

8!
α7 + · · ·

)
− a†a

(
χ2

2
δc + 8χ4

4!
α2δc + 48χ6

6!
α4δc + 256χ8

8!
α6δc + · · ·

)

− a†a

(
4χ4

4!
α2δc† + 32χ6

6!
α4δc† + 192χ8

8!
α6δc† + · · ·

)
,

giving three infinite series. The first one we’ve already seen; it is of O(χ ) and equals to −a†a χ

2χ ′ sinh2 χ ′. The last two series are
new, and can be put into closed-form expressions as

co = · · · − a†aδc χ2
∞∑

n=0

22n−1(2n + 2) × χ ′2n

(2n + 2)!
− a†aδc† χ2

∞∑
n=1

22nn
χ ′2n

(2n + 2)!

= · · · − a†aδc χ2 1 − cosh 2χ ′ + 2 sinh2 χ ′ + χ ′ sinh 2χ ′

4χ ′2 − a†aδc† χ2 1 − cosh 2χ ′ + χ ′ sinh 2χ ′

4χ ′2 .

With some work, all second-order terms can be grouped into series which can then be expressed as closed-form expressions like
the ones above.

We now simply list the final results. We find that the signal mode ao to order χ2 is

ao = a

[
cosh χ ′ + (δc + δc†)

χ

2
sinh χ ′

]
− ib†

[
sinh χ ′ + χ

2
cosh χ ′(δc + δc†) + χ

2χ ′ sinh χ ′(δc − δc†)

]

+ χ2(Aaa + Ab† b† + Aa2ba2b + Aab†bab†b + Aa†ab† a†ab† + Aa†b†2 a†b†2 + Aa†a2 a†a2 + Aaδc2 aδc2

+ Aaδc†2 aδc†2 + Aaδc†δcaδc†δc + Ab†2bb†2b + Ab†δc2 b†δc2 + Ab†δc†δcb†δc†δc + Ab†δc†2 b†δc†2), (B1)

where

Aa = −
∞∑

n=2

(
9n − 1

8
− n(n + 1)

2

)
× χ ′2n−2

(2n)!
= −− cosh χ ′ − χ ′2 cosh χ ′ + cosh 3χ ′ − 3χ ′ sinh χ ′

8χ ′2 ,

Ab† = i
∞∑

n=1

Y (n)
χ ′2n−1

(2n + 1)!
= i × −5χ ′ cosh χ ′ + 2 sinh χ ′ − χ ′2 sinh χ ′ + sinh 3χ ′

8χ ′2 ,

Aa2b = −i
∞∑

n=1

[a(n) + n] × χ ′2n−1

(2n + 1)!
= −i × 4χ ′ cosh χ ′ − 7 sinh χ ′ + sinh 3χ ′

16χ ′2 ,

Aab†b = −
∞∑

n=1

9n − 1

8
× χ ′2n−2

(2n)!
= cosh χ ′ − cosh 3χ ′

8χ ′2 ,

Aa†ab† = i
∞∑

n=1

[
Y (n) + n(n + 1)

2

]
× χ ′2n−1

(2n + 1)!
= i × −4χ ′ cosh χ ′ + sinh χ ′ + sinh 3χ ′

8χ ′2 ,

Aa†b†2 = −Aa†a2 =
∞∑

n=2

(
9n − 1

16
− n

2

)
× χ ′2n−2

(2n)!
= − cosh χ ′ + cosh 3χ ′ − 4χ ′ sinh χ ′

16χ ′2 ,

Aaδc2 = Aaδc†2 =
∞∑

n=1

n(n + 1)

2
× χ ′2n

(2n + 2)!
= χ ′ cosh χ ′ − sinh χ ′

8χ ′ ,
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Aaδc†δc =
∞∑

n=0

(n + 1)2 χ ′2n

(2n + 2)!
= χ ′ cosh χ ′ + sinh χ ′

4χ ′ ,

Ab†2b = i
∞∑

n=1

a(n) × χ ′2n−1

(2n + 1)!
= i × −4χ ′ cosh χ ′ + sinh χ ′ + sinh 3χ ′

16χ ′2 ,

Ab†δc2 = 1

2
Ab†δc†δc = −i

∞∑
n=1

n(n + 1)

