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Single photons versus coherent-state input in waveguide quantum electrodynamics:
Light scattering, Kerr, and cross-Kerr effect
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While the theoretical studies in waveguide quantum electrodynamics predominate with single-photon and
two-photon Fock-state (photon number states) input, the experiments are primarily carried out using a faint
coherent light. We create a theoretical toolbox to compare and contrast linear and nonlinear light scattering by a
two-level or a three-level emitter embedded in an open waveguide carrying Fock-state or coherent-state inputs.
We particularly investigate light transport properties and the Kerr and cross-Kerr nonlinearities of the medium
for the two types of inputs. A generalized description of the Kerr and cross-Kerr effect for different types of
inputs is formulated using the first-order correlation function to compare the Kerr and cross-Kerr nonlinearity
between two photons in these models.
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I. INTRODUCTION

A decade of experimental activities has established waveg-
uide quantum electrodynamics (QED) as an emergent re-
search discipline [1,2]. One principal aim of this discipline
is to explore strong light-matter interactions between a few
propagating photons without any cavity along the direction of
propagation. The waveguide QED systems promise to over-
come many limitations of cavity QED systems for building
quantum networks of light [1]. Many exciting phenomena
[1–10] as well as fascinating all-optical devices [11–17] have
been demonstrated in these systems. These have improved our
fundamental understanding of quantum and nonlinear optics
and led to higher sensitivity in quantum metrology and sens-
ing.

Many of the early theoretical proposals in the waveg-
uide QED systems [1,18–38] are utilizing single-photon
and two-photon Fock-state (photon number states) inputs.
Coherent-state inputs have also been investigated in some the-
oretical studies [23,39–47]. However, the experimental studies
[4,6,7,12,14] in these systems predominately apply a weak
light beam in a coherent state to explore the physics of single-
or few-photon scattering from single or multiple emitters. It
is, therefore, in many cases challenging to compare results
for different types of inputs. It also remains unclear if there
will be any fundamental difference in those studied phenom-
ena if a true (antibunched) single-photon source is applied in
comparison to a weak coherent state. In this paper, one of our
goals is to develop a theoretical toolbox to compare linear and
nonlinear scattering properties of light in the waveguide QED
systems for Fock-state and weak or attenuated coherent-state
inputs.

We primarily consider the scattering of one or two light
beams by a two-level emitter (2LE) or a ladder-type three-
level emitter (3LE) embedded in an open waveguide (see
Fig. 1). The input beams consist of either one or two Fock-
state photons or a weak coherent state. We apply two different

theories for two types of inputs. For example, scattering the-
ory is used for input photons in the Fock state. For weak
coherent-state inputs, we write the Heisenberg equations for
the time evolution of operators. Our theory for coherent-state
input also works for an arbitrary strength of input beam(s). We
mainly investigate the linear and nonlinear scattering of input
beams and nonlinear interactions between photons of a single
beam (Kerr effect) and multiple beams (cross-Kerr effect)
generated by correlated scattering by the emitters. Both Kerr
and cross-Kerr media allow for effective control of motion
of one photon by another, which is an essential requirement
in many all-optical devices and optical quantum gates, e.g.,
nonlinear optical diodes [17,22,44,48,49] and transistors [19].
Therefore, it is essential to quantify and understand which
medium creates higher nonlinearity or effective interactions
(either Kerr or cross-Kerr type) between two photons as that
would be more useful in controlling the motion of one photon
by another photon. Our main findings in this paper are the
following.

(a) We show how to identify and compare the linear and
nonlinear contributions in transport coefficient for a few-
photon Fock-state input and a faint coherent-state input.

(b) We formulate a generalized description of the Kerr and
cross-Kerr effect using a first-order correlation function for
different types of inputs.

(c) We compare the Kerr nonlinearity between two single
photons by a 2LE to the cross-Kerr nonlinearity between them
by a 3LE.

In the following three sections, we explain our results in
detail. We also add three appendices to give mathematical
details of our derivations.

II. LIGHT SCATTERING BY 2LE

We first consider a 2LE side coupled to a one-dimensional
continuum of photon modes inside an open waveguide [see
Fig. 1(a)]. The difference in energy between the excited level
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(a)

(b)

FIG. 1. Schematics of (a) a 2LE and (b) a ladder-type 3LE side
coupled to an open waveguide carrying (a) a probe or (b) a probe and
a drive beam. The coupling strengths of the probe beam (red) and the
drive beam (blue) with the emitter are gp and gd , respectively.

|2〉 and ground level |1〉 of the emitter is h̄ω21. Our cal-
culation for the scattering of weak coherent-state inputs is
within the Heisenberg picture of quantum mechanics; we then
consider photon modes in momentum space and evaluate the
time evolution of operators. The scattering of single photons
in the Fock state is derived within the Schrödinger picture,
and it is then convenient to take a real-space description of
photon modes. Within the Schrödinger picture, the operators
are time independent, and we find scattering states of the
entire system using scattering theory. The photon modes in
real space are related by the Fourier transform to those in the
momentum space. The Hamiltonian of the whole system with
a linearized energy-momentum dispersion (e.g., ωk = vgk) of
photons reads in momentum space as [50]

Hk
2

h̄
= ω21σ

†σ +
∑

k

[vgk(a†
kak − b†

kbk )

+ gpσ
†(ak + bk ) + gp(a†

k + b†
k )σ ], (1)

where σ † ≡ |2〉〈1| (σ ≡ |1〉〈2|), and vg is the group ve-
locity of photons. Here, a†

k [b†
k] is the creation operator

of right-moving (left-moving) photon modes. Within the
rotating-wave approximation and the dipole approximation
(a linear light-matter interaction), the coupling strength of
the photon modes with the 2LE is given by gp. To obtain
a real-space description of propagating photons at position
x ∈ [−L/2,L/2], we define ãx(t ) = ∑

k eikxak (t )/
√
L and

b̃x(t ) = ∑
k eikxbk (t )/

√
L. Here, L is the length of the waveg-

uide which can also be considered our quantization length.
Thus, we get the following real-space version of the full
Hamiltonian:

Hx
2

h̄
= ω21σ

†σ − ivg

∫ L/2

−L/2
dx(ã†

x∂xãx − b̃†
x∂xb̃x )

+ ḡpσ
†(ã0 + b̃0) + ḡp(ã†

0 + b̃†
0)σ, (2)

where ḡp = √
Lgp.

