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Steady-state entanglement generation for nondegenerate qubits
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We propose a scheme to dissipatively produce steady-state entanglement in a two-qubit system, via an
interaction with a bosonic mode. The system is driven into a stationary entangled state, while we compensate the
mode dissipation by injecting energy via a coherent pump field. We also present a scheme which allows us to
adiabatically transfer all the population to the desired entangled state. The dynamics leading to the entangled state
in these schemes can be understood in analogy with electromagnetically induced transparency and stimulated
Raman adiabatic passage, respectively.
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I. INTRODUCTION

Entanglement is the clearest nonclassical signature of
quantum physics. A composite system is considered to be
entangled when the quantum state that describes it is insepara-
ble; i.e., it is impossible to write it as a product of the states of
each subsystem [1]. In the past decades, entangled states have
been the subject of great interest, presenting themselves as a
resource for several quantum schemes and applications such
as quantum communication [2–4], quantum computation [5],
metrology [6], and quantum sensing [7].

The success of the aforementioned applications and tests
often depends on the ability to generate long-lived entan-
gled states. However, in a realistic situation, the system will
interact with the environment. This will inevitably lead to
the deterioration of the entangled state, which is sensitive to
decoherence [1]. For this reason, entanglement preservation
schemes have gained great prominence. Among the proposed
methods to minimize unwanted decoherence, we should men-
tion the use of decoherence-free subspaces [8,9], quantum
error correction codes [10,11], weak measurements [12,13],
and the quantum Zeno effect [14,15].

Instead of aiming to prevent decoherence, a different strat-
egy involves engineering the system-environment interaction
to generate entangled states; these are called dissipation-
assisted entanglement generation methods [16–18]. Since this
idea was presented, numerous implementations have been
proposed and experimentally realized using several physical
platforms, such as cavity QED [19–25], superconduct-
ing qubits [26–29], macroscopic atomic ensembles [30,31],
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Rydberg atoms [32–34], quantum dots [35,36], and trapped
ions [37–42]. Another widely studied approach is the creation
of long-lived entangled states via stimulated Raman adiabatic
passage (STIRAP), fractional STIRAP, and rapid adiabatic
passage [43–48], since it offers robustness against decoher-
ence by not populating lossy states.

In this paper we propose two schemes for producing highly
entangled states in a system of two nondegenerate qubits. It
is known that, in some systems, it is possible to manipulate
the degree of entanglement between two qubits via Stark
shifts of their electronic levels [21,49,50]. Here, however,
we show that the symmetry in the energy shifts between the
emitters with respect to the bosonic mode actually allows us
to achieve a stronger entanglement. By considering their ef-
fective interaction through a bosonic mode, such as an optical
cavity or a motional mode, we are able to achieve a stronger
coupling between the qubits without needing to place the
qubits particularly close together. This interaction with the
quantized mode provides a coupling regime strong enough
so that the timescales of the effective interactions are much
faster than the qubit relaxation, leading to higher degrees of
entanglement. This shows that the distinguishability between
the quantum emitters can be an advantage in the quest for
the producing highly entangled states. We are able to achieve
a maximally entangled steady state, which is maintained by
injecting power via a pump field.

We show that the dynamics leading to the highly entangled
two-qubit state can be understood by comparison with the
electromagnetically induced transparency (EIT) regime [51].
In that same analogy, but restricting ourselves to the subspace
of just a single excitation, we are able to drive the system into
an entangled state via a STIRAP-like process.

