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The exploration of the constructive effects of noise is an interesting and important research topic. In this
work, we investigate the influence of noise on a linear system using the model of a driven and dissipative
linear-optical cavity. Results show that solely white noise can induce quasiregular dynamical oscillations, which
would otherwise be in a steady state, owing to dissipation in the absence of noise. The regularity of noise-induced
oscillations can be significantly enhanced by a linear coherent feedback loop. This is because the dissipation of
the system is suppressed owing to the interference between the cavity field and feedback field. Our findings
may provide a way to efficiently control white-noise-induced oscillations in a linear system and lead to further
investigation of the interaction between noise and linear systems.
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I. INTRODUCTION

Intensive experimental and theoretical research has been
conducted on the constructive effects of noise in various
systems [1–3]. Numerous examples of performance improve-
ment due to noise have been reported, such as stochastic
resonance [4–9], coherence resonance (CR) [10–14], quasicy-
cles [15–18], noise-enhanced stability [19–24], noise-induced
phase synchronization [25,26], and noise-sustained propaga-
tion of signals [27,28]. In particular, CR is a paradigmatic
example of noise-induced regularity, which describes the res-
onantlike phenomenon of periodic dynamics induced purely
by noise without an external periodic signal. Generally, these
noise-induced phenomena occur in nonlinear systems, e.g., an
excitable system or a system with limit cycles, and they are
mainly caused by the interplay between noise and nonlinear-
ity. Furthermore, noise can play a beneficial role in a linear
system with specially engineered noise [29–31]. However,
rare work [18,32] has reported noise-induced regularity in
linear systems with pure white noise.

Based on the above considerations, in this work, we inves-
tigate the influence of Gaussian white noise on a linear-optical
system, that is, a driven and dissipative linear-optical cavity.
We find that white noise can sustain coherent oscillations to
a certain extent, which would otherwise decay to a steady
state. In fact, the phenomenon of oscillations induced or
sustained by white noise is a natural phenomenon in which
noise acts as an activation energy source to drive quasiperi-
odic oscillations at or near intrinsic frequency even in linear
systems, as investigated in a mechanical system [32] and a
spiral-sink system [18]. However, the periodicity of white-
noise-induced oscillations in a linear system has not been
widely observed owing to a low signal-to-noise ratio (SNR).
Therefore, it has not attracted much attention. We show that a
coherent feedback loop can considerably enhance the regular-
ity of noise-induced oscillations, leading to a strong coherent

signal in an output field. The enhancement and deterioration
of noise-induced coherent behaviors using feedback control
has already been demonstrated [33–35], where delayed feed-
back based on measurement is used. We employ coherent
feedback control to benefit from feedback control and prevent
the loss of coherence by avoiding measurements [36,37]. In
other words, a part of a noisy output field is coherently sent
back to a system without measurements to instantaneously
control the system dynamics. The feedback field carries the
periodicity of the system and serves as a seeding signal that
is input to the cavity, resulting in the amplification of noise-
induced temporal regularity. The enhancement of periodicity
by feedback control can also be explained from another as-
pect: the interference between the original cavity field and the
feedback greatly suppresses the dissipation of the cavity field,
which extends the coherence time of the system and facilitates
noise-induced coherent oscillations.

It should be noted that the phenomenon of the noise-
induced regularity in our model differs from CR in two
aspects. First, in CR, the noise-induced coherent behaviors
are best at an optimal noise level, while the SNR of the
output signal in our model is a monotonic function of noise
intensity, implying that no optimal or resonant noise inten-
sity exists. Second, CR occurs in a nonlinear system such as
an excitable system and a critical bifurcation system, which
contains deterministic periodic solutions in certain parameter
regimes. The function of noise in CR is to drive or excite the
system into the regime with periodic dynamics. However, the
noise-induced temporal regularity in our model occurs in a
linear system without requiring nonlinearity. In the absence of
noise, the dissipation would make coherent oscillations decay
into a stable fixed point, which lacks a deterministic periodic
solution in all parameter regimes. The function of noise is
to sustain the intrinsic coherent oscillations with fluctuating
oscillation amplitude. These flexible features suggest that our
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model is suitable for use in experiments and can easily be
applied to other linear oscillator systems.

