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Realization of nonreciprocal transmission with low insertion loss and high contrast simultaneously is in great
demand for one-way optical communication and information processing. Here we propose a generic approach to
achieving perfect nonreciprocity that allows lossless unidirectional transmission by engineering energy losses.
The loss of the intermediate mode induces a phase lag impinging on the indirect channel for energy transmission,
which does not depend on the energy transmission direction. When the direct transmission channel coexists with
the indirect lossy transmission channel, the dual-channel interference can be tuned to be destructive simultane-
ously for backward transmission from the rightmost mode to the leftmost mode, and for forward transmission
from the leftmost mode to the intermediate mode. The former interference outcome corresponds to 100%
nonreciprocity contrast, and the latter guarantees zero insertion loss for forward transmission. Additionally,
our scheme also allows a nonreciprocity response over a wide bandwidth by increasing the losses while keeping
perfect nonreciprocity at resonance. The robustness against loss indicates that our scheme is advantageous in the
implementation of nonreciprocal optical devices with high performance.
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I. INTRODUCTION

As a key ingredient in optical information processing,
optical nonreciprocity that allows optical fields to only prop-
agate in one way offers an efficient means to route the signal
unidirectionally and protect the source from backscattering
dissipation [1–3]. The most conventional approach to non-
reciprocity generation is based on magneto-optical effects to
break the Lorentz reciprocity theorem [4–7]. However, due
to the use of an external magnetic field and material losses,
it is challenging to use magnetic-based schemes to integrate
nonreciprocal devices on chip with low insertion loss [8].
To overcome this challenge, various magnetic-free protocols
have been proposed, such as methods based on spatiotemporal
modulation of system permittivity [9–14], optical nonlinear-
ity [15,16], optomechanical interactions [17–24], the Sagnac
effect induced by spinning resonators [25,26], and atomic
thermal motion [27–29]. However, nonreciprocal transmis-
sion with low insertion loss and high contrast simultaneously
has remained elusive due to reasons such as the fundamental
limitation of the maximum forward transmission for nonlin-
ear single-resonator devices [30], stringent requirements of
system parameters for spinning resonators [25], and so on. Al-
though recent schemes based on the use of cascaded nonlinear
resonators [31] or feedback control [32] have been applied to
improve the performance of the nonreciprocal transmission,
achieving perfect nonreciprocity that allows lossless field
transmission one way (i.e., zero insertion loss) and blocks
field transmission in the opposite direction (i.e., 100% con-
trast) simultaneously is still an outstanding challenge.

*ycliu@tsinghua.edu.cn

Here we propose an efficient scheme for generating per-
fect nonreciprocity by engineering energy losses. Our scheme
works for generic bosonic oscillators that can be implemented
in a wider range of systems, such as optical cavities [33],
exciton polaritons [34], micromechanical oscillators [35–37],
and ensembles of atoms [38]. The essential mechanism of our
scheme is that completely opposite interference outcomes for
forward and backward energy transmission can be achieved
simultaneously. This hinges on the dual-channel transmission,
wherein the energy can be transferred either from the direct
coherent coupling channel or from the indirect lossy coupling
channel implemented by an intermediate mode with nonzero
energy loss. Based on the scheme proposed in Ref. [39], the
phase lag induced by the energy loss is independent of the
transmission direction. When more than one lossy coupling
channel exists, the interference outcomes between different
lossy coupling channels can be tuned to be different for the
forward and backward directions, leading to nonreciprocal
transmission. Due to the existence of the energy losses in the
two lossy coupling channels, the unidirectional transmission
efficiency can only be maximized to 68.6% by optimizing
the system parameters. However, when one lossy coupling
channel is replaced by a direct coherent coupling channel,
simultaneous destructive interference for backward (forward)
energy transmission from the rightmost (leftmost) mode to
the leftmost (rightmost) mode, and for forward (backward)
energy transmission from the leftmost (rightmost) mode to the
intermediate mode can be obtained. The former interference
outcome corresponds to the unidirectional forward (back-
ward) energy transmission with 100% nonreciprocity contrast,
and the latter ensures the complete forward (backward) energy
transmission to the rightmost (leftmost) mode, indicating zero
forward (backward) insertion loss. Additionally, we find that
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FIG. 1. (a) A system composed of two resonance modes a1 and
a2 coupled with a lossy mode b. The coupling constant is denoted
by gl (gr). a1 and a2 are also coupled with each other directly. The
coupling coefficient is represented as the constant ga with a phase
factor eiθ . The energy decay rates of the resonance modes a1, a2, and
b are represented as γ1, γ2, and κ , respectively. (b) and (c) Energy-
domain illustration of dual-channel interference for implementing
perfect nonreciprocity. The solid horizontal lines represent the res-
onance frequencies of the modes, and the dashed horizontal lines
are respective detunings. Engineering the interference of the two
channels for backward energy transmission (b), i.e., for direct chan-
nel a2 → a1 and indirect channel a2 → b → a1, to be destructive,
zero energy occupation on a1 warrants that input from a2 cannot
be transmitted to a1, indicating the blockade of backward energy
transmission. Applying this interference mechanism to the forward
energy transmission (c), when the interference between the direct
channel a1 → b and indirect channel a1 → a2 → b is tuned to be
destructive, zero energy occupation on b makes it transparent for
forward transmission (a1 → a2), indicating zero insertion loss for
forward transmission. Hence lossless unidirectional forward energy
transmission can be implemented by combining the interference
mechanism depicted in (b) and (c).