2
× χ ′2n−1

(2n + 1)!
= −i × χ ′ cosh χ ′ − sinh χ ′ + χ ′2 sinh χ ′

8χ ′2
,

Ab†δc†2 = −i
∞∑

n=1

(
n(n + 1)

2

)
× χ ′2n+1

(2n + 3)!
= −i × −3χ ′ cosh χ ′ + 3 sinh χ ′ + χ ′2 sinh χ ′

8χ ′2 .

And for the pump mode,

co = α − χ

2χ ′ sinh2 χ ′ + χ3Cα + δc − (a†a + b†b)
χ

2χ ′ sinh2 χ ′ − ia†b† χ

2

(
1 − 1

χ ′ sinh χ ′ cosh χ ′
)

− iab
χ

2

(
1 + 1

χ ′ sinh χ ′ cosh χ ′
)

+ χ2(Cδcδc + Ca†aδca†aδc + Cb†bδcb†bδc + Cabδcabδc + Cabδc† abδc†

+ Ca†b†δca†b†δc + Cδc†δc† + Ca†aδc† a†aδc† + Cb†bδc† b†bδc† + Ca†b†δc† a†b†δc†), (B2)

where

Cα =
∞∑

n=1

Z (n) × χ ′2n−1

(2n + 2)!
= −3 − 4χ ′2 + (2 − 4χ ′2) cosh 2χ ′ + cosh 4χ ′ − 2χ ′ sinh 2χ ′

32χ ′3

Cδc = Ca†aδc = Cb†bδc = −
∞∑

n=0

22n−1(2n + 2) × χ ′2n

(2n + 2)!
= −1 − cosh 2χ ′ + 2 sinh2 χ ′ + χ ′ sinh 2χ ′

4χ ′2 ,

Cabδc = Cabδc† = −i
∞∑

n=1

22n−2(2n) × χ ′2n−1

(2n + 1)!
= −i

2χ ′ cosh 2χ ′ − sinh 2χ ′

8χ ′2 ,

Ca†b†δc = i
∞∑

n=2

22n−2n

2
× χ ′2n−3

(2n − 1)!
= i

−4χ ′ + 2χ ′ cosh 2χ ′ + sinh 2χ ′

8χ ′2 ,

Cδc† = Ca†aδc† = Cb†bδc† = −
∞∑

n=1

22nn
χ ′2n

(2n + 2)!
= −1 − cosh 2χ ′ + χ ′ sinh 2χ ′

4χ ′2 ,

Ca†b†δc† = i
∞∑

n=1

22n(2n) × χ ′2n+1

(2n + 3)!
= i

4χ ′ + 2χ ′ cosh 2χ ′ − 3 sinh 2χ ′

8χ ′2 .

In the above, the expressions a(n), X (n),Y (n), and Z (n) are given by

a(n) = 32n+1 − 8n − 3

16
,

X (n) = 54a(n − 1) + 25n − 18 − n(n − 1)

2
,

Y (n) = 18a(n − 1) + 7n − 6 − n(n − 1)

2
,

and Z (n) = (2n + 1)!
n∑

k=0

1

(2k)!

1

[2(n − k) + 1]!
[X (k − 1) + Y (n − k) − k(n − k)].

All n and k are integers. The first few numbers in each se-
quence are listed in Table I.

One can check that the operators are physical in the sense
that the commutation relations are satisfied to O(χ2), namely,

[ao, a†
o] = [bo, b†

o] = [co, c†
o] = 1 + O(χ3),

all other commutation relations = 0 + O(χ3).