The remainder of this paper is organized as follows. In
Sec. II, we give a brief review of the theoretical approach
that we used to formulate our model, that is, the SLH for-
malism. In Sec. III, we introduce our model and derive the
dynamical equation of our system using the SLH formalism.
In Sec. IV, we show the phenomena of white-noise-induced
coherent oscillations and the enhancement by the coherent
feedback control based on numerical simulation and analyt-
ical expressions. Finally, we conclude our paper in Sec. V.

II. BRIEF REVIEW OF SLH FORMALISM

Before introducing our model, we would like to give a
brief introduction to the theoretical approach that we em-
ploy to formulate our model, that is, the SLH formalism or
the SLH framework [38–40]. It was developed by Gough
and James [38,39] as a theoretical framework to deal with
quantum networks consisting of an arbitrary number of local-
ized quantum systems interconnected by propagating bosonic
fields. For instance, this formalism can conveniently formulate
complex cascaded quantum systems and quantum networks
with feedforward and feedback connections. The SLH formal-
ism is based on earlier theories of open quantum systems,
i.e., the input-output relation of an open quantum system
by Collett and Gardiner [41–43], the theory for cascaded
quantum systems by Gardiner [44] and Carmichael [45],
and the Husson-Parthasarathy quantum stochastic differential
Eq. [46].

In the SLH formalism, each element G of a quantum
network is described by the operator triple G = (Ŝ, L̂, Ĥ ),
which characterizes all static and dynamic properties of the
subsystem. Ŝ is a unitary matrix (Ŝ†Ŝ = ŜŜ† = I ), called scat-
tering operator, describing the static input-output relation of
the fields. L̂ is the coupling operator, describing how the field
interacts with the internal freedom of the localized system. Ĥ
is the internal Hamiltonian, a Hermitian operator, governing
the dynamics of the localized system in the absence of the
fields. Based on how the elements in a quantum network
are connected, one can obtain the (S, L, H ) triple for the
whole system by using the standard algebraic rules, i.e., the
connection rules for the series product and the concatenation
product [38]. Then, one can derive the master equation or
equations of motion for system operators from the (Ŝ, L̂, Ĥ )
triple [40].

We start with a basic model for an open quantum sys-
tem: a quantum system linearly interacting with a propagating
bosonic field, whose Hamiltonian is given by (h̄ = 1)

Ĥ = Ĥsys + ĤB + Ĥint, (1)

ĤB =
∫ ∞

0
ωb̂†(ω)b̂(ω)dω, (2)

Ĥint = i
∫ ∞

0
dωκ (ω)[b̂(ω) + b̂†(ω)][ĉ − ĉ†], (3)

where ĤB is the Hamiltonian for the field and b̂(ω) is the
annihilation operator of the quantized field mode with fre-
quency ω, satisfying the canonical commutation relationship

[b(ω), b†(ω′)] = δ(ω − ω′). Ĥsys is the free Hamiltonian of
the system in the absence of the field. ĉ is the system operator
coupled to the field. If the localized system is a single-mode
optical cavity, ĉ is the annihilation operator for the cavity
mode with decay rate γ ; if the localized system is a two-level
natural or artificial atom, ĉ is the lowing operator for the
atomic transition and γ is the relaxation rate of the atom.