the nonreciprocity bandwidth can be broadened by increasing
the losses of the resonant modes while keeping the perfect
nonreciprocity at resonance.

This paper is organized as follows: In Sec. II, we describe
the theoretical model for a system composed of coupled res-
onance modes with energy losses, and then, in Sec. III, we
demonstrate how to generate perfect nonreciprocity by engi-
neering losses and dual-channel interference. In Sec. IV, we
show that the perfect nonreciprocity realized in our scheme
is robust against energy loss and calculate the nonreciprocity
bandwidth. Finally, we summarize our results and discuss
possible experimental implementations in Sec. V.

II. MODEL

As illustrated in Fig. 1, we consider a generic system
composed of two resonance modes a1 and a2 with direct in-

teraction coupled to a lossy mode b. The system Hamiltonian
is given as (h̄ = 1)

Heff = −�1a†
1a1 − �2a†

2a2 − δb†b

+ (gla1b† + gra2b† + gae−iθ a†
1a2) + H.c., (1)

where �1, �2, and δ are the detunings with respect to the
resonance frequencies of each mode under the rotating frame.
The direct coupling between a1 and a2 contains a nonzero
coupling phase θ , which is typically implemented by using
nonlinearity and time modulation (see details in Appendix A).
Defining a vector �v = (a1, b, a2)T in terms of the annihilation
operators of the modes, the Langevin equations of �v can
be written as (d�v/dt ) = M�v + √

�ex�vin + √
�0 �fin, where the

coefficient matrix is

M =
⎛
⎝i�1 − γ1/2 −igl −igae−iθ

−igl iδ − κ/2 −igr

−igaeiθ −igr i�2 − γ2/2

⎞
⎠. (2)

�vin = (ain
1 , bin, ain

2 )T is the input field vector, with its associate
decay rate

√
�ex = Diag[

√
γ ex

1 ,
√

κex,
√

γ ex
2 ]. �fin accounts

for the additional vacuum noise fields due to the intrinsic

dissipation rate
√

�0 = Diag[
√

γ
(0)

1 ,
√

κ0,

√
γ

(0)
2 ]. Using the

Fourier transform convention �v(t ) = ∫
dωe−iωt �v(ω)/(

√
2π ),

the steady-state solution of the field amplitude can be ex-
pressed in terms of the input field operators as

a1(ω) ≈ √
γ1A1ain

1 + √
γ2A2ain

2 ,

b1(ω) ≈ √
γ1B1ain

1 + √
γ2B2ain

2 ,

a2(ω) ≈ √
γ1C1ain

1 + √
γ2C2ain

2 , (3)

where we ignore the intrinsic dissipation (γi = γ ex
i + γ

(0)
i ≈

γ ex
i , κ = κex + κ0 ≈ κex) and assume the input fields coupled

with the modes a1 and a2, i.e., bin = 0. The coefficients Ai,
Bi, and Ci, i ∈ {1, 2}, are functions of the coupling constants
(gl , gr, ga), phase (θ ), decay rates (γ1, γ2, κ), and detun-
ings (�1, �2, δ) (the detailed expression can be found in
Appendix B).