We take incident light in the right-moving channel in-
jected from the left of the emitter. The coherent-state input

|Ep, ωp〉 is a monochromatic, continuous-wave beam of fre-
quency ωp (ωp = vgkp) and amplitude Ep (which we here
assume to be real). It is an eigenstate of ak : ak (t0)|Ep, ωp〉 =
(
√
LEp/vg)δk,ωp/vg|Ep, ωp〉, where t0 is an initial time before

the interaction of the input beam with the emitter. The inten-
sity (total number of photons per unit length) of the incident
coherent beam is Icp = 〈Ep, ωp|

∑
k a†

k (t0)ak (t0)|Ep, ωp〉/L =
E2

p/v
2
g . The single- and two-photon Fock-state inputs with a

wave-vector kp are, respectively,

|kp〉 = 1√
L

∫ L/2

−L/2
dx eikpxã†

x |ϕ〉,

|kp〉 = 1

L

∫ L/2

−L/2

∫ L/2

−L/2
dx1dx2 eikp(x1+x2 ) 1√

2
ã†

x1
ã†

x2
|ϕ〉,

where |ϕ〉 denotes the vacuum of the electromagnetic fields.
The intensities of a single-photon and a two-photon incident
beam are, respectively, I1p = 〈kp|

∑
k a†

kak|kp〉/L = 1/L and
I2p = 〈kp|

∑
k a†

kak|kp〉/L = 2/L. We assume the emitter in
the ground state at t0. We evaluate the time evolution of the
incident coherent state and the emitter using the Heisenberg
equations following Refs. [39,44]. The finding of outgoing
scattering states for the single- and two-photon inputs is
carried out following Refs. [18,22,23]. The details of the
calculation in both cases are given in Appendices A and C.

To quantify linear and nonlinear light scattering, we cal-
culate transport properties such as the reflection and the Kerr
and cross-Kerr phase shifts of the transmitted photon(s). For a
side-coupled emitter, the reflection of light is a measure for the
transfer of photons from the incident right-moving mode(s) to
the left-moving mode(s). The reflection of light is generally
quantified by the reflection coefficient, which can be obtained
from reflection current J after dividing J by incident light
intensity and group velocity. We define reflection current [44]
as

J = iḡp〈(σ †b̃0 − b̃†
0σ )〉, (3)

where 〈. . . 〉 within the Schrödinger picture is an expectation
in the full states (e.g., |k+

p 〉 and |k+
p 〉 in Appendix A) of Hx

2
after the scattering of incident light by the 2LE, and the
operators in Eq. (3) are time independent. For the Heisenberg
picture used in coherent-state input, the expectation is carried
out in |Ep, ωp〉 but the operators in Eq. (3) are evolved to a
time which is much later after the scattering by 2LE takes
place. We denote reflection current for single-photon and two-
photon input, respectively, by J1 and J2, which are

J1 = vg

L
4�2

p

�2
p + 4�2

p

= vgI1p

4�2
p

�2
p + 4�2

p

, (4)

J2 = vgI2p

4�2
p

�2
p + 4�2

p

− (vgI1p)2
16�3

p(
�2

p + 4�2
p

)2 , (5)

where the relaxation rate �p = ḡ2
p/(2vg), and the detuning

�p = ωp − ω21. The reflection coefficient of a single photon
is R1p ≡ J1/vgI1p = |r1p|2 = 4�2

p/(�2
p + 4�2

p), which is one
for a resonant photon, i.e., �p = 0. The first part of J2 gives
an independent reflection of two individual photons by the
2LE, and the reflection coefficient of this process is the same
as R1p. The second part of J2 denotes the correlated reflection
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of two photons by 2LE, and its strength for resonant photons
decreases with increasing light-matter coupling ḡp. While the
probability of a photon inside the waveguide interacting with
the 2LE is an order of 1/L, that for two photons simultane-
ously interacting with the 2LE is an order of 1/L2. Therefore,
the correlated scattering of two photons is smaller than the
individual photon reflection by one order of L. While the
strength of correlated scattering of order 1/L2 grows with
the increasing number of incident photons, there also appear
higher-order terms of 1/Lm with m > 2 in correlated reflec-
tion of m photons for a finite-length waveguide.

The reflection current for a coherent-state input is found
to be

Jc = 2�p	
2
p

�2
p + 4�2

p + 2	2
p

,

(6)

= vgIcp

4�2
p

�2
p + 4�2

p

− (vgIcp)2
16�3

p(
�2

p + 4�2
p

)2 + O
(
	6

p

)
,

where 	p = ḡpEp/vg is the Rabi frequency of the incident
coherent state. Thus, Icp = 	2

p/(2vg�p). For a faint coherent-
state input [i.e., 	2

p/(2�2
p) � 1], we find R1p matches to

Rcp ≡ Jc/vgIcp when we drop 2	2
p from the denominator of

Jc in Eq. (6) in the limit 	p → 0. We further identify the cor-
related reflection contribution in J2 from Jc by expanding it
up to the order of 	4

p. The above analysis can be generalized to
relate the reflection current Jm for m number of Fock photons
with Jc through its expansion up to 	2m

p . We have extended
the Fock-state analysis to m = 3 to confirm the above gener-
alization. A weak coherent-state input is a superposition (with
the corresponding weights) of a vacuum state, a single-photon
Fock state, a two-photon Fock state, and so on. Therefore, J2

is not the same as Jc by expanding up to 	4
p in the second

line of Eq. (6), which is evident from the appearance of I1p

and I2p in J2. Nevertheless, our comparison or identification
using explicit formulas for these currents would help one to
figure out J2 by measuring Jc or vice versa.