Under the rotating-wave approximation and the Markov
approximation, the Hamiltonian [Eq. (1)] can be rewritten as

Ĥ = Ĥsys + i[b̂†(t )L̂ − L̂†b̂(t )], (4)

where L̂ = √
γ ĉ is the Lindblad operator, with γ resulting

from the Makov approximation κ (ω) →
√

γ

2π
, as well as the

coupling operator in the (Ŝ, L̂, Ĥ ) triple. The time-dependent
field operator is defined as b̂(t ) = 1

2π

∫ ∞
−∞ b̂(ω)e−iωt dω, which

satisfies [b̂(t ), b̂†(t ′)] = δ(t − t ′).
The evolution of such a quantum system linearly and

weakly interacting with a propagating bosonic quantum field
described above is governed by the quantum stochastic dif-
ferential equation for the unitary propagator Û of the coupled
system [46],

dÛ (t ) = [
(Ŝ − I )d� + L̂dB̂†(t ) − L̂†ŜdB̂(t )

− (
1
2 L̂†L̂ + iĤsys

)
dt

]
Û (t ), (5)

where B̂(t ) and B̂†(t ) are, respectively, the time-integrated
versions of the annihilation and creation operators of the
field, that is, B̂(t ) = ∫ t

0 b̂(s)ds, B̂†(t ) = ∫ t
0 b†(s)ds. �̂(t ) rep-

resents a quantum stochastic process of counting the number
of quanta in the field that have interacted with the system
up to time t, that is, �̂(t ) = ∫ t

0 b̂†(s)b̂(s)ds. From Eq. (5),
one can observe that the evolution of the coupled system is
determined by three operators, that is, Ŝ, L̂, and Ĥ . Ŝ and
L̂ characterize the interface properties of the system to the
propagating field, and Ĥ determines the internal properties of
the localized system. This might be the reason that in the SLH
formalism, they are grouped together as a (Ŝ, L̂, Ĥ ) triple to
fully describe the composite system. There are a few condi-
tions for the validity of Eq. (5), including weak and linear
coupling between the localized system and the field and the
Markov approximation [40].

In a realistic quantum network, there are usually multiple
ports involved in one system, interacting with multiple fields.
In such situation, Eq. (5) is generalized to a multiport version,

dÛ (t ) =
⎡
⎣∑

j,k

(Ŝ jk − δ jk )d�̂ jk +
∑

j

L̂ jdB̂†
j (t )

−
∑

j,k

L̂†
j Ŝ jkdB̂k (t )−

⎛
⎝1

2

∑
j

L̂†L+iĤsys

⎞
⎠dt

⎤
⎦Û (t ),

(6)

where

Ŝ =

⎛
⎜⎝Ŝ11 . . . Ŝ1n

...
. . .

...

Ŝn1 · · · Ŝnn

⎞
⎟⎠, L̂ =

⎛
⎜⎝L̂1

...

L̂n

⎞
⎟⎠. (7)
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FIG. 1. Schematic of a two-sided driven optical cavity controlled
by a coherent feedback loop, which contains a phase shifter and an
isolator. A coherent optical field Ein and white noise are injected into
the cavity through the left-sided and right-sided mirrors, respectively.
The output field from the left input-output channel of the cavity is
divided by a beam splitter (BS) into two parts: the reflected field as
the feedback signal and the transmitted field as the final output signal
of the system.

Here, Ŝ jk describes the scattering from port j to k, and L̂ j is
the system operator coupled to the field at port j.

Given the (Ŝ, L̂, Ĥ ) triple for each element in a quantum
network and the feedforward or feedback relation between
elements, one can obtain the (Ŝ, L̂, Ĥ ) triple for the whole
system by using the cascading rule, G2�G1 = [Ŝ2Ŝ1, L̂2 +
Ŝ2L̂1, Ĥ1 + Ĥ2 + 1