II. MODEL

Let us consider a system of two qubits, with different
resonance frequencies ω(1)

e and ω(2)
e , which are coupled to
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FIG. 1. (a) Two nondegenerate qubits, with both ground states
coupled to the bosonic mode of frequency ωm, detuned by ±�.
(b) Level scheme of the same system, but now in the basis up to
one excitation: |G〉 ⊗ |0〉, |E〉 = |G〉 ⊗ |1〉, and |�±〉 = |�±〉 ⊗ |0〉,
where |G〉 = |g, g〉 and |�±〉 = (|e, g〉 ± |g, e〉)/

√
2. Here, g pro-

motes transitions from |E〉 to |�+〉, while � promotes transitions
from |�+〉 to |�−〉. We consider a pump field, of strength ε, continu-
ously injecting energy into the mode to combat decay from the mode
with rate κ . The inset in panel (b) shows the entangled steady-state
partial density matrix, where the bosonic mode has been traced out.

the same bosonic mode with frequency ωm, as illustrated in
Fig. 1(a). Here, the bosonic mode is symmetrically detuned
from each of the qubits, so that ω(1)

e = ωm − � and ω(2)
e =

ωm + �. In the Schrödinger picture, the system Hamiltonian
reads as follows (h̄ = 1):

Ĥ = ω(1)
e σ̂ (1)

ee + ω(2)
e σ̂ (2)

ee + ωmâ†â

+ g[â
(
σ̂

(1)
+ + σ̂

(2)
+

) + H.c.], (1)

where σ̂
(k)
+ = |e〉〈g|, σ̂

(k)
− = |g〉〈e|, and σ̂ (k)

ee = |e〉〈e| are the
raising, lowering, and excited-state population operators, re-
spectively, acting on the kth qubit (with k ∈ {1, 2}). Without
loss of generality, we define the ground-state energy to be
zero. â (â†) is the annihilation (creation) operator of the
bosonic mode, g is the coupling strength between the bosonic
mode and each of the qubits, and H.c. stands for the Hermitian
conjugate.

For convenience, we move to the interaction picture, make
the rotating-wave approximation, and move to a rotating
referential of relative coordinates in which both qubits are
stationary, thus eliminating the Hamiltonian time dependence.

Then, Eq. (1) becomes

Ĥ = �(σ̂ (1)
ee − σ̂ (2)

ee ) + g[â(σ̂ (1)
+ + σ

(2)
+ ) + H.c.]. (2)

To account for decoherence, we consider our system to be
in a weak system-environment coupling regime, which allows
us to use the Lindblad master equation [52] at temperature
T = 0 K. The assumption of zero temperature is reasonable
since we work within the optical regime, where the number of
thermal photons remains negligible even for room tempera-
tures. Thus, we obtain the dynamical equations for the density
matrix ρ:

˙̂ρ = −i[Ĥ, ρ̂] + L̂ (1)
q + L̂ (2)

q + L̂m, (3)

where

L̂ (k)
q = 


(
2σ̂

(k)
− ρ̂σ̂

(k)
+ − σ̂ (k)

ee ρ̂ − ρ̂σ̂ (k)
ee

)
(4)

is the Lindblad term that accounts for the spontaneous decay
from the excited state of the kth qubit, with k ∈ {1, 2} and 


being the qubit decay rate, here assumed to be the same for
both qubits. The Lindblad term

L̂m = κ (2âρ̂â† − â†âρ̂ − ρ̂â†â) (5)

accounts for decay of the bosonic mode, where κ is the decay
rate.

III. STEADY-STATE ENTANGLEMENT PRODUCTION

To describe the main mechanism responsible for the gener-
ation of entanglement, we restrict ourselves, for the moment,
to the single-excitation subspace, which is composed of the
following three states: |E〉 = |G〉 ⊗ |1〉 and |�±〉 = |�±〉 ⊗
|0〉, where |G〉 = |g, g〉 and |�±〉 = (|e, g〉 ± |g, e〉)/

√
2. |�±〉

are maximally entangled two-qubit states. In this subspace,
the reduced Hamiltonian is

ˆ̄H = �|�−〉〈�+| +
√

2g|�+〉〈E | + H.c. (6)

In analogy with the typical three-level � systems, we consider
that |E〉 and |�−〉 play the roles of the two ground states, while
|�+〉 is the excited state, as depicted in Fig. 1(b). According
to Eq. (6), the transitions |E〉 ↔ |�+〉 and |�−〉 ↔ |�+〉 have
effective coupling strengths

√
2g and �, respectively. The

Hamiltonian in Eq. (6) has a dark eigenstate (an eigenstate
without a |�+〉 component) given by

|D〉 = − �
√

�2 + 2g2
|E〉 +

√
2g

√
�2 + 2g2

|�−〉. (7)

Just as in other three-level systems [51], when the condition
g � � is fulfilled, the dark state |D〉 transforms to |�−〉,
which is our maximally entangled target state.

