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Multipartite quantum correlation is important for both fundamental science and quantum information process-
ing. Its enhancement is critical to improve the performance of physical systems. Therefore, it is of great practical
significance to study the enhancement of multipartite quantum correlation. Here, we theoretically investigate
a scheme for enhancing quadripartite quantum correlation by utilizing a phase-sensitive cascaded four-wave
mixing (CFWM) process. We find that the intensity-difference squeezing (IDS) among the four output beams
generated by the phase-insensitive CFWM process can be largely enhanced by introducing the phase-sensitive
CFWM process. We also find that our phase-sensitive CFWM process can be used to generate intensity-sum
squeezing (ISS), which cannot be generated by the phase-insensitive CFWM process. Moreover, we find that the
maximum squeezing value of ISS is equal to that of IDS when the intensity gains of the three four-wave mixing
processes are equal in the phase-sensitive cascaded scheme. In the end, we discuss the effects of the losses and
the phase fluctuations on the squeezing values of our phase-sensitive CFWM process and the corresponding
phase-insensitive CFWM process with the same intensity gains. It can be seen that the squeezing enhancement
of our phase-sensitive CFWM process holds also in presence of the losses and the phase fluctuations. Our results
pave the way for experimental implementation and may find applications in quantum metrology and quantum
communication.
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I. INTRODUCTION

Multipartite quantum correlation has attracted extensive
attention due to its importance in both fundamental science
[1,2] and quantum technologies [3–5]. A number of different
techniques for its generation have been widely studied. For
instance, in the continuous-variable (CV) regime, the most
well-established method for generating multipartite quantum
correlation is to mix the independent single-mode squeezed
states on a linear beam-splitter network [6–9]. Consider-
ing the scalability for future applications, some groups have
experimentally followed another promising approach which
generates multiple optical modes in the nonlinear process to
avoid the use of a complicated linear beam-splitter network
[10–12]. Recent advances related to this aspect include the
generation of the ultra-large-scale CV cluster state in both the
time [13–15] and frequency [16,17] domains.

All schemes mentioned above are based on optical para-
metric oscillators (OPOs), which are well-studied nonlinear
quantum systems for producing quantum correlated beams.
Besides OPOs, the four-wave mixing (FWM) process with
a double-� energy-level configuration in a 85Rb vapor cell
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has been proved to be an efficient way to generate quan-
tum correlated beams [18] due to its strong nonlinearity and
natural spatial separation of the output beams. This sys-
tem was used in several recent advances, such as quantum
imaging [19–23], the tunable delay of Einstein-Podolsky-
Rosen entanglement [24], the implementation of an SU(1,1)
nonlinear interferometer [25–29], ultrasensitive measurement
of microcantilever displacement [30], and the generation
of orbital-angular-momentum multiplexed CV bipartite en-
tanglement [31]. Moreover, the FWM process has been
experimentally demonstrated to be an efficient candidate for
generating multiple quantum correlated beams by utilizing a
phase-insensitive cascaded FWM (CFWM) process in a 85Rb
vapor cell [32–41].

With the rapid development of quantum technology, a
high degree of quantum correlation is required to improve
the communication fidelity of the quantum information pro-
tocol [3,9,42] and the measurement precision of quantum
metrology [27,28,30,43,44]. Recently, our group theoretically
[45] and experimentally [46] demonstrated that the bipar-
tite quantum correlation generated from the phase-insensitive
FWM process can be enhanced by introducing the phase-
sensitive FWM process. Therefore, it is of great significance
to study the possibility of enhancing the multipartite quantum
correlation by introducing a phase-sensitive FWM process.
In this paper, we propose a scheme for achieving the en-
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FIG. 1. The phase-sensitive CFWM process in a 85Rb vapor cell for enhancing quadripartite quantum correlation. (a) Schematic view of
the phase-sensitive CFWM process. PBS, polarizing beam splitter; cell1, cell2, and cell3, 85Rb vapor cells; â0 and â′