2i (L̂
†
2 Ŝ2L̂1 − L̂†

1 Ŝ†
2 L̂2)], and the concatena-

tion product G1 � G2 = ([Ŝ1 0
0 Ŝ2

], [L̂1

L̂2
], Ĥ1 + Ĥ2). Then, one

can derive the equation of motion for system operators or
the master equation from the (Ŝ, L̂, Ĥ ) triple of the whole
system [40]. This offers a standard procedure to formulate
a quantum network consisting of any number of localized
systems interacting with multiple bosonic fields, provided that
the following three conditions hold: (i) the coupling between
localized systems and fields are linear and Markovian; (ii) the
propagation time between localized systems is negligible, i.e.,
the connection between localized systems is approximately
instantaneous feedforward or instantaneous feedback; (iii) the
input fields are vacuum. It is worth mentioning that although
the validity of the SLH formalism requires linear coupling be-
tween localized systems and their connecting bosonic fields, it
is applicable to both linear and nonlinear quantum networks,
for instance, a nonlinear system with instantaneous coherent
feedback control [47].

III. MODEL

As shown in Fig. 1, we consider a linear-optical cavity
and its coherent feedback loop, in which a phase shifter is
the control element and an isolator ensures the unidirectional
propagation of the feedback field. This model is similar to
that used in our previous work [48], where the focus was the
coherent-feedback-induced transparency effect of light. The
cavity contains two input-output channels, that is, a left-sided
mirror with decay rate κ1 and a right-sided mirror with decay
rate κ2. A coherent optical signal field with amplitude Ein is
injected into the cavity through the left-sided mirror. Gaussian
white noise is added to the system through the right-sided
mirror to better control and examine noise-induced dynamics.
A beam splitter with transmission coefficient η is used to
divide the output signal of the cavity into two parts. The
transmitted part is used as the final signal for detection and

spectrum analysis, whereas the reflected part travels through
the feedback loop and is sent back to the cavity through the
right-sided mirror. A change in η is equivalent to the manipu-
lation of the proportion of the cavity field for feedback or the
amplitude of the feedback field.

We use the SLH quantum network formalism to describe
our model for conveniently formulating the interaction be-
tween the system and feedback control loop. The (Ŝ, L̂, Ĥ )
triples used in our model are given by

Gin = (1, Ein, 0), (8)

Ga1 = (1̂,
√

κ1â,	aâ†â), (9)

Ga2 = (1̂,
√

κ2â, 0), (10)

GBS =
[(√

1 − η2 −η

η
√

1 − η2

)
, 0, 0

]
, (11)

Gϕ = (eiϕ, 0, 0), (12)

I1 = (1, 0, 0), (13)

where â (â†) represents the annihilation (creation) operators
of the cavity mode and 	a = ωc − ωin is the detuning of the
cavity resonance from the input field. Similar to the notations
used in [48], Gin represents the coherent light field applied to
the system, Ga1 (Ga2) represents the left-sided (right-sided)
mirror of the cavity, GBS represents the beam splitter, and I1

is a padding component that describes a simple pass-through
from an input to an output. Then, by using the cascading rule
and the concatenation product introduced in the last section,
we derive the (Ŝ, L̂, Ĥ ) triple for the entire system, G:

G = (Ga2 � I1)�(Gϕ � I1)�GBS�(Ga1 � I1)�(Gin � I1)

= (Ŝ, L̂, Ĥ ), (14)

where

Ŝ =
(

eiϕ
√

1 − η2 −ηeiϕ

η
√

1 − η2

)
, (15)

L̂ =
(√

κ2â + eiϕ
√

1 − η2(
√

κ1â + Ein )

η(
√

κ1â + Ein )

)
, (16)

Ĥ = 	aâ†â +
√

κ1Ein

2i
(â† − â) + √

κ1κ2

√
1 − η2 sin(ϕ)â†â

+ 1

2i

√
1 − η2

√
κ2Ein(â†eiϕ − âe−iϕ ). (17)