Plugging Eq. (3) into the input-output relation �vout = �vin −√
�ex�v, we can derive the forward (a1 → a2) and backward

(a1 ← a2) energy transmission efficiencies as (see derivation
in Appendix B)

T→(ω) = ∣∣〈aout
2 /ain

1

〉∣∣2 = γ1γ2|C1|2,
T←(ω) = ∣∣〈aout

1 /ain
2

〉∣∣2 = γ1γ2|A2|2, (4)

where

C1 ∝ glgr + ga|
b|ei(θ+φb),

A2 ∝ glgr + ga|
b|e−i(θ−φb). (5)

Here, 
b = δ + ω + iκ/2 is the effective resonance frequency
of the lossy mode b. Equation (4) and (5) indicate that the
energy input from the port ain

1 (ain
2 ) can be transferred to a2

(a1) along two possible channels due to the coexistence of the
direct coupling and indirect coupling mediated by the lossy
mode b. Besides the nonzero coupling phase θ , a phase lag
φb = arg(
b) induced by the nonzero energy loss (κ 	= 0) of b
will be added on the indirect channel for energy transmission
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(a1 ↔ b ↔ a2). Since φb is independent of the transmission
direction, the direct and indirect paths will interfere differently
for forward and backward transmission, leading to unequal
transmission efficiencies T→(ω) 	= T←(ω), i.e., nonreciprocal
energy transmission.

Zero transmission efficiency corresponds to tuning the cou-
pling strengths and phases to satisfy the conditions

glgr = ga|
b|, θ ∓ φb = (2k + 1)π,

θ 	= pπ, φb 	= qπ, (6)

where k, p, and q are integers. In this case, unidirectional
forward (−) or backward (+) transmission can be achieved by
engineering the destructive interference of the two channels
to block the energy transmission from the opposite direction.
As shown in Fig. 1(b), unidirectional forward transmission
is implemented as the destructive interference of the direct
channel (a1 ← a2) and indirect channel (a1 ← b ← a2)
blocks the energy transfer from a2 to a1.

III. PERFECT NONRECIPROCITY

Besides the blockade of energy transmission in one di-
rection, perfect nonreciprocity also requires that the input
field from the opposite direction can be transmitted to the
output without any insertion loss. This indicates that achiev-
ing perfect nonreciprocity corresponds to establishing an
effective unidirectional lossless channel for energy transmis-
sion to guarantee T→ = 1, T← = 0 (or T→ = 0, T← = 1). To
achieve lossless forward transmission (T→ = 1), as illustrated
in Fig. 1(c), we engineer the interference of the two possible
channels for energy transmission from the input mode to the
intermediate mode (a1 → b and a1 → a2 → b) to be destruc-
tive. This leads to zero energy occupation on b for forward
transmission, which means that the intermediate mode b is
effectively transparent for forward transmission. From Eq. (3),
this corresponds to tuning B1 ∝ gagreiθ + gl |
(2)

a |eiφ(2)
a to be

0. This can be satisfied by matching the coupling strengths and
effective resonance frequency of a2 as gagr = gl |
(2)

a |, and
the phases should be tuned as θ − φ(2)

a = (2k + 1)π , with θ 	=
pπ and φ(2)

a 	= qπ , where k, p, and q are integers. Combining
with the condition of the unidirectional forward transmission
[Eq. (6)], we can finally solve T→ = 1 and T← = 0 simulta-
neously and get the condition of perfect nonreciprocity (see
details in Appendix C)

gl =
√∣∣
(1)

a 
b

∣∣, gr =
√∣∣
(2)

a 
b

∣∣,
ga =

√∣∣
(1)
a 


(2)
a

∣∣, θ ∓ φ = (2k + 1)π,

θ 	= pπ, φ 	= qπ, (7)

where k, p, and q are integers. Here − (+) corresponds to the
condition of perfect forward (backward) nonreciprocity. The
loss phases should satisfy φ = φ(i)

a = φb, i ∈ {1, 2}, which can
be expressed in terms of the detunings and decay rates of the
resonance modes as