III. KERR EFFECT

The nonlinear scattering of an input beam can be char-
acterized by the so-called optical Kerr effect, in which the
refractive index of any optical medium depends on the beam’s
intensity. In such a case, the refractive index n can be sepa-
rated into linear and nonlinear parts as [51] n = n0 + n̄2E2

p ,
where n0 is the weak-beam (or single-photon) linear part of
the refractive index, and n̄2 is a coefficient representing the
nonlinear refractive index. The linear and nonlinear refractive
indices are proportional to the linear and nonlinear suscep-
tibilities. For light scattering by a single emitter inside the
waveguide, we can relate the complex susceptibility of the
medium to the change in phase φp = φ(1)

p + φ(2)
p of coherently

scattered photons [51] where φ(1)
p is the linear change in phase

for a weak beam (or a single photon) and φ(2)
p is the nonlin-

ear (two-photon) contribution. Thus, we have �n = n − n0 ∝
φ(2)

p . In the regime of recent experimental interest with few
photons [3,5,6], we can write an approximate relation to de-
fine the Kerr coefficient K as φ(2)

p ≡ φp − φ(1)
p = KE2

p .

For a coherent-state input, φp can be computed from the
coherent transmission amplitude t̃p:

t̃p = 〈Ep, ωp|ãx>0(t )|Ep, ωp〉
〈Ep, ωp|ãx>0(t )|Ep, ωp〉gp=0

= 1 + 2iχ(t )

= 1 − 2i�p

	p
eiωp(t− x

vg
−t0 )〈Ep, ωp|σ

(
t − x

vg

)
|Ep, ωp〉, (7)

where 〈. . . 〉gp=0 denotes no coupling between the 2LE and
the input beam. Here, χ(t ) represents the optical susceptibil-
ity of the medium, which includes both linear and nonlinear
parts of the susceptibility. The phase φp associated with t̃p is
φp(t ) = tan−1{2Reχ(t )/[1 − 2Imχ(t )]}. We can get φ(1)

p from
φp by taking 	p → 0, and extract φ(2)

p at any arbitrary 	p

using φ(2)
p = φp|	p 
=0 − φp|	p→0. However, it is not clear how

to define such transmission amplitude for a two-photon Fock-
state input since the scattered states then have amplitudes of
two transmitted photons as well as one transmitted and one
reflected photons. Instead, we use the first-order correlation
function G(1)(x′, x; t ) = 〈ã†

x′ (t )ãx(t )〉 to obtain the change in
phase. For a coherent-state input, we find, at x > 0 and x′ < 0,
G(1)

c (x′, x; t ) = Icpeiωp(x−x′ )/vgt̃p, which shows G(1)(x′, x; t ) is
trivially related to t̃p. Thus, we can compute the coherent
change in phase of the incident light from G(1)(x′, x; t ) at
x > 0 and x′ < 0. Below, we demonstrate that G(1)(x′, x; t )
can also be applied to extract the phase change and the Kerr
effect for a multiphoton Fock-state input.

We get the following expressions of G(1)(x′, x; t ) at x > 0
and x′ < 0 for a coherent-state input and a two-photon Fock-
state input with wave vector kp (check Appendices A and C):

G(1)
c (x′, x; t ) = Icpeiωp(x−x′ )/vg

i�p

i�p − 2�p

×
(

1 − 8�2
pvgIcp

i�p
(
�2

p + 4�2
p

) + O
(
	4

p

))
, (8)

G(1)
2 (x′, x; t ) = I2peiωp(x−x′ )/vg

i�p

i�p − 2�p

×
(

1 − 8�2
pvgI1p

i�p
(
�2

p + 4�2
p

) + 2�pvgI1p

�2
p + 4�2

p

)
, (9)

respectively. The expansion in order of 	2
p in Eq. (8) is per-

formed for a weak coherent-state input. Here, i�p/(i�p −
2�p) ≡ t1p is the transmission amplitude of a single-photon or
a faint coherent-state input in the limit 	p → 0. Thus, the lin-
ear change in phase φ(1)

p = tan−1(−2�p/�p). The nonlinear
phase change φ(2)

p is obtained by the argument of the terms
within the round brackets in Eqs. (8) and (9). The second
term within the round brackets in Eq. (8) for a coherent state
matches that in Eq. (9) for Fock-state input if we replace Icp by
I1p. The appearance of I1p in Eq. (9) is comprehensible since
a single photon generates the nonlinear phase shift to another
for a two-photon input, and it also signals the nonlinear phase
shift is smaller than the linear one by a factor of 1/L.

Nevertheless, the third term in Eq. (9) does not have an
equivalent contribution in Eq. (8), and the term is due to the
intermediate amplitudes of the excited emitter with one pho-
ton in the waveguide (see Appendix A). Thus, we find that φ(2)

p
for a two-photon Fock-state input matches to that of a faint
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FIG. 2. Kerr vs cross-Kerr effect with Fock-state photons in
waveguide QED. The linear, nonlinear (Kerr), and total phase shifts
(φ (1)

p , φ (2)
p , φp) of two transmitted photons inside an open waveguide

side coupled to a 2LE. The cross-Kerr phase shift δφpd of a single-
photon probe beam by a single-photon drive beam, where both beams
interact with two allowed transitions of a ladder-type or a V -type
3LE. The parameters are vg = 1, �p/ω21 = �d/ω21 = 0.1, �d = 0,
and I1p = I1d = 0.0125ω21/vg.

coherent-state input (along with a replacement of Icp by I1p) if
we ignore the third term within the round brackets in Eq. (9).
The third term in Eq. (9) has a relatively small contribution
to φ(2)

p in comparison to the second term for the parameters
of validity of the expression. From Eq. (8), we find the Kerr
coefficient as K = (1/E2

p )tan−1{8�2
pvgIcp/[�p(�2

p + �2
p)]} ≈

8�2
p/[vg�p(�2

p + �2
p)] for 	2

p/(2�2
p) � 1 and |�p| � �p.

A side-coupled 2LE perfectly reflects a resonant single-
photon input, and the transmission phase shift φ(1)

p is then
not defined. However, two resonant photons cannot be simul-
taneously perfectly reflected by a single emitter. Therefore,
there will be a finite transmission for a two-photon resonant
input pulse, and total phase shift φp will be zero at �p = 0
due to the photon which passes the emitter without interact-
ing with it. At �p = 0±, we find φ(1)

p = ∓π/2 from φ(1)
p =

tan−1(−2�p/�p); thus we get φ(2)
p = ±π/2 as φp ≈ 0. Mag-

nitude of both φ(1)
p and φ(2)

p falls with increasing detuning
|�p|. The linearity of φ(2)

p with E2
p is true for small φ(2)

p at
|�p| � �p. We show the above features of φ(1)

p and φ(2)
p with

probe detuning �p for a two-photon Fock-state input in Fig. 2.