With the (Ŝ, L̂, Ĥ ) triple for the whole system obtained
above, one is able to obtain the quantum Langevin equa-
tion for the cavity mode using the procedure in [40],

dâ

dt
= −(i	eff + κeff )â + η

√
κ2eiϕ âin,2

− (
√

κ1 + √
κ2eiϕ

√
1 − η2)(Ein + âin,1), (18)

where âin,1 and âin,2 are, respectively, the vacuum inputs at
the left-sided cavity mirror and the dark port of the beam
splitter, κeff = (κ1 + κ2)/2 + cos(ϕ)√κ1κ2

√
1 − η2 is the ef-

fective decay rate of the cavity field under coherent feedback
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FIG. 2. Noise-induced quasiregular oscillations in the (a) ab-
sence and (c) presence of coherent feedback. (b) and (d) show the
power spectra obtained from sufficiently long trajectories using the
same parameters as those used in (a) and (c), respectively. The red
dashed lines in (a) and (c) show the intensity of the output field for
the noise-free case. The dashed orange curves in (b) and (d) show the
power spectra calculated from the analytical expression [Eq. (20)].
The parameters are as follows: κ2 = κ1, Ein = κ1, 	a = −5κ1,
ϕ = π , D = 10−2, η = 1 for (a) and (b), and η = 0.1 for (c) and (d).

control, and 	eff = 	a + sin(ϕ)
√

κ1κ2

√
1 − η2 is the effec-

tive detuning. Under the assumption of a strong cavity field
in our system, quantum fluctuations of the cavity field can
be approximately neglected and the quantum operator for the
cavity mode in the Langevin equation [Eq. (18)] can be ap-
proximately replaced by a classical complex amplitude of the
cavity field, i.e., â → α. In addition, in order to investigate the
influence of white noise on the system dynamics, we assume
that a white noise with tunable noise intensity is added to
the system through the right-sided cavity mirror. Then, we ar-
rive at the classical equation of motion for the mean amplitude
of the cavity field,

dα

dt
= −(i	eff + κeff )α

− (
√

κ1 + √
κ2eiϕ

√
1 − η2)Ein − √

κ2ξ (t ). (19)

Here we have phenomenologically added a white-noise term
ξ (t ), which represents the external white noise injected on the
right-sided cavity mirror. It satisfies 〈ξ (t )ξ (t ′)〉 = 2Dδ(t −
t ′), where D is the dimensionless noise intensity. This equa-
tion [Eq. (19)] is the starting point for our analytical and
numerical analyses of noise-induced behaviors in our system.

IV. RESULTS AND DISCUSSION

Figure 2 shows noise-induced quasiperiodic oscillations in
the time and frequency domains. Figures 2(a) and 2(c) show
typical trajectories of the intensity of the output field, |αout|2 =
|η(

√
κ1α + Ein )|2, in the absence and presence of coherent

feedback, respectively. Figures 2(b) and 2(d) show the power
spectra corresponding to Figs. 2(a) and 2(c) obtained using the
trajectories with a long evolution time. To show noise-induced
coherent dynamics from a steady state, for all results shown

in Fig. 2, the initial mean amplitude of the cavity field is
considered to be the steady-state value. As shown in Fig. 2(a),
it is difficult to observe the regularity in the noisy trajectory
from the time evolution without feedback. However, a low
and wide peak in the spectrum is visible in Fig. 2(b). The
central frequency of the peak in the spectrum is the same as
|	a|, which is the deterministic oscillation frequency of the
system before decaying to the steady state if the system is not
initially at the steady state. This indicates that the coherent dy-
namics of the system determined by its intrinsic frequency are
not fully eliminated via dissipation; instead, the noise along
with the dissipation sustains coherent oscillations. When we
switch the coherent feedback control on by varying η from
1 to 0.1, the oscillations of |αout|2 exhibit evident periodicity
in the time domain, although the amplitude of the oscillations
varies continuously, as shown in Fig. 2(c). The periodicity can
also be observed in the power spectrum [Fig. 2(d)], where
a considerably higher and narrower peak appears at ω/κ1 =
|	a|. This is because the output noisy signal before entering
the feedback loop carries the periodicity information. There-
fore, the feedback signal serves as a seed, thereby amplifying
the periodicity in the original signal.