1, coherent probe fields; b̂0

and b̂′
1, coherent conjugate fields; â1 and b̂1, output fields of cell1; â2, b̂′

2, â′
2, and b̂2, output fields of the phase-sensitive CFWM process; ĉ1,

ĉ2, and ĉ3, pump fields. All these field operators are annihilation operators associated with the corresponding optical fields. (b) Energy-level
diagram of the double-� scheme in the D1 line of 85Rb for the single FWM process. � and δ stand for the one-photon detuning and two-photon
detuning, respectively.

hancement of quadripartite quantum correlation based on a
phase-sensitive CFWM process in a 85Rb vapor cell. We
show that the intensity-difference squeezing (IDS) among the
four output beams produced by the phase-insensitive CFWM
process [35,36] can be largely enhanced by introducing the
phase-sensitive CFWM process. Actually, when the intensity
gains of three FWM processes are equal, the IDS of the phase-
sensitive CFWM process is at least 50% (3 dB) better than
that of the corresponding phase-insensitive CFWM process
if the intensity gain is greater than 1.16. For example, when
the intensity gains of three FWM processes are all equal to
3, the IDS value of the phase-insensitive CFWM process is
0.040 (−13.979 dB), while the value of maximum IDS of the
phase-sensitive CFWM process is 0.018 (−17.349 dB), which
means that the IDS enhancement is about 55% (3.370 dB).
We also show that the phase-sensitive CFWM process can be
used to generate intensity-sum squeezing (ISS), which cannot
be generated by the phase-insensitive CFWM process. More-
over, we show that the maximum squeezing value of IDS and
the maximum squeezing value of ISS in our phase-sensitive
CFWM process are equal. In addition, we investigate the ef-
fects of the losses and the phase fluctuations on the squeezing
values of our phase-sensitive CFWM process and the cor-
responding phase-insensitive CFWM process with the same
intensity gains. It is found that the squeezing enhancement of
our phase-sensitive CFWM process holds also in the presence
of the losses and the phase fluctuations.

The remainder of the paper is arranged as follows. In
Sec. II, we briefly introduce the phase-sensitive CFWM pro-
cess and derive expressions for the output fields produced
by this cascaded system. The noise properties of the system
are discussed in Sec. III. The IDS and the ISS among the
four output beams generated from the current phase-sensitive
CFWM process are also deduced in this section. In Sec. IV,
the effects of the losses and the phase fluctuations on the
squeezing values of our phase-sensitive CFWM process and
the corresponding phase-insensitive CFWM process are dis-
cussed. Finally, a brief conclusion is given in Sec. V.

II. PHASE-SENSITIVE CFWM PROCESS

Our scheme for enhancing quadripartite quantum correla-
tion is shown in Fig. 1. As shown in Fig. 1(a), two coherent
fields, probe beam â0 and conjugate beam b̂0, are simultane-
ously and symmetrically crossed with a strong pump beam,
ĉ1, in the center of cell1. Probe beam â1 and conjugate beam
b̂1 are generated by the FWM process in cell1. Then, probe
beam â1 is sent into cell2 with an additional phase θx, and
conjugate beam b̂1 is sent into cell3 with an additional phase θy

simultaneously. θx and θy are caused by the distance between
the two cells. Probe beam â1eiθx and coherent conjugate beam
b̂′

1 are simultaneously and symmetrically crossed with another
strong pump beam, ĉ2, in the center of cell2. Meanwhile,
conjugate beam b̂1eiθy and coherent probe beam â′

1 are also
crossed with a strong pump beam, ĉ3, in the center of cell3.
Then, two probe beams, â2 and â′