γ1

�1 + ω
= γ2

�2 + ω
= κ

δ + ω
. (8)

Figure 2(a) presents the transmission efficiencies T↔ as
functions of the ratio of the coupling strengths (ga/g), where
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FIG. 2. (a) Forward transmission efficiency (T→, blue solid
curve) at the resonant point (ω = 0) as a function of the coupling
strength ratio ga/g, where gl = gr = g is assumed for simplicity. The
backward transmission efficiency under the condition of unidirec-
tional forward transmission [Eq. (6)] is 0 (T←, red dotted curve).
(b) The corresponding insertion loss for unidirectional forward trans-
mission and nonreciprocity contrast as a function of the coupling
strength ratio ga/g. (c) The transmission efficiencies (T→, blue solid
curve; T←, red dotted curve) at the resonant point (ω = 0) as func-
tions of the coupling phase θ , where the coupling strengths are
chosen to fulfill the condition given in Eq (7). (d) The corresponding
energy occupation of the intermediate mode b at the resonant point
(ω = 0) as a function of the coupling phase θ when considering
input from a1 (blue solid curve) and a2 (red dotted curve). The left
parameters are fixed as γ1/2 = κ , �1/2 = δ = 0.

we have assumed g = gl = gr for simplicity. Under the con-
dition of unidirectional forward transmission [Eq. (6)], we
obtain T←(ω) = 0. This indicates that the nonreciprocity
contrast evaluated as the difference between forward and
backward transmission efficiencies reaches 100% for arbi-
trary coupling strength ratio ga/g as shown in Fig. 2(b). By
tuning the coupling strengths to fulfill the perfect forward
nonreciprocity condition [Eq. (7)], i.e., ga/g = 1, the for-
ward transmission efficiency reaches its maximum T→ = 1,
indicating that the system exhibits zero insertion loss for uni-
directional forward transmission [Fig. 2(b)].

The interference mechanism behind perfect nonreciproc-
ity realization is demonstrated in Figs. 2(c) and 2(d). When
the coupling strengths are tuned to satisfy the condition of
perfect nonreciprocity [Eq. (7)], the transmission efficiencies
are solely determined by the direct coupling phase θ for
fixed loss phase φ = π/2. When tuning the phases to satisfy
θ = φ − π = −π/2, T→ = 1 (blue solid curve) and T← = 0
(red dotted curve) can be obtained simultaneously as depicted
in Fig. 2(c). This is because at this point, in addition to the
destructive interference that has been tuned for backward
transmission from a2 to a1, the direct and indirect channels
for energy transmission from a1 to the intermediate mode b
(a1 → b and a1 → a2 → b), as illustrated in Fig. 1(c), also
interfere destructively. This guarantees zero energy occupa-
tion on b [Fig. 2(d), blue solid curve] for input from a1, which
indicates that the unidirectional channel for forward energy
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FIG. 3. (a) The unidirectional forward transmission efficiency
T→ at the resonant point (ω = 0) as a function of the detuning-to-
loss ratios δ/κ and �/γ , where the coupling strengths are tuned to
satisfy the condition of perfect nonreciprocity [Eq. (7)]. The white
dashed line illustrates the condition of perfect nonreciprocity for
the detuning-to-loss ratios, i.e., �/γ = δ/κ . (b) The corresponding
insertion loss for unidirectional forward transmission as a function
of the ratio �/γ when δ/κ = 3.

transmission can also be lossless. When considering input
from a2, the dual-channel destructive interference requires the
phases to be matched as θ = π/2. In this case, zero energy
occupation on b makes it effectively transparent for back-
ward transmission [Fig. 2(d), red dotted curve], leading to the
generation of perfect backward nonreciprocity, i.e., T→ = 0,
T← = 1, as shown in Fig. 2(c).