IV. CROSS-KERR EFFECT BY 3LE

Next, we consider a ladder-type 3LE with levels
|1〉, |2〉, and |3〉 as in Fig. 1(b). The energy difference be-
tween the excited states is h̄ω32; thus the energy of excited
level |3〉 is h̄(ω32 + ω21). Two allowed optical transitions be-
tween the levels |1〉 ↔ |2〉 and |2〉 ↔ |3〉 are side coupled to a
probe and a drive beam of frequency ωp and ωd , respectively.
The full Hamiltonian of 3LE, light beams, and their couplings

reads [46]

Hk
3

h̄
= ω21σ

†σ + (ω32 + ω21)μ†μ +
∑

k

[
vgk

∑
α=±

(a†
kα

akα

− b†
kα

bkα ) +gp(σ †βk+ + β
†
k+σ ) + gd (μ†βk− + β

†
k−μ)

]
,

(10)

where we define βk± = (ak± + bk±), and μ† ≡ |3〉〈2|, μ ≡
|2〉〈3|, ν† ≡ |1〉〈3|, and ν ≡ |3〉〈1|. Here, a†

kα
[b†

kα
] are cre-

ation operators for two different polarizations of right-moving
(left-moving) photon modes of the probe and drive beams.
The polarizations are denoted by subscript α = ±, and we
choose + and − polarization, respectively, for the probe and
drive beam. gp and gd are the respective coupling strength of
the probe and drive beam with the 3LE. We assume that both
the probe and drive input beams are incoming from the left
of the 3LE.

For both the probe and drive input beams in the coher-
ent states, the initial state at time t0 is |ψ〉 = |Ep, ωp〉 ⊗
|Ed , ωd〉, which satisfies ak+(t0)|ψ〉 = (

√
LEp/vg)δk,ωp/vg|ψ〉,

ak−(t0)|ψ〉 = (
√
LEd/vg)δk,ωd /vg|ψ〉, where Ep and Ed are

their respective (real) amplitude. Further, the intensity of
probe and drive beam are Icp = E2

p/v
2
g and Icd = E2

d /v2
g . For

Fock-state input, we consider the probe and drive beams con-
sisting of single photons as

|kp, kd〉 =
∫ L/2

−L/2

∫ L/2

−L/2

dx1dx2

L ei(kpx1+kd x2 )ã†
x1+ã†

x2−|ϕ〉,

where ãx±(t ) = ∑
k eikxak±(t )/

√
L and ωd = vgkd . The in-

tensity of the single-photon probe and drive beam are,
respectively, I1p = 1/L and I1d = 1/L.

A ladder-type 3LE made of a superconducting artificial
atom was used to demonstrate an effective interaction be-
tween two different light beams at the single-photon quantum
regime in Ref. [6]. Such an effective interaction is similar in
physical mechanism to the above-explored effective interac-
tion between photons of a single beam induced by the Kerr
nonlinearity of the medium (e.g., an emitter). This effective
coupling between multiple beams is known as the cross-Kerr
effect. The photon-photon interaction in a cross-Kerr medium
has been utilized to propose quantum nondemolition measure-
ment of a single propagating microwave photon with high
fidelity [52]. Extending the earlier discussion of the optical
Kerr effect, the cross-Kerr effect can be interpreted as modu-
lation of refractive index or a phase change of a probe beam
due to a drive beam. Thus, we write the total phase shift of
the probe beam in a cross-Kerr medium as φpd = φ(1)

p + δφpd ,
where φ(1)

p again indicates the linear change in phase of the
probe beam in the absence of the drive beam and δφpd captures
the change in phase of the probe beam in the presence of
the drive beam. In analogy to the Kerr coefficient, we de-
fine the cross-Kerr coefficient Kc using δφpd ≡ φpd |	d 
=0 −
φpd |	d =0 = KcE2

d , where 	d = ḡd Ed/vg is the Rabi frequency
of the coherent drive beam and ḡd = √

Lgd . We can find φpd
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of a probe beam in the presence and absence of a drive beam
using G(1)

+ (x′, x; t ) = 〈ã†
x′+(t )ãx+(t )〉 at x > 0 and x′ < 0.

To find the cross-Kerr effect in our system, we derive
the outgoing scattered states of the probe and drive beams
within the Schrödinger picture for the Fock-state inputs and
calculate the time evolution of operators of the full system
within the Heisenberg picture for the coherent-state inputs.
The first-order coherences G(1)

+ (x′, x; t ) at x > 0 and x′ <

0 for coherent-state [46] and Fock-state (see Appendix B)
inputs are

G(1)
+c(x′, x; t )

= Icpeiωp(x−x′ )/vg
i�p

i�p − 2�p

×
(

1 − 4�p�dvgIcd

i�p(i�p − 2�p)[i(�p + �d) − 2�d ]
+ O

(
	4

d

))
,

(11)

G(1)
+2(x′, x; t )

= I1peiωp(x−x′ )/vg
i�p

i�p − 2�p

×
(

1 − 4�p�dvgI1d

i�p(i�p − 2�p)[i(�p + �d ) − 2�d ]