2, and two conjugate beams,
b̂2 and b̂′

2, are created via the FWM process in cell2 and cell3.
These four output beams are quantum correlated. To ensure
the phase matching of our scheme, carefully aligning the
beams in three 85Rb vapor cells (cell1, cell2, and cell3) in turn
is needed. First, by choosing a suitable lens combination, the
two weak coherent beams (probe and conjugate beams â0 and
b̂0) injected into cell1 can be made to have almost the same
waist in the center of cell1. Second, by adjusting the injection
angle of â0 and b̂0, the interference visibilities of the probe
and conjugate output ports of cell1 can be optimized to the
maximum. In this way, the careful alignment of the beams in
cell1 can be completed. Then, the probe and conjugate beams
output from cell1 (â1 and b̂1) should be seeded into cell2 and
cell3 by two 4 f imaging systems, respectively. Meanwhile,
the other input port of cell2 (cell3) should be seeded by another
coherent beam b̂′

1 (â′
1). By the same token, the careful align-

ment of the beams in cell2 and cell3 can also be completed.
Figure 1(b) depicts the energy-level diagram of a single FWM
process in a 85Rb vapor cell, where two pump photons can
be converted to one probe photon and one conjugate photon.
Since the pump beam is very strong in each single FWM
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process, it can be regarded as a classical field. In this way, the
interaction Hamiltonian of three FWM processes in the three
cells mentioned above can be written as [47,48]

Ĥ1 = ih̄κ1eiθ1 b̂†
1â†

1 + H.c., (1)

Ĥ2 = ih̄κ2eiθ2 b̂′†
2 â†

2 + H.c., (2)

Ĥ3 = ih̄κ3eiθ3 b̂†
2â′†

2 + H.c., (3)

where θ j = 2φc j ( j = 1, 2, 3) and φc j is the phase of the pump
field ĉ j . κ j is the interaction strength of the FWM process in
cell j , which is not only dependent on the pump power but
also dependent on one-photon detuning � and two-photon
detuning δ. From Eqs. (1) to (3), the input-output relation of
the phase-sensitive CFWM process can be written as

⎛
⎜⎜⎝

â2

b̂′†
2

â′
2

b̂†
2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

eiθx
√

G1G2 eiθ2
√

G2 − 1 0 ei(θx+θ1 )√(G1 − 1)G2

ei(θx−θ2 )√G1(G2 − 1)
√

G2 0 ei(θx+θ1−θ2 )√(G1 − 1)(G2 − 1)
ei(θ3−θ1−θy )√(G1 − 1)(G3 − 1) 0

√
G3 ei(θ3−θy )√G1(G3 − 1)

e−i(θ1+θy )√(G1 − 1)G3 0 e−iθ3
√

G3 − 1 e−iθy
√

G1G3

⎞
⎟⎟⎠

⎛
⎜⎜⎝

â0

b̂′†
1

â′
1

b̂†
0

⎞
⎟⎟⎠, (4)

where G1 = cosh2(κ1t1), G2 = cosh2(κ2t2), and G3 =
cosh2(κ3t3), which are the intensity gains of three FWM
processes. t1, t2, and t3 are the mixing interaction times.

III. NOISE PROPERTIES OF THE SYSTEM

We start with the consideration of the IDS among the
four output beams generated from the phase-sensitive CFWM
process. Generally, the IDS among the quantum correlated
beams generated by the CFWM process can be measured
by utilizing the differential-measurement method. In the dif-
ferential measurement, first, the probe beams (â2 and â′

2)
should be sent into one photodetector while the conjugate
beams (b̂2 and b̂′

2) are sent into the other photodetector.
Then, the photocurrents of these two photodetectors should
be subtracted by using a radio-frequency subtractor, which
can give the noise power spectrum of the quantum correlated
beams Var(N̂a2 + N̂a′

2
− N̂b2 − N̂b′

2
)
SQZ

. The corresponding
shot-noise limit (SNL) of the quantum correlated beams can
be obtained by using a coherent beam with a power equal to
the total power of the quantum correlated beams. This coher-
ent beam should be divided into two beams with a 50:50 beam
splitter, and then the obtained two beams should be sent into
two photodetectors to get the noise power of the differential
photocurrent, which can give the level of the corresponding
SNL, Var(N̂a2 + N̂a′