By expressing the loss phases in terms of the detunings
and losses of the resonance modes, we plot T→(ω = 0) as a
function of the detuning-to-loss ratios in Fig. 3(a) in the case
of unidirectional forward transmission, where � = �i and
γ = γi, i ∈ {1, 2}, have been assumed for simplicity. When
tuning the coupling strengths to satisfy the condition of perfect
forward nonreciprocity given in Eq. (7), T→(ω = 0) > 50%
requires that the detunings of the modes (a1, a2, and b) have
the same sign. Lossless unidirectional forward transmission
T→(ω = 0) = 1 corresponds to choosing the detuning-to-loss
ratios to be equal, i.e., δ/κ = �/γ [Fig. 3(a), white dashed
line]. To demonstrate the broad detuning range for achieving
low insertion loss for unidirectional forward transmission, we
fix δ/κ = 3, and the transmission insertion loss becomes a
function of the ratio �/γ . The insertion loss is kept below
3 dB by tuning 0.9 < (�/γ ) < 10 as shown in Fig. 3(b).

IV. LOSS EFFECT ON NONRECIPROCITY

A key advantage of our scheme that we will discuss in
this section is the robustness against energy loss. It can be
understood from the condition of perfect nonreciprocity given
in Eq. (7), as one can enhance the coupling strengths accord-
ingly to keep the unidirectional transmission lossless when
increasing the energy losses of the resonant modes. To show
the results more intuitively, we assume γ = γi, i ∈ {1, 2}, for
simplicity and plot the insertion loss of the unidirectional for-
ward transmission as a function of the loss rate γ in Fig. 4(a).
By optimizing the coupling strengths (g, ga), the insertion
loss for unidirectional forward transmission is kept at 0 when
increasing γ . This demonstrates that the perfect nonreciproc-
ity generated in our scheme is robust against energy loss.
In addition, we also calculate the nonreciprocity bandwidth
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FIG. 4. (a) The insertion loss of the unidirectional forward trans-
mission and the required coupling strengths [determined by the
condition of perfect forward nonreciprocity given in Eq. (7)] as
functions of the energy loss rate γ . (b) Nonreciprocity bandwidth
(�ω) as a function of the loss rate γ . The red dotted curve illustrates
the asymptotic scaling of the nonreciprocity bandwidth in the limit
of γ /κ � 1. The inset plots the nonreciprocity spectrum function
I (ω) = T→(ω) − T←(ω) when choosing γ /κ = 20.

evaluated as �ω = ω+ − ω− by defining the spectrum func-
tion as I (ω) = T→(ω) − T←(ω) = γ1γ2(|C1|2 − |A2|2). When
assuming γ = γi, i ∈ {1, 2}, for simplicity, the nonreciprocity
bandwidth is broadened with increasing loss rate γ [Fig. 4(b)],
and an upper bound �ω/κ ≈ 2 can be obtained. The asymp-
totic scaling function of the nonreciprocity bandwidth can

be derived as 2
√√

2 − 1γ in the limit of γ � κ (a detailed
derivation can be found in Appendix D).

V. IMPLEMENTATION AND CONCLUSION

Having completed the analysis of our generic scheme, we
now propose some candidate platforms for experimental im-
plementation. One example is based on an optomechanical
setup where two coupled optical modes via backscattering are
made to interact with one mechanical mode [40]. In this sys-
tem, the photon-phonon coupling strengths and phases can be
tuned independently by controlling the amplitudes and phases
of the external driving fields. Another platform is a dissipative
Aharonov-Bohm ring on a momentum lattice, which is imple-
mented by using multiphoton processes to couple the discrete
momentum states of ultracold atoms [41]. In this system,
the coupling coefficients and on-site losses can be controlled
independently by adjusting the corresponding lasers. In both
systems, nonzero synthetic magnetic flux can be tuned in the
three-mode coupling loops, which corresponds to the nonzero
phase of the direct coupling required in our scheme. By tuning
the system parameters satisfying the condition [Eq. (7)] given
in our scheme, these systems provide feasible and tunable
platforms for perfect nonreciprocity generation.