)
, (12)

where we have expanded Eq. (11) in order of 	2
d for a

faint coherent-state drive beam. Here, �d = ωd − ω32, �d =
ḡ2

d/(2vg). We find from Eqs. (11) and (12) that the leading-
order contribution from a faint coherent-state drive beam
to δφpd matches that from a single-photon drive when we
identify Icd by I1d . From Eq. (11), we find the cross-Kerr coef-
ficient as Kc = 4�p�d [4�p�d − �p(�p + �d )]/{vg�p(�2

p +
�2

p)[(�p + �d )2 + �2
d ]} for |�p| � 	2

d/(2�d ). While the
cross-Kerr phase shift δφpd depends on both probe and drive
photon detuning, let us study it for �d = 0 when it shows a
relatively large value. The features of δφpd with �p are similar
to φ(2)

p for single photons as shown in Fig. 2. However, the
value of δφpd at �d = 0 in Fig. 2 is always smaller than φ(2)

p
at any finite �p for single photons (see Appendix B). Thus,
the Kerr nonlinearity K by a 2LE between two single photons

is relatively higher than the cross-Kerr nonlinearity Kc by a
ladder-type 3LE between them. Nevertheless, the value of
Kc depends on the type of 3LE, which is determined by the
optical transitions used for the drive and probe beams [46].
For example, we find δφpd for a single-photon probe and a
single-photon drive beam can be higher for a V -type 3LE
than a ladder-type 3LE as shown in Fig. 2. Further, δφpd

by a V -type 3LE can be slightly higher than φ(2)
p by a 2LE

between two Fock-state photons (see Fig. 2). In Appendix B,
we give an expression of G(1)

+2(x′, x; t ) for a V -type 3LE, and
we discuss the above comparison in detail there.

V. SUMMARY AND OUTLOOK

Our findings for comparing various linear and nonlinear
light scattering by a single emitter embedded in an open
waveguide for different light sources will benefit the rapid
progress of waveguide QED. By deriving explicit formulas
using different approaches, we show how to identify few-
photon reflection currents by measuring the reflection current
for a faint coherent-state input or vice versa. We further
develop a generalized description using the first-order corre-
lation function to extract coherent phase shifts of transmitted
light in waveguide QED systems for different light sources
at low intensity. The last achievement helps to compare and
contrast the Kerr and cross-Kerr effects in various waveguide
QED systems with few photons, which would be particularly
useful for selecting the right Kerr and cross-Kerr medium
for nonlinear quantum devices, e.g., nonlinear optical diodes
[17,22,44,48,49] and transistors [19]. Experiments with su-
perconducting circuits can verify our theoretical predictions
in this paper. In future studies, we aim to compare differ-
ent light sources for more complex waveguide QED setups,
such as with giant atoms, separated emitters, and topological
waveguides.
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APPENDIX A: SCATTERING OF SINGLE- AND TWO-PHOTON FOCK STATES BY A TWO-LEVEL EMITTER

The real-space Hamiltonian of a 2LE side coupled to a linear waveguide with right-moving and left-moving photon modes
[Eq. (2)] reads as

Hx
2

h̄
= ω21σ

†σ − ivg

∫ L/2

−L/2
dx(ã†

x∂xãx − b̃†
x∂xb̃x ) + ḡpσ

†(ã0 + b̃0) + ḡp(ã†
0 + b̃†

0)σ. (A1)

First, we consider a single-photon input state with wave vector kp and frequency ωp = vgkp from the left of the emitter:

|kp〉 = 1√
L

∫ L/2

−L/2
dx eikpxã†

x |ϕ〉, (A2)

which satisfies I1p = 〈kp|
∫

dk a†
kak|kp〉/L = 1/L. The full single-photon state |k+

p 〉 of the Hamiltonian is derived from Hx
2|k+

p 〉 =
h̄vgkp|k+

p 〉 using the initial conditions in Eq. (A2). It is given as

|k+
p 〉 =

∫ L/2

−L/2
dx[gR(x)ã†

x + gL(x)b̃†
x + δ(x)ẽpσ

†]|ϕ〉|g〉, (A3)
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the amplitudes of which are

gR(x) = eikpx

√
L

[θ (−x) + t1pθ (x)], gL(x) = e−ikpx

√
L

r1pθ (−x), ep = ḡp

�p + 2i�p
, t1p = �p

�p + 2i�p
. (A4)

Here, t1p and r1p = t1p − 1 are, respectively, single-photon transmission and reflection amplitude, and the amplitude of the
emitter’s excitation is ẽp = ep/

√
L.

The normalized two-photon incident Fock state with degenerate wave vectors kp = (kp, kp) in the right-moving channels
reads as

|kp〉 = 1

L

∫ L/2

−L/2

∫ L/2

−L/2
dx1dx2 eikp(x1+x2 ) 1√

2
ã†

x1
ã†

x2
|ϕ〉, (A5)

which has intensity I2p = 2/L. The two-photon state of the Hamiltonian including the scattered and incident parts is

|k+
p 〉 =

∫ L/2

−L/2

∫ L/2

−L/2
dx1dx2

[
gRR(x1, x2)

1√
2

ã†
x1

ã†
x2

+ gRL(x1, x2)ã†
x1

b̃†
x2

+ gLL(x1, x2)
1√
2

b̃†
x1

b̃†
x2

+ [eR(x1)ã†
x1

+ eL(x1)b̃†
x1

]δ(x2)σ †

]
|ϕ〉|g〉, (A6)

the amplitudes of which can be found by solving a set of linear, coupled, inhomogeneous different equations obtained from
Hx

2|k+
p 〉 = 2h̄vgkp|k+

p 〉 with the initial conditions set by Eq. (A5). These amplitudes are

gRR(x1, x2) = gR(x1)gR(x2) +
[

2�p

vg
ẽ2

p ei(2vgkp−ω21+2i�p)x2/vgei(ω21−2i�p)x1/vgθ (x2 − x1)θ (x1) + (x1 ↔ x2)

]
,

gRL(x1, x2) =
√

2gR(x1)gL(x2) +
[

2
√

2�p

vg
ẽ2

p e−i(2vgkp−ω21+2i�p)x2/vgei(ω21−2i�p)x1/vgθ (|x2| − x1)θ (x1)θ (−x2) + (x1 ↔ x2)

]
,

gLL(x1, x2) = gL(x1)gL(x2) +
[

2�p

vg
ẽ2

p e−i(2vgkp−ω21+2i�p)x2/vge−i(ω21−2i�p)x1/vgθ (|x2 − x1|)θ (−x1)θ (−x2) + (x1 ↔ x2)

]
,

eR(x) =
√

2 gR(x)ẽp +
√

2iḡp

vg
ẽ2

p ei(2vgkp−ω21+2i�p)x/vgθ (x),

eL(x) =
√

2 gL(x)ẽp +
√

2iḡp

vg
ẽ2

p e−i(2vgkp−ω21+2i�p)x/vgθ (−x), (A7)

where θ (x) is the Heaviside step function.