2
− N̂b2 − N̂b′

2
)
SNL

[38]. In this way, the
value of IDS among the four output beams with respect to
the corresponding SNL can be given by

IDS =
Var(N̂a2 + N̂a′

2
− N̂b2 − N̂b′

2
)
SQZ

Var(N̂a2 + N̂a′
2
− N̂b2 − N̂b′

2
)
SNL

= 1 + β1 + β2 + β3

γ
,

(5)

where γ = G1(2G2 − 1) + (G1 − 1)(2G3 − 1) + [(G1 − 1)
(2G2 − 1) + G1(2G3 − 1)]β1 + (2G2 − 1)β2 + (2G3 − 1)
β3 + 4[

√
G1(G1 − 1)β1(−1 + G2 + G3) cos(ψ1) +√

(G1 − 1)(G2 − 1)G2β1β2 cos(ψ1 − ψ2) +√
G1(G2 − 1)G2β2 cos(ψ2) + √

(G3 − 1)G3(G1 − 1)β3 cos
(ψ1 − ψ3) + √

(G3 − 1)G3G1β1β3 cos(ψ3)].β1, β2, and
β3 are the intensity ratios and are equal to 〈N̂b0〉/〈N̂a0〉,
〈N̂b′

1
〉/〈N̂a0〉, and 〈N̂a′

1
〉/〈N̂a0〉, respectively. 〈N̂a0〉 and 〈N̂b0〉

represent the average input photon number of probe field
â0 and conjugate field b̂0 sent into cell1, respectively. 〈N̂b′

1
〉

represents the average input photon number of conjugate
field b̂′

1 injected into cell2, and 〈N̂a′
1
〉 represents the average

input photon number of probe field â′
1 injected into cell3. ψ1

is equal to θ1 − θa − θb. ψ2 is equal to θ2 − θa − θb1 − θx.
ψ3 is equal to θ3 − θa1 − θb − θy. θa and θa1 and θb and
θb1 are the phases of the probe fields (â0 and â′

1) and
the conjugate fields (b̂0 and b̂′

1), respectively. It is worth
noting that Var(N̂a2 + N̂a′

2
− N̂b2 − N̂b′

2
)SNL is just the

sum of the average photon number of the four output
beams (a2, a′

2, b2, and b′
2). When β1 = β2 = β3 = 0, the

value of IDS among the four output beams is given by
1/[1 − 2G3 + 2G1(−1 + G2 + G3)], which agrees well with
the result of the phase-insensitive CFWM process shown in
Refs. [35,36]. Compared with the IDS of the phase-insensitive
CFWM process, the IDS of the phase-sensitive CFWM
process as indicated by Eq. (5) has some phase-sensitive
factors, which will bring the possibility of IDS enhancement.
Moreover, it can be seen from Eq. (5) that the IDS
enhancement is dependent not only on the intensity gains
(G1, G2, and G3) but also on the intensity ratios (β1, β2, and
β3) and the phases (ψ1, ψ2, and ψ3) of the input beams in the
phase-sensitive CFWM process. Therefore, it is valuable to
study how these parameters influence the performance of the
phase-sensitive CFWM process.