In conclusion, lossless unidirectional energy transmission,
i.e., perfect nonreciprocity, can be implemented by engineer-
ing the interference between a direct and an indirect energy
transmission channel established by an intermediate mode
with nonzero energy loss. The intermediate mode provides a
phase lag induced by the energy loss, which is independent of
the transmission direction. By tuning the coupling strengths
and phases of the two channels to fulfill the condition of
perfect nonreciprocity, the dual-channel interference can be
tuned to be destructive simultaneously for backward (forward)
transmission from the rightmost (leftmost) mode to the left-
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most (rightmost) mode, and forward (backward) transmission
from the leftmost (rightmost) mode to the intermediate mode.
In this case, 100% nonreciprocity contrast and zero insertion
loss for forward (backward) transmission can be achieved at
the same time. In addition, the nonreciprocity bandwidth can
be efficiently broadened by increasing the energy losses of
the resonance modes while the insertion loss for unidirec-
tional transmission is still kept at zero at resonance. Applying
our scheme to the multimode chain, the nonreciprocity
generated by the interference mechanism also induces the
non-Hermitian skin effect, i.e., the majority of eigenstates are
localized at the boundaries breaking the conventional bulk-
boundary correspondence [42,43], which warrants further
study. The robustness against energy loss indicates that our
scheme provides opportunities to implement high-efficiency
nonreciprocal devices, which are demanded for one-way opti-
cal communication and information processing.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

In this Appendix we will show how to implement the
nonzero coupling phase θ in the effective Hamiltonian given
by Eq. (1). One common strategy is to induce the phase by
using nonlinearity and time modulation. Taking a three-wave
mixing process as an example, the original Hamiltonian in-
cluding this process with an auxiliary mode c can be written
as

H = H0 + Hab + Hac,

H0 = ω(1)
a a†

1a1 + ω(2)
a a†

2a2 + ωbb†b + ωcc†c,

Hab = (gla1 + gra2)b† + H.c.,

Hac = gnl a
†
1a2c + i fpe−iωpt c† + H.c., (A1)

where ω(i)
a (i = 1, 2), ωb, and ωc are the resonance frequen-

cies of modes ai, b, and c, respectively. Hac corresponds to
a three-wave mixing process involving modes a1, a2, and c,
where the coefficient of the nonlinear coupling is gnl . fp and
ωp are the complex amplitude and resonance frequency of the
continuous optical field added on the mode c. We first derive
the equation of motion of mode c as

dc

dt
= −(iωc + κc)c + gnl a

†
2a1 + fpe−iωpt . (A2)

In the case that the pumping field amplitude | fp| is strong
such that | fp|  gnl , we can ignore the effect of the nonlinear
interaction term gnla

†
1a2 on the dynamics and treat the mode c

classically by replacing the operator ĉ with the constant. The

solution to Eq. (A2) is then given by

c = fp

i(ωc − ωp) + κc/2
e−iωpt = |c̄|e−i(ωpt+θ ). (A3)

We will next show that θ = − arg[ fp/(i(ωc − ωp) + κc/2)]
is exactly the phase of the direct coupling between modes a1

and a2. Plugging Eq. (A2) into Eq. (A1), the system Hamilto-
nian in the frame rotating at U = eiωp(a†

1a1−a†
2a2+b†b)t/2 is given

as

H ′
0 = − �1a†

1a1 − �2a†
2a2 − δb†b,

H ′
ab =gl a1b† + greiωpt a2b† + H.c.,

H ′
ac =ga(e−iθ a†

1a2 + H.c.), (A4)

where ga = gnl |c̄|. �1 = ωp/2 − ω(1)
a , �2 = −ωp/2 − ω(2)

a ,
and δ = ωp/2 − ωb are the detunings with respect to the
resonance frequencies of the corresponding modes. Apply-
ing the time modulation of the coupling between a2 and b
by replacing gr with the time-dependent factor 2gr cos ωpt ,
we can make the rotating-wave approximation ignore the
fast-oscillating term ∝ e2iωpt and finally get the effective
Hamiltonian [Eq. (1)].