To confirm the numerical simulation results shown in
Fig. 2, we perform the Fourier transformation of Eq. (19) and
obtain the analytical expression of the power spectrum for the
output field,

S(ω) =
∫ 〈

αout (ω)α∗
out (ω

′)
〉
dω′

= 2Dη2κ1κ2

(ω − ωp)2 + W 2

+
∣∣∣∣∣1 − κ1 + eiϕ

√
κ1κ2(1 − η2)

i(ω − ωp) + W

∣∣∣∣∣
2

η2E2
inδ(ω), (20)

where ωp = −	eff , W = κeff , and αout (ω) is the Fourier
transformation of αout (t ). There are two terms in the power
spectrum. The first term is the noise spectrum and it is a
Lorentzian function, where ωp is the central frequency of the
signal peak and W is the width of the peak. The second term
is the spectrum caused by the input coherent field, which is a
δ function at ω = 0. As we are interested in the signal around
a nontrivial frequency, i.e., the intrinsic frequency |	a|, only
the first term provides an effective contribution; hence, the
effective power spectrum obeys the Lorentzian profile. The
analytical results based on Eq. (20) are shown by the dashed
orange curves in Figs. 2(b) and 2(d), and they are in good
agreement with the numerical results. We then study the in-
fluence of noise strength D on the properties of noise-induced
oscillations. Figure 3(a) shows the spectra of noise-induced
oscillations at several different noise levels, ranging from
D = 10−4 to D = 1. The height of the peak increases with the
noise strength, whereas the width of the peak remains constant
for all noise strengths. Following the method used in [3,11,12]
to quantitatively measure the regularity and amplitude of
noise-induced oscillations, we define the SNR as SNR =
ωpH/W and the height of the peak as H = 2Dη2κ1κ2/W 2.
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FIG. 3. (a) Spectra of the output field, αout, at three different
noise intensities D = 10−4, 10−2, 1. (b) Peak height (H), peak width
(W), and SNR as a function of noise intensity D (in logarithmic
units). The parameters are as follows: κ2 = κ1, Ein = κ1, 	a = −5κ1,
ϕ = π , and η = 0.1.

Then, we have the following expression for the SNR:

SNR = 2Dη2κ1κ2ωp

κ3
eff

. (21)

Figure 3(b) shows the plot of the height of the peak (H), width
of the peak (W ), and SNR versus D. W remains constant as
noise increases. In contrast, the logarithms of H and the SNR
increase linearly with noise, that is, H and the SNR increase
exponentially with noise. This is a difference between the
noise-induced temporal regularity in our model and that in
CR, where an optimal noise intensity is required to achieve
the best noise-induced constructive effect. This implies that
our proposal does not require the precise manipulation of the
noise intensity to satisfy the resonance condition; thus, it is
more flexible to observe and realize.

In addition to the noise strength, other parameters can be
used to control noise-induced temporal regularity. Based on
Eq. (21), we plot the SNR of the noise-induced quasiregular
signal versus phase shift ϕ, κ2, and η in Fig. 4. As shown
in Fig. 4(a), the SNR reaches its maximum at ϕ = π . This
can be directly explained using Eq. (21). Width W and the
denominator of the SNR are the minimum at ϕ → π , whereas
the numerator of the SNR does not depend on ϕ. Therefore,
the maximum SNR is obtained at this point. At ϕ = π , the
effective decay rate of the cavity field, κeff , becomes the
minimum because of the interference between the original
cavity field and feedback field. Moreover, it tends to zero
for η → 0 and κ2 → κ1. The almost zero dissipation causes
the system to sustain coherent oscillations for a long time.
Similarly, there is a single peak on the SNR − κ2 curve. The
SNR reaches its maximum at κ2/κ1 = 1, where the effective
decay rate of the system is the lowest and the signal peak is
the narrowest. A large value of κ2 is beneficial for coupling
the feedback with the cavity field, whereas a small value of
κ2 is required for maintaining a low dissipation of the system.
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FIG. 4. SNR as function of the (a) phase shift, (b) ratio of the
decay rates of two channels, and (c) transmission coefficient of the
beam splitter. The parameters are as follows: 	a = −5κ1, Ein = κ1,
D = 10−2, ϕ = π for (b) and (c), κ2 = κ1 for (a) and solid curve in
(c), κ2 = 1.1κ1 for the dashed curve in (c), η = 0.1 for (a) and (b),
and η = 0.001 for the inset shown in (c).