1. First-order coherence

Using the single-photon and two-photon states of the Hamiltonian, we can find the first-order coherence G(1)(x′, x; t ) of the
transmitted photon(s) for incident photon(s) in the right-moving channel(s). We get for the single-photon case with x > 0, x′ < 0

G(1)
1 (x′, x; t ) = 〈k+

p |ã†
x′ ãx|k+

p 〉 = I1pt1peikp(x−x′ ) ≡ I1p
i�p

i�p − 2�p
eikp(x−x′ ), (A8)

which gives the linear change in phase φ(1)
p = tan−1(−2�p/�p). For two photons, we find again for x > 0, x′ < 0

G(1)
2 (x′, x; t ) = 〈k+

p |ã†
x′ ãx|k+

p 〉 =
∫ L/2

−L/2
dy[2g∗

RR(x′, y)gRR(x, y) + g∗
RL(x′, y)gRL (x, y)] + e∗

R(x′)eR(x). (A9)
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Below we give each term in the above relation explicitly to show how to get the final result. We find

2
∫ L/2

−L/2
dy g∗

RR(x′, y)gRR(x, y) = 1

Leikp(x−x′ )
[

(1 + |t1p|2)t1p − 4

L r1pt∗
1pe2

p + 2

L r1pt∗
1pe2

p(ei(�p+2i�p)x/vg + e−i(�p+2i�p)(x−L/2)/vg )

]
,

(A10)∫ L/2

−L/2
dy g∗

RL(x′, y)gRL (x, y) = 1

Leikp(x−x′ )
[
|r1p|2t1p − 2

L |r1p|2e2
p(1 − e−i(�p+2i�p)(x−L/2)/vg ) + 2

L |r1p|2e2
p(ei(�p+2i�p)x/vg − 1)

]
,

(A11)

e∗
R(x′)eR(x) = 2

L2
|ep|2eikp(x−x′ )[t1p − r1pei(�p+2i�p)x/vg]. (A12)

We add Eqs. (A10)–(A12) to find that the terms with a factor ei(�p+2i�p)x/vg disappear. The terms with a factor e−i(�p+2i�p)(x−L/2)/vg

also vanish when L � vg/�p. Thus, we finally get G(1)
2 (x′, x; t ) as in the main text:

G(1)
2 (x′, x; t ) = 1

Leikp(x−x′ )
[

(1 + |t1p|2 + |r1p|2)t1p − 4

L r1pt∗
1pe2

p − 4

L |r1p|2e2
p + 2

L |ep|2t1p

]

= I2p
i�p

i�p − 2�p
eikp(x−x′ )

[
1 − 8�2

pvgI1p

i�p
(
�2

p + 4�2
p

) + 2�pvgI1p

�2
p + 4�2

p

]
. (A13)

2. Reflection current

We evaluate the expectation of the reflection current operator [44] in the full single-photon and two-photon states. We remind
the reader that the contributions in reflection current arise solely from scattered photons by the emitter. We find

J1 = iḡp〈k+
p |(σ †b̃0 − b̃†

0σ )|k+
p 〉 = vg

L |r1p|2,

J2 = iḡp〈k+
p |(σ †b̃0 − b̃†

0σ )|k+
p 〉 = 2Re

{
iḡp

∫ L/2

−L/2
dx [e∗

R(x)gRL(x, 0) +
√

2e∗
L(x)gLL(x, 0)]

}
. (A14)

Each part of the two-photon reflection current is given as following:

iḡp

∫ L/2

−L/2
dxe∗

R(x)gRL(x, 0) = iḡp

2L e∗
pr1p + �p

L |t1p|2|ep|2 + �p

L2
|ep|4(1 − e−2�pL/vg )

+2�p

L2

[
e3

pe∗
pt∗

1p(ei(�p+2i�p)L/(2vg) − 1) + e∗3
p ept1p(ei(−�p+2i�p)L/(2vg) − 1)

]
, (A15)

iḡp

∫ L/2

−L/2
dx

√
2e∗

L(x)gLL(x, 0) = iḡp

2L |r1p|2e∗
pr1p + �p

L2
|ep|4(1 − e−2�pL/vg ) + 2�pvg

iL2ḡp

[
r2

1pe∗3
p (1 − ei(−�p+2i�p)L/(2vg) )

− r∗2
1pe3

p(1 − ei(�p+2i�p)L/(2vg) )
]
. (A16)

In the limit of L � vg/�p, we find the following by adding Eqs. (A15) and (A16):

J2 = 2vg

L |r1p|2 − 16v2
g�

3
p

L2
(
�2

p + 4�2
p

)2 = 2

L
4vg�

2
p

�2
p + 4�2

p

− 1

L2

16v2
g�

3
p(

�2
p + 4�2

p

)2 . (A17)

APPENDIX B: SCATTERING OF PROBE AND DRIVE SINGLE-PHOTON FOCK STATES
BY A LADDER-TYPE THREE-LEVEL EMITTER

We consider a ladder-type 3LE with two allowed transitions being side coupled to a linear waveguide carrying right-moving
and left-moving photon modes of a probe and a drive beam. The real-space Hamiltonian [46] is given by