The vast majority of the terms in the output modes do not
contribute to the expectation values at O(χ2). Specifically, it
turns out the only second-order term in ao that contributes to
〈a†

oao〉 is χ2Ab† b†; the only second-order terms that contribute
to 〈aobo〉 are χ2(Ab† b† + Aaa). Similarly, the only second-
order term in co that contributes to 〈δcoδco〉 is χ2Cδc†δc†, and
the only second-order or above term that contributes to 〈c†

oco〉

023712-9



WANLI XING AND T. C. RALPH PHYSICAL REVIEW A 107, 023712 (2023)

TABLE I. Table showing the first few numbers in the series a(n),
X (n), Y (n), Z (n).

n a(n) X (n) Y (n) Z (n)

−1 1/3 0 2/3 —
0 0 0 0 0
1 1 7 1 1
2 14 85 25 60
3 135 810 264 1552
4 1228 7366 2446 29 632
5 11 069 66 409 22 123 506 112
6 99 642 597 843 199 263 8 289 280

is χ3Cα . All other terms either annihilate 〈0| or |0〉 to give 0
contributions, or they only contribute to O(χ3) terms. So for
the purpose of calculating expectation values, we may simply
take

ao = a

[
cosh χ ′ + (δc + δc†)

χ

2
sinh χ ′

]

− ib†

[
sinh χ ′ + χ

2
cosh χ ′(δc + δc†)

+ χ

2χ ′ sinh χ ′(δc − δc†)

]
+ χ2(Aaa + Ab† b†), (B3)

bo = b

[
cosh χ ′ + (δc + δc†)

χ

2
sinh χ ′

]

− ia†

[
sinh χ ′ + χ

2
cosh χ ′(δc + δc†)

+ χ

2χ ′ sinh χ ′(δc − δc†)

]

+ χ2(Aab + Ab† a†), (B4)

FIG. 3. The incoherent component of the pump photon number
when χ = 0.02.

co = αo + δco

= α − χ

2χ ′ sinh2 χ ′ + χ3Cα

+ δc − (a†a + b†b)
χ

2χ ′ sinh2 χ ′

− ia†b† χ

2
(1 − 1

χ ′ sinh χ ′ cosh χ ′)

− iab
χ

2
(1 + 1

χ ′ sinh χ ′ cosh χ ′)

+ χ2Cδc†δc†. (B5)

These are effective operators in the sense that they give the
correct results for 〈a†

oao〉, 〈aobo〉, 〈δc†
oδco〉, 〈δcoδco〉, and α2

o ,
and therefore all variances calculated from these operators are
correct. As such, one can also check that energy is conserved,

α2 = 〈c†
oco〉 + 〈a†

oao〉 = α2
o + 〈δc†

oδco〉 + 〈a†
oao〉.

Although not obvious, it turns out the three effective operators
above also give the correct formulae for 〈abδc〉 and 〈abδc†〉 up
to O(χ2).

The only drawback of using the effective operators is that
the commutation relations given by these operator are only
correct to O(χ ), not the desired O(χ2). Therefore, we should
not use them to calculate nonnormally ordered operator prod-
ucts, for example, 〈aoa†

o〉 or 〈δcoδc†
o〉. Instead, we should first

normal order them such that, for example, 〈aoa†
o〉 → 〈1 +

a†
oao〉 and 〈δcoδc†

o〉 → 〈1 + δc†
oδco〉, before evaluating them.

The bottom line is, we may use Eqs. (B3)–(B5) to calculate
any second- or third-order correlations to O(χ2), provided
the correlations are normal ordered. If we want our theory
to be fully self-consistent without reordering and capable of
predicting any correlations to O(χ2), we should use the full
Eqs. (B1) and (B2).

APPENDIX C: ADDITIONAL FIGURES

In Figs. 3 and 4 we plot the difference between the coherent
amplitude squared of the pump and its actual photon number
for two different values of χ . This highlights the incoherent
contribution to the pump photon number, 〈δc†

oδco〉, after the
interaction. In Figs. 5 and 6 we plot the sum squeezing be-

FIG. 4. The incoherent component of the pump photon number
when χ = 0.001.
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FIG. 5. The sum squeezing between the signal and idler when
χ = 0.02, plotted on a log scale. The squeezing in the undepleted
case (e−2χ ′

) is also shown. A saturation of the squeezing is visible
for high pump rates, which would limit the achievable squeezing.

tween the signal and idler for two different values of χ . For
the higher value of χ in Fig. 5 a saturation effect on the sum
squeezing is evident for squeezing variances lower than about

FIG. 6. The sum squeezing between the signal and idler when
χ = 0.001. In this high pump regime the saturation effect is weaker,
only appearing at much higher squeezing levels compared to Fig. 5.