A significant difference between our system and a typical
three-level � system is the fact that neither |E〉 nor |�−〉 is
actually a ground state. Because of this, the system keeps
spontaneously decaying to the true zero-energy ground state
|G〉 ⊗ |0〉. For this reason, the analogy becomes more accurate
as the mode dissipation rate κ and the spontaneous decay
rate 
 become negligible (κ, 
 	 g,�). Then the system
effectively remains in the one-excitation subspace. One way
to circumvent the decay and maintain the system in the one-
excitation subspace is to keep injecting energy into the mode.
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We consider this energy injection as an additional term,

Ĥpump = ε(â† + â), (8)

of the system’s Hamiltonian, where ε is the the pump strength.
To characterize the steady-state entanglement between

the qubits, we choose the monotone quantifier concurrence
[53,54]. We numerically simulate the full system dynamics,
taking into account the decoherence and also higher excited
states. To this end, we consider a sufficiently large Fock space
dimension that depends on the adopted pump field strength
ε and consequently on the respective expected mean number
of excitations in the system. The concurrence is derived from
the steady-state density matrix, which we obtain using the
Quantum Toolbox in PYTHON (QUTIP) [55], after the mode is
traced out.

As shown in Fig. 2(a), we obtain a strong entanglement
within a large region of parameters � and g for ε = κ . More-
over, we see that satisfying the EIT condition g � � is a
necessary but not sufficient condition to reach our maximally
entangled target state. We have chosen four sets of parameters
to illustrate the system dynamics: set A shows the situation
where g 	 � and the population is led to the respective
dark state, which has a |G〉 character [see Eq. (7)], and no
entanglement is observed. In set B, we have g = � which
leads to a weakly entangled dark state given by a mixture
of |G〉 and |�−〉. In set C, we have an interesting situation
where the EIT condition g � � is fulfilled and the dark state
assumes a |�−〉 character, but the detuning is so small that it
takes too long to populate |�−〉, and since the system keeps
decaying to the true ground state |G〉 ⊗ |0〉, the entanglement
is affected. Set D shows a near-optimal situation, with g � �

and � � 
, driving approximately all the population to the
dark state |�−〉.

In a similar way, Fig. 2(b) shows a map of concurrence in
the steady state as a function of g and ε, with the constraint
� = 0.1g. This ratio between g and � was chosen to obtain
maximum concurrence based on the results shown in Fig. 2(a).
In Fig. 2(b), we notice a parameter region with a maximum
plateau of concurrence as a function of ε for g > κ . The value
ε = κ is close to the point where it is possible to obtain a
high degree of entanglement even for weak coupling strengths
(g � κ).

In Fig. 2(c) we show the behavior of the concurrence as
a function of the detuning for a fixed value of g = κ . We
observe that the concurrence decreases significantly when we
move away from the optimal point � ≈ 0.1g. This finding is
in accordance with what was previously discussed for the pa-
rameters sets A and C. This optimal ratio between g and � is
influenced by the system’s decay rate 
. A reduced value of 


allows us to achieve entanglement for smaller detunings. For

 = 0, even an infinitesimal detuning would eventually take
the system to |�−〉. Figure 2(c) shows that the spontaneous
decay reduces the entanglement even for the optimal case D;
the concurrence decreases exponentially for 
 > 5 × 10−4κ .