Hx
3

h̄
= ω21σ

†σ + (ω32 + ω21)μ†μ − ivg

∫ L/2

−L/2
dx

∑
α=±

(ã†
xα∂xãxα − b̃†

xα∂xb̃xα ) + ḡpσ
†(ã0+ + b̃0+) + ḡp(ã†

0+ + b̃†
0+)σ

+ ḡdμ
†(ã0− + b̃0−) + ḡd (ã†

0− + b̃†
0−)μ, (B1)

where ḡd = √
Lgd . Here, ã†

xα (t ) = ∫
dk e−ikxa†

kα
(t )/

√
L and b̃†

xα (t ) = ∫
dk e−ikxb†

kα
(t )/

√
L are creation operators at position

x ∈ [−L/2,L/2] of right-moving and left-moving photon modes of the probe (α = +) and drive (α = −) beams.
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The input state of a single-photon probe and a single-photon drive beam with respective wave vector kp and kd (with
corresponding frequencies ωp = vgkp and ωd = vgkd ) in the right-moving channel is

|kp, kd〉 = 1

L

∫ L/2

−L/2

∫ L/2

−L/2
dx1dx2 ei(kpx1+kd x2 )ã†

x1+ã†
x2−|ϕ〉, (B2)

which satisfies I1p = 〈kp, kd |
∫

dk a†
k+ak+|kp, kd〉/L = 1/L and I1d = 〈kp, kd |

∫
dk a†

k−ak−|kp, kd〉/L = 1/L.
The full two-photon state of the Hamiltonian Hx

3 including the scattered and incident photons is

|kp, k+
d 〉 =

∫ L/2

−L/2

∫ L/2

−L/2
dx1dx2{g̃RR(x1, x2)ã†

x1+ã†
x2− + g̃RL(x1, x2)ã†

x1+b̃†
x2− + g̃LR(x1, x2)b̃†

x1+ã†
x2−

+ g̃LL(x1, x2)b̃†
x1+b̃†

x2− + [ẽR(x2)ã†
x2− + ẽL(x2)b̃†

x2−]δ(x1)σ †}|ϕ〉|g〉, (B3)

the amplitudes of which can be found by solving a set of linear, coupled, inhomogeneous different equations obtained from
Hx

3|kp, k+
d 〉 = h̄vg(kp + kd )|kp, k+

d 〉 with the initial conditions set by Eq. (B2). These amplitudes are

g̃RR(x1, x2) = gR(x1)
eikd x2

√
L

−
[

2
√

�p�d

vg
ẽpẽd ei(kpx1+kd x2 )ei(�p+2i�p)(x2−x1 )/vgθ (x2 − x1)θ (x1)

]
,

g̃LR(x1, x2) = gL(x1)
eikd x2

√
L

−
[

2
√

�p�d

vg
ẽpẽd ei(−kpx1+kd x2 )ei(�p+2i�p)(x2+x1 )/vgθ (x2 + x1)θ (−x1)

]
,

g̃RL(x1, x2) = −2
√

�p�d

vg
ẽpẽd ei(kpx1−kd x2 )e−i(�p+2i�p)(x2+x1 )/vgθ (−x2 − x1)θ (x1),

g̃LL(x1, x2) = −2
√

�p�d

vg
ẽpẽd e−i(kpx1+kd x2 )e−i(�p+2i�p)(x2−x1 )/vgθ (−x2 + x1)θ (−x1),

ẽR(x) = eikd x

√
L

ẽp − iḡd

vg
ẽpẽd ei(vg(kp+kd )−ω21+2i�p)x/vgθ (x),

ẽL(x) = − iḡd

vg
ẽpẽd e−i(vg(kp+kd )−ω21+2i�p)x/vgθ (−x), ed = ḡd

�p + �d + 2i�d
, (B4)

where �d = ḡ2
d/(2vg), �d = ωd − ω32, and ẽd = ed/

√
L.

Next, we calculate the first-order coherence G(1)
+2(x′, x; t ) of the transmitted probe photon for incident probe and drive photons

in the right-moving channels. We find for x > 0, x′ < 0

G(1)
+2(x′, x; t ) = 〈kp, k+

d |ã†
x′+ãx+|kp, k+

d 〉 =
∫ L/2

−L/2
dy[g̃∗

RR(x′, y)g̃RR(x, y) + g̃∗
RL(x′, y)g̃RL (x, y)]. (B5)

We find
∫ L/2
−L/2 dy g̃∗

RL(x′, y)g̃RL (x, y) = 0, and∫ L/2

−L/2
dy g̃∗

RR(x′, y)g̃RR(x, y) = 1

Leikp(x−x′ )
[

t1p − ig̃d

vg
ed ẽ2

p(1 − e−i(�p+2i�p)(x−L/2)/vg )

]
. (B6)

The term with a factor e−i(�p+2i�p)(x−L/2)/vg in Eq. (B6) vanishes when L � vg/�p. Thus, we finally get G(1)
+2(x′, x; t ) as

G(1)
+2(x′, x; t ) = I1peiωp(x−x′ )/vg

i�p

i�p − 2�p

(
1 − 4�p�dvgI1d

i�p(i�p − 2�p)(i(�p + �d ) − 2�d )

)
. (B7)

Next, we compare the cross-Kerr phase shift δφpd of a probe photon due to a drive photon with the Kerr phase shift φ(2)
p between

two Fock-state photons. For this, we write Eq. (B7) in the limit of �d = 0, �d = �p, and I1d = I1p:

G(1)
+2(x′, x; t ) = I1peiωp(x−x′ )/vg

i�p

i�p − 2�p

(
1 − 4�2

pvgI1p

i�p(i�p − 2�p)2

)
. (B8)

The second term within the round brackets in Eq. (B8) is a bit similar to the second term within the round brackets in Eq. (A13)
except a half-factor difference in the numerator and the appearance of (i�p − 2�p)2 instead of |i�p − 2�p|2 in the denominator.

The first-order coherence G(1)
+2(x′, x; t ) of the transmitted probe photon for incident probe and drive single-photon Fock state

in the right-moving channels for a V -type 3LE (see Ref. [46] for a Hamiltonian of the system) is

G(1)
+2(x′, x; t ) = I1peiωp(x−x′ )/vg

i�p

i�p − 2�p

(
1 − 4�p�dvgI1d [i(�p + �d ) − 2(�p + �d )]

i�p(i�p − 2�p)
(
�2

d + 4�2
d

) + 2�dvgI1d

�2
d + 4�2

d

)
. (B9)
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The total phase shift φpd for a single-photon probe beam by a V -type 3LE in the presence of a single-photon drive beam is
exactly the same as total phase shift φp by a 2LE for a two-photon probe beam when we set �d = �p, �d = �p, and I1d = I1p.
Nevertheless, we can separately tune �p and �d in a V -type 3LE since the probe and drive beams are coupled to two different
transitions. The freedom to separately control �p and �d can give rise to a higher value of cross-Kerr phase shift δφpd by a
V -type 3LE for a single probe and drive photon than the Kerr phase shift φ(2)

p by a 2LE for two probe photons. In Fig. 2, we
show a comparison between δφpd by a V -type and a ladder-type 3LE and φ(2)

p by a 2LE for two input photons in the Fock state.