APPENDIX B: STEADY-STATE SOLUTION

Using the Fourier transform convention �v(t ) =∫
dωe−iωt �v(ω)/(

√
2π ), the Langevin equations in the main

text have the solution in the frequency domain

a1(ω) = −i(glb + gae−iθ a2) + √
γ ex

1 ain
1

−i(�1 + ω) + γ1/2
,

b(ω) = −i(gla1 + gra2)

−i(δ + ω) + κ/2
,

a2(ω) = −i(grb + gaeiθ a1) + √
γ ex

2 ain
2

−i(�2 + ω) + γ2/2
, (B1)

where we ignore the intrinsic losses (γi = γ ex
i + γ

(0)
i ≈ γ ex

i ,
κ = κex + κ0 ≈ κex) and assume the input fields coupled with
the modes a1 and a2. Expressing the steady-state solution of
the field amplitude in terms of the input field operators (ain

1
and ain

2 ), we can obtain

a1(ω) = √
γ1A1ain

1 + √
γ2A2ain

2 ,

b(ω) = √
γ1B1ain

1 + √
γ2B2ain

2 ,

a2(ω) = √
γ1C1ain

1 + √
γ2C2ain

2 , (B2)

with the coefficients

A1 = i

F

(
g2

r − 
(2)
a 
b

)
,

A2 = −i

F
(glgr + gae−iθ
b),

B1 = −i

F

(
gagreiθ + gl


(2)
a

)
,

B2 = −i

F

(
glgae−iθ + gr


(1)
a

)
,
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C1 = −i

F
(glgr + gaeiθ
b),

C2 = i

F

(
g2

l − 
(1)
a 
b

)
. (B3)

Here, the parameters are defined as F = gl grgae−iθ +
glgrgaeiθ + g2

l 

(2)
a + g2

r

(1)
a + g2

a
b − 
(1)
a 
(2)

a 
b, 
(n)
a =

�n + ω + iγn/2, and 
b = δ + ω + iκ/2. We next plug
the steady-state solution of the field amplitudes into
the input-output relation �vout (ω) = �vin(ω) − √

�ex�v(ω).
Here, the input and output operators can be simplified as
�vin = (ain

1 , ain
2 )T and �vout = (aout

1 , aout
2 )T, as the input and

output fields only couple with the modes a1 and a2. Then we
can obtain

�vout (ω) = S(ω)�vin(ω). (B4)

The scattering matrix S(ω) can be written as

S(ω) = I −
(

A1γ1 A2
√

γ1γ2

C1
√

γ1γ2 C2γ2

)
, (B5)

where I is the identity matrix. Hence the forward and back-
ward energy transmission efficiencies are given by

T→ = ∣∣〈aout
2 /ain

1 〉|2 = |S21(ω)|2 = γ1γ2|C1

∣∣2
,

T← = ∣∣〈aout
1 /ain

2

〉∣∣2 = |S12(ω)|2 = γ1γ2|A2|2, (B6)

respectively.

APPENDIX C: CONDITION OF PERFECT
NONRECIPROCITY

To achieve perfect nonreciprocity, i.e., lossless unidirec-
tional energy transmission, the interference between the direct
and indirect channels for unidirectional energy transmission
should be completely constructive, which means that |C1| =
1/

√
γ1γ2 (|A2| = 1/

√
γ1γ2) for unidirectional forward (back-

ward) transmission. Noting that the complete energy transfer
from a1 (a2) to a2 (a1) corresponds to the zero energy occu-
pation of the intermediate mode b1, we can then obtain the
hidden condition of perfect nonreciprocity, i.e., the destruc-
tive interference C1 = 0 (C2 = 0) between the two possible
channels for energy transmission from the input mode a1 (a2)
to the intermediate mode b. Let us first consider the forward
transmission. The relation of the coupling strengths is found

to be

gagr/gl = ∣∣
(2)
a

∣∣, (C1)

and the phases need to match as θ − φ(2)
a = (2k + 1)π , with

θ 	= pπ and φ(2)
a 	= qπ , where k, p, and q are integers.