Focusing on the entanglement dynamics, we show in
Fig. 2(d) the concurrence over time for the cases A, B, C,
and D, where we observe different timescales to achieve the
maximum entanglement for each curve, respectively. We also
include a visual representation of the time-evolved partial
density matrix, where the bosonic mode has been traced out,

FIG. 2. Entanglement generation using the steady-state method.
(a) Colormap showing the concurrence of the steady state as a
function of �/κ and g/κ . Points A to D are referred to in panel
(d). (b) Colormap showing the concurrence of the steady state as
a function of g and ε (with � given by the constraint � = 0.1g).
(c) Concurrence as a function of the spontaneous decay rate 
 of
each of the two qubits (top x axis) and as a function of the detuning
(bottom x axis). (d) Concurrence as a function of time for different
parameter sets, given in panel (a). The concurrence generally grows
and then stabilizes. The insets in panel (d) show the steady-state par-
tial density matrix of each curve, where the mode has been traced out.
For all panels except panel (b), the pump strength was set to ε = κ .
The spontaneous decay rate of each qubit was fixed at 
 = 10−5κ ,
except for the red dashed curve in panel (c). The constant parameters
in panel (c) are given by point D in panel (a).

showing that we achieve the maximally entangled target state
|�−〉 for the near-optimal set of parameters D.

So far, we have adopted a generic description of the system,
since our scheme proves to be quite versatile in terms of how
many experimental platforms on which it could be imple-
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FIG. 3. Entanglement generation—adiabatic method with tun-
able g and �. (a) Two two-level ions are trapped in a harmonic
potential and coupled to the same phonon mode. The ions are sub-
jected to a magnetic field gradient, which promotes different energy
shifts to their excited states, recovering the system illustrated in
Fig. 1(a). (b) Pictorial representation of the energy shifts in the
ions’ excited states due to a magnetic field gradient, as a function
of their position in the trap. (c) Time evolution of the parameters g(t )
and �(t ) as described in Eqs. (9) and (10), with the corresponding
population changes in panel (d). We considered for all simulations
the following adopted parameters: 
 = 10−3κ , gmax = �max = 2 ×
104κ , t0 = 4 × 10−3κ , and λ = 103κ .

mented: optical cavities with neutral atoms coupled to the
same cavity mode [56,57], superconducting artificial atoms
coupled to waveguides [58,59], and ions trapped in the same
harmonic potential, coupled via laser with Jaynes-Cummings
type interaction and interaction with a collective vibrational
mode [60].

IV. ADIABATIC PROCESS

Inspired by the schemes to counteract decoherence devel-
oped for multilevel atoms, we propose a STIRAP-like process
to efficiently populate the entangled state |�−〉. For the sake of
clarity and simplicity, during this section we restrict ourselves
to the physical system of trapped ions.

To this end, let us consider the case of two ions confined
in a harmonic potential, as depicted in Fig. 3(a). In addition,
let us also consider that two electronic levels of the ions are
driven by a monochromatic laser close to resonance. The ions
are subjected to a magnetic field gradient, thus allowing them
to experience different energy shifts of their excited states,

resembling the system illustrated in Fig. 1(a). The bosonic
mode is formed by the external degrees of freedom of the
ions. For simplicity, we only consider the collective center-
of-mass motional mode described by a harmonic oscillator of
frequency ωm. Absorption and stimulated emission of pho-
tons due to the interaction with the laser leads to electronic
transitions, but due to the momentum of the absorbed and
emitted photons may also change the ions’ motional state, thus
coupling the internal electronic dynamics and the external
phonon dynamics of the ions [61–63]. In the Lamb-Dicke
regime, the laser can be tuned in frequency to be either directly
in resonance to the atomic transition, where the motional state
is preserved, or in resonance to a blue or red sideband, where a
phonon is generated or annihilated upon absorption of a laser
photon. When tuned to the red motional sideband resonance,
we recover a Hamiltonian in the form of Eq. (2).