0.01 . That is, the variance (on a log scale) stops decreasing
linearly with pump amplitude at higher α. This effect only
occurs for much stronger squeezing for the lower value of χ

in Fig. 6.
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O. Haderka, and M. Bondani, Coherence properties of high-
gain twin beams, Phys. Rev. A 90, 063812 (2014).

[15] J. Flórez, J. S. Lundeen, and M. V. Chekhova, Pump depletion
in parametric down-conversion with low pump energies, Opt.
Lett. 45, 4264 (2020).

[16] D. F. Walls and R. Barakat, Quantum-mechanical amplification
and frequency conversion with a trilinear Hamiltonian, Phys.
Rev. A 1, 446 (1970).

[17] G. Drobný and I. Jex, Quantum properties of field modes in
trilinear optical processes, Phys. Rev. A 46, 499 (1992).

[18] P. D. Nation and M. P. Blencowe, The trilinear Hamiltonian: A
zero-dimensional model of Hawking radiation from a quantized
source, New J. Phys. 12, 095013 (2010).

[19] S. Ding, G. Maslennikov, R. Hablützel, and D. Matsukevich,
Quantum Simulation with a Trilinear Hamiltonian, Phys. Rev.
Lett. 121, 130502 (2018).

[20] R. J. Birrittella, P. M. Alsing, and C. C. Gerry, Phase effects in
coherently-stimulated down-conversion with a quantized pump
field, Phys. Rev. A 101, 013813 (2020).

[21] A. Roy and M. Devoret, Quantum-limited parametric amplifi-
cation with Josephson circuits in the regime of pump depletion,
Phys. Rev. B 98, 045405 (2018).

[22] P. A. Roos, S. K. Murphy, L. S. Meng, J. L. Carlsten,
T. C. Ralph, A. G. White, and J. K. Brasseur, Quantum the-
ory of the far-off-resonance continuous-wave Raman laser:
Heisenberg/Langevin approach, Phys. Rev. A 68, 013802
(2003).

023712-11

https://doi.org/10.1103/PhysRevLett.56.58
https://doi.org/10.1364/OE.22.011498
https://doi.org/10.1364/JOSAB.4.001465
https://doi.org/10.1364/OE.21.011546
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1109/JQE.1979.1070043
https://doi.org/10.1088/1464-4266/4/1/201
https://doi.org/10.1103/PhysRevLett.68.3663
https://doi.org/10.1103/PhysRevLett.97.110501
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1038/ncomms4049
https://doi.org/10.1103/PhysRevA.90.063812
https://doi.org/10.1364/OL.394925
https://doi.org/10.1103/PhysRevA.1.446
https://doi.org/10.1103/PhysRevA.46.499
https://doi.org/10.1088/1367-2630/12/9/095013
https://doi.org/10.1103/PhysRevLett.121.130502
https://doi.org/10.1103/PhysRevA.101.013813
https://doi.org/10.1103/PhysRevB.98.045405
https://doi.org/10.1103/PhysRevA.68.013802


WANLI XING AND T. C. RALPH PHYSICAL REVIEW A 107, 023712 (2023)

[23] P. A. Roos, The diode-pumped continuous-wave Raman laser:
Classical, quantum and thermo-optic fundamentals, Ph.D.
thesis, Montana State University, 2002.

[24] J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics,
2nd ed. (Cambridge University Press, Cambridge, 2017).

[25] G. P. Agrawal and C. L. Mehta, Dynamics of parametric pro-
cesses with a trilinear Hamiltonian, J. Phys. A: Math. Nucl.
Gen. 7, 607 (1974).
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