Combining this with the condition of unidirectional forward
transmission, we can have

gr =
√∣∣
(2)

a 
b

∣∣, φ(2)
a = φb. (C2)

Plugging Eq. (C2) into the complete constructive interfer-
ence condition for forward transmission (|B1| = 1/

√
γ1γ2),

we can get(
g2

a − (�1 + ω)(�2 + ω) − γ1γ2

4

)2

+ 1

4
(γ2(�1 + ω) − γ1(�2 + ω))2 = 0, (C3)

which can be fulfilled only when

γ1

�1 + ω
= γ2

�2 + ω
, ga =

√∣∣
(1)
a 


(2)
a

∣∣. (C4)

Hence perfect forward nonreciprocity can be achieved
when tuning the coupling strengths to be

gl =
√∣∣
(1)

a 
b

∣∣, gr =
√∣∣
(2)

a 
b

∣∣, ga =
√∣∣
(1)

a 

(2)
a

∣∣
(C5)

and matching the coupling and loss phases as θ − φ = (2k +
1)π , where φ = φ(i)

a = φb, i ∈ {1, 2}. The condition of the
loss phases can also be expressed in terms of the detunings
and loss rates of the resonance modes as

γ1

�1 + ω
= γ2

�2 + ω
= κ

δ + ω
. (C6)

Similar calculations can also be performed for backward
transmission. In this case, perfect backward nonreciprocity
can be achieved when matching the coupling and loss phases
as θ + φ = (2k + 1)π .

APPENDIX D: NONRECIPROCITY BANDWIDTH

To calculate the bandwidth of nonreciprocity, we first
define the spectrum function as I (ω) = T→(ω) − T←(ω) =
γ1γ2(|C1|2 − |A2|2). Considering the case of perfect forward
nonreciprocity at resonance, i.e., T→(ω = 0) = 1, T←(ω =
0) = 0, and choosing δ = �i = 0, i ∈ {1, 2}, for simplicity,
the spectrum function can be derived as

I (ω) =
(
γ 2

1 γ 2
2 /4

)
(|ω + iκ|2 − |ω|2)

|(γ1κ/4)(ω + iγ2/2) + (γ2κ/4)(ω + iγ1/2) + (γ1γ2/4)(ω + iκ/2) − (ω + iγ1/2)(ω + iγ2/2)(ω + iκ/2)|2 . (D1)

In the general case of γ1 = aγ2, Eq. (D1) can be further simplified as

I (ω′) = a2γ ′4

4ω′6 + ω′4[(a − 1)2γ ′2 − 2(a + 1)γ ′ + 1] + ω′2γ ′2(a2γ ′2 + a2 + 1) + a2γ ′4 , (D2)

where ω′ = ω/κ and γ ′ = γ2/κ . Hence the solution to
I (ω′

±) = 1/2 corresponds to the nonreciprocity bandwidth
�ω/κ = ω′

+ − ω′
−.

For quantitative understanding of the relation between the
bandwidth and the loss rates, we now derive the asymptotic
scaling function of the bandwidth in the limit of γ ′ � 1. It
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can be calculated by solving the bandwidth equation

4ω′6 + ω′4[(a − 1)2γ ′2 − 2(a + 1)γ ′ + 1]

+ ω′2γ ′2(a2γ ′2 + a2 + 1) − a2γ ′4 = 0 (D3)

and performing Taylor expansion for the solution �ω/κ =
ω′

+ − ω′
− in the limit of γ ′ � 1. The leading contribution is

derived as

�ω ≈
√

2 ·
√

−(a2 + 1) +
√

a4 + 6a2 + 1γ2. (D4)

When assuming γ1 = γ2 = γ , i.e., a = 1, the asymptotic
scaling function can be simplified as

�ω ≈ 2

√√
2 − 1γ . (D5)

This indicates that the nonreciprocity bandwidth is broad-
ened linearly with increasing loss rate γ in the limit of γ � κ .
Maximizing the solution to Eq. (D3) and performing Taylor
expansion in the limit of γ ′  1, we find the maximum of the
nonreciprocity bandwidth �ω/κ ≈ 2, which is independent
of γ1 and γ2.
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