To perform the adiabatic population transfer between the
two dark states of the one-excitation subspace [see Eq. (7)],
the system must be initially prepared in the state |E〉, which
consists of the two ions in the ground state and the motional
state with one excitation; the latter can be prepared by ex-
citing one of the ions and then by letting it exchange energy
with the vibration mode via a red sideband interaction. The
initial state |E〉 corresponds to the dark state when � � g. By
reversing this condition to g � �, the dark state adiabatically
transforms to |�−〉. In the proposed implementation, we can
manipulate both the coupling strength g and the detuning �

by changing the power of a laser resonant to the red sideband
transition and by varying the magnetic field gradient, respec-
tively. To illustrate, we here consider the time variation of g
and � as

g(t ) = gmax

2
[1 + tanh λ(t − t0)], (9)

�(t ) = �max

2
[1 − tanh λ(t − t0)], (10)

where gmax and �max are respectively the maximum values
of the coupling constant and the detuning. The parameter
t0 is the time at which this function reaches its respective
half-maximum value �max/2. The adiabaticity of the process
is controlled by λ, which determines the timescale of the
parameter swap and, consequently, how fast the parameters
are changed. The specific choice of function is not crucial to
the method, as long as it guarantees a near-adiabatic inversion
of parameters. The parameter swap previously described by
Eqs. (9) and (10) is shown in Fig. 3(c).

In Fig. 3(d), we can see how the populations in the three
states of the single-excitation subspace evolve through time,
showing that we coherently transfer the population from |E〉
to |�−〉 (〈|�−〉〈�−|〉 > 0.99) before the mode dissipation
starts to be relevant.

This scheme can also be applied to other experimental
platforms. However, these might not allow a perfect control
over both parameters at the same time, e.g., a fixed g and a
tunable � as observed in systems where the coupling constant
sometimes is an intrinsic value, such as in superconducting
circuits. It is important to mention that the parameter swap
we are proposing, although very similar to the ones observed
in Raman chirped adiabatic passages, does not involve any
changes in the field frequencies during the process. With that
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FIG. 4. Entanglement generation—adiabatic method. (a) Time
evolution of g and �, with � varying accordingly to Eq. (10) and
a constant g. (b) Population changes over time. We considered 
 =
10−3κ , �max = 2 × 105κ , g = 2.5 × 103κ , t0 = 4 × 10−3/κ , and
λ = 5 × 102κ .

being said, in order to show that even in this situation we
can achieve a high degree of entanglement, we assume g to
be constant and we vary � in time, according to Eq. (10),
as shown in Fig. 4(a). Setting the value of g that ensures the
initial and final conditions � � g and g � �, respectively,
we make the parameter swapping as smooth as possible. On
the other hand, the lack of control over g restricts the timescale
of the population transfer to maintain the adiabaticity during
the parameter swap. Nevertheless, one can still perform a
STIRAP-like process, obtaining a highly entangled final state,
as shown in Fig. 4(b), with a negligible population of the state
|�+〉.

V. CONCLUSION

In conclusion, here we present two strategies for producing
maximally entangled states in a system of two nondegenerate
qubits coupled to a single bosonic mode. In both cases, we use

a direct analogy with ordinary three-level atomic systems in
the � configuration and the EIT phenomenon, which allows
us to draw a parallel with the processes of optical pumping
and adiabatic population transfer.

In the first proposed scheme, we show that it is possi-
ble to generate steady-state entanglement with concurrence
C > 0.99. Moreover, we show that the symmetry between the
qubits with respect to the bosonic mode is beneficial for the
generation of entanglement. As for the second scheme, we
generate a highly entangled state by means of an adiabatic
process, and we achieve a population over 99% in the state
|�−〉. We emphasize that this was done even considering
nonideal situations, where there is no complete control over g
and �. In ideal cases, where both parameters can be controlled
simultaneously, the adiabatic process can be controlled more
efficiently, which leads to a perfectly coherent transfer of
populations.

The results presented in this work, besides indicating al-
ternative ways to generate highly entangled states in a simple
way, have potential application in several experimental plat-
forms, such as trapped ions and quantum dot molecules
coupled to a cavity mode.
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