Therefore, an optimal decay rate κ2 is required to achieve the
best quasiregular oscillations.

The dependence of the SNR on η, or the proportion of the
field used for feedback, is presented in Fig. 4(c). For κ2 = κ1,
the SNR increases as η decreases, even when η is extremely
small [the solid curve in Fig. 4(c)]. For κ2 	= κ1, the maximal
SNR is achieved at an optimal value of η [the dashed curve in
Fig. 4(c)]. In the first case, the numerator and denominator of
the SNR tend to become zero under the condition ϕ = π . In
addition, the denominator decreases faster than the numerator,
leading to an extremely high SNR when η approaches zero.
This is because a smaller value of η indicates a stronger
feedback signal and better SNR. It should be noted that the
amplitude of the output field of the system, αout, is propor-
tional to η. Thus, an extremely small value of η provides
an extremely weak output signal (see inset in Fig. 4), which
makes it difficult for detection devices to respond. Therefore,
a moderate value of η should be selected to ensure a good SNR
and detectable signal. In the case of κ2 	= κ1, the denominator
of the SNR never becomes zero under the condition ϕ = π .
There is an optimal value of κ2 for the best SNR because of
the compromise between the strong feedback field (small η)
and strong output field (large η).

Finally, let us compare the noise-induced oscillations in
our work with two interesting noise-induced phenomena, that
is, quasicycles and noise-induced stability. (i) A quasicycle is
a phenomenon of oscillatory activity which only exists with
the presence of noise and it can occur in both linear [18]
and nonlinear [15] systems with spiral-sink dynamics, i.e.,
the Jacobian matrix has a complex conjugate pair of eigen-
values. Different from quasicycles, our system is linear and
it has one stable fixed point without a spiral feature in its
deterministic dynamics. The common features of our proposal
and quasicycles are the reliance of quasiperiodic oscillations
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on the existence of noise and the absence of periodic orbits
in the deterministic dynamics. (ii) The phenomenon of the
noise-enhanced stability takes place in various systems rang-
ing from open quantum systems [20] to medical systems [23]
and to financial systems [21], in which the lifetime of a system
variable at a metastable state can be increased via manipula-
tion of the coupling strength with reservoir or noise intensity.
This phenomenon results from the interplay between system
nonlinearities and thermal noises, but it has similarity with
our results in the sense that noise can help to maintain the
system property, although in our work what the noise sustains
are quasiperiodic oscillations which would decay to a stable
fixed point in a finite time in the absence of noise.

V. CONCLUSION

We have investigated white-noise-induced temporal regu-
larity in a linear optical system with a linear feedback control
loop. Weak regularity is considerably enhanced by coherent
feedback because the interference between the original cavity

field and feedback field significantly reduces the effective
decay of the system. The enhancement of noise-induced reg-
ularity is sensitive to the phase shift in the feedback loop.
Furthermore, the SNR of the system output is a mono-
tonic function of noise intensity, which is different from the
phenomenon of CR. Our model does not rely on system
nonlinearity and the results are valid for a large range of
parameters. Therefore, it is feasible for experimental realiza-
tion and could be extended to other linear systems, i.e., a
mechanical oscillator system with coherent feedback control.
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