APPENDIX C: SCATTERING OF A COHERENT-STATE INPUT BY A TWO-LEVEL EMITTER

The momentum-space Hamiltonian of a 2LE side coupled to a waveguide with linearized energy-momentum dispersion of
photons [Eq. (1)] is

Hk
2

h̄
= ω21σ

†σ +
∑

k

[vgk(a†
kak − b†

kbk ) + gpσ
†(ak + bk ) + gp(a†

k + b†
k )σ ]. (C1)

We first write the Heisenberg equations for different operators appearing in the above Hamiltonian. Then, we formally solve
these equations for the photon field operators as

ak (t ) = e−ivgkt ak (t0) − igp

∫ t

t0

dt ′e−ivgk(t−t ′ )σ (t ′), (C2)

bk (t ) = eivgkt bk (t0) − igp

∫ t

t0

dt ′eivgk(t−t ′ )σ (t ′), (C3)

where ak (t0) and bk (t0) are initial photon fields at t = t0 before the fields interacting with the 2LE. We plug ak (t ) and bk (t ) in
Eqs. (C2) and (C3) in the Heisenberg equations of the emitter operators and rewrite these equations as

dσ (t )

dt
= (−iω21 − 2�p)σ (t ) − igp[1 − 2σ †(t )σ (t )][ηa(t ) + ηb(t )], (C4)

dσ †(t )σ (t )

dt
= −4�pσ

†(t )σ (t ) − igpσ
†(t )[ηa(t ) + ηb(t )] + igp[η†

a(t ) + η
†
b(t )]σ (t ), (C5)

where ηa(t ) = ∑
k e−ivgk(t−t0 )ak (t0) and ηb(t ) = ∑

k eivgk(t−t0 )bk (t0). For a coherent-state input |Ep, ωp〉 from the left of the 2LE,
we have ak (t0)|Ep, ωp〉 = (

√
LEp/vg)δk,ωp/vg|Ep, ωp〉 and bk (t0)|Ep, ωp〉 = 0, where δk,ωp/vg is a Kronecker delta function. We

take expectation of the operators in Eqs. (C4) and (C5) in |Ep, ωp〉, and rewrite these equations as

dS1(t )

dt
= (i�p − 2�p)S1(t ) − i	p + 2i	pS2(t ), (C6)

dS2(t )

dt
= −4�pS2(t ) + i	p[S1(t ) − S∗

1 (t )], (C7)

where 	p = ḡpEp/vg, S1(t ) = 〈Ep, ωp|σ (t )|Ep, ωp〉eiωp(t−t0 ), and S2(t ) = 〈Ep, ωp|σ †(t )σ (t )|Ep, ωp〉. The coupled differential
equations of S1(t ),S∗

1 (t ), and S2(t ) can be solved for some initial conditions of these variables, and the long-time steady-state
solutions are independent of the initial conditions for the 2LE. We find at steady state

S1(t → ∞) = i	p(−i�p − 2�p)

�2
p + 4�2

p + 2	2
p

, S2(t → ∞) = 	2
p

�2
p + 4�2

p + 2	2
p

,

which can be used to determine the reflection current Jc at steady state for a coherent-state input:

Jc = iḡp〈Ep, ωp|[σ †(t )b̃0(t ) − b̃†
0(t )σ (t )]|Ep, ωp〉

= 2�pS2(t → ∞) = 2�p	
2
p

�2
p + 4�2

p + 2	2
p

= 	2
p

2vg�p

4vg�
2
p

�2
p + 4�2

p

−
(

	2
p

2vg�p

)2 16v2
g�

3
p(

�2
p + 4�2

p

)2 + O
(
	6

p

)
, (C8)

where the last expansion in the order of 	2
p is obtained for a weak coherent-state input, i.e., 	2

p/(2�2
p) � 1. We can further

identify Icp = 〈Ep, ωp|
∑

k a†
k (t0)ak (t0)|Ep, ωp〉/L = E2

p/v
2
g = 	2

p/(2vg�p).
Taking Fourier transform to real space, we get from Eq. (C2)

ãx(t ) = 1√
L

ηa

(
t − x

vg

)
− iḡp

vg
σ

(
t − x

vg

)
θ (x)θ (vgt − x), (C9)
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where we set t0 = 0. Thus, we find for the first-order coherence

G(1)
c (x′, x; t ) = 〈Ep, ωp|ã†

x′ (t )ãx(t )|Ep, ωp〉

= Icpeiωp(x−x′ )/vg + ḡ2
p

v2
g

〈Ep, ωp|σ †

(
t − x′

vg

)
σ

(
t − x

vg

)
|Ep, ωp〉θ (x)θ (x′)θ (vgt − x′)θ (vgt − x)

− iḡpEp

v2
g

〈Ep, ωp|σ
(

t − x

vg

)
|Ep, ωp〉eiωp(t−x′/vg)θ (x)θ (vgt − x)

+ iḡpEp

v2
g

〈Ep, ωp|σ †

(
t − x′

vg

)
|Ep, ωp〉e−iωp(t−x/vg)θ (x′)θ (vgt − x′). (C10)

For x′ < 0, x > 0, the above expression becomes

G(1)
c (x′ < 0, x > 0; t ) = E2

p

v2
g

eiωp(x−x′ )/vg

[
1 − 2i�p

	p
S1

(
t − x

vg

)]
. (C11)

At very long time when t � x/vg, we can replace S1(t − x/vg) by S1(t → ∞) to obtain

G(1)
c (x′ < 0, x > 0; t ) = Icpeiωp(x−x′ )/vg

�2
p − 2i�p�p + 2	2

p

�2
p + 4�2

p + 2	2
p

= Icpeiωp(x−x′ )/vg
i�p

i�p − 2�p

(
1 − 8vg�

2
pIcp

i�p
(
�2

p + 4�2
p

) + O
(
	4

p

))
, (C12)

where we again employ an expansion in 	2
p for a weak coherent-state input.
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