First, in order to analyze the effect of the intensity gain on
the IDS enhancement of the phase-sensitive CFWM process,
we plot the IDS values of the phase-sensitive CFWM process
(the phase-insensitive CFWM process) as a function of the
intensity gains G2 and G3 when ψ1 = ψ2 = ψ3 = 0 and β1 =
β2 = β3 = 1 (β1 = β2 = β3 = 0) for gains G1 of 2, 3, and 4,
as shown in Fig. 2. It can be seen that the IDS values of both
the phase-insensitive CFWM process and the phase-sensitive
CFWM process decrease with the increase of gains G1, G2,
and G3. Moreover, the IDS of the phase-sensitive CFWM
process is always better than that of the phase-insensitive
CFWM process, clearly showing the squeezing enhancement.
In the current situation, for gains G1 of 2, 3, and 4, the IDS
of the phase-sensitive CFWM process is enhanced by about
48% (2.833 dB), 41% (2.320 dB), and 35% (1.871 dB) com-
pared to that of the phase-insensitive CFWM process when
G2 = G3 = 4, respectively.
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FIG. 2. The values of IDS as a function of G2 and G3 for different values of G1. Curved surface i represents the squeezing value of
the phase-insensitive CFWM process, and curved surface ii represents the squeezing value of the phase-sensitive CFWM process under the
condition of ψ1 = ψ2 = ψ3 = 0 and β1 = β2 = β3 = 1. (a) G1 = 2. (b) G1 = 3. (c) G1 = 4.

Second, we investigate how the IDS enhancement of the
phase-sensitive CFWM process depends on the intensity ratio.
In order to study this effect, we plot the IDS values (plane i
for the phase-insensitive CFWM process and curved surface ii
for the phase-sensitive CFWM process) as a function of ratios
β2 and β3 by keeping the gains G1 = G2 = G3 = 3 and the
phases ψ1 = ψ2 = ψ3 = 0 for different ratios β1, as shown in
Fig. 3. As we can see, when ratios β2 and β3 are the particular
values given in the caption, the maximum squeezing value of
the phase-sensitive CFWM process for ratios β1 of 0, 0.5, 1,
and 5 can be obtained, which are 0.034 (−14.747 dB), 0.019
(−17.236 dB), 0.018 (−17.349 dB), and 0.021 (−16.819 dB),
respectively. With the same gains G1 = G2 = G3 = 3, the
IDS value of the phase-insensitive CFWM process is 0.040
(−13.979 dB). In other words, an IDS enhancement of nearly
55% (3.370 dB) can be achieved in our phase-sensitive
CFWM process compared to the phase-insensitive CFWM

FIG. 3. The values of IDS as a function of the ratios β2 and
β3 for different values of β1 when ψ1 = ψ2 = ψ3 = 0 and G1 =
G2 = G3 = 3. Plane i represents the squeezing value of the phase-
insensitive CFWM process, and curved surface ii represents the
squeezing value of the phase-sensitive CFWM process. (a) β1 = 0:
the maximum squeezing value of the phase-sensitive CFWM pro-
cess is achieved when β2 = 0.1168 and β3 = 0.0778. (b) β1 = 0.5:
the maximum squeezing value of the phase-sensitive CFWM pro-
cess is achieved when β2 = 0.078 and β3 = 0.0728. (c) β1 = 1: the
maximum squeezing value of the phase-sensitive CFWM process is
achieved when β2 = β3 = 0.0977. (d) β1 = 5: the maximum squeez-
ing value of the phase-sensitive CFWM process is achieved when
β2 = 0.3098 and β3 = 0.3615.

process with the same gains G1 = G2 = G3 = 3 [35,36] when
β1 = 1 and β2 = β3 = 0.0977. In addition, in the situation
with G1 = G2 = G3 = 3, the IDS value of our current scheme
[0.018 (−17.349 dB)] is about 10% (0.447 dB) better than that
of the previous scheme with the same intensity gains [0.020
(−16.902 dB)] presented in Ref. [49], which clearly shows
the novelty and the advantage of our proposed technique in
enhancing the quantum correlation.

Third, in order to explore how the phase influences the
IDS enhancement of the phase-sensitive CFWM process, we
fix the gains G1 = G2 = G3 = 3 and the ratios β1 = 1 and
β2 = β3 = 0.0977 and plot the IDS values (plane i for the
phase-insensitive CFWM process and curved surface ii for
the phase-sensitive CFWM process) as a function of ψ2 and
ψ3 for different phases ψ1, as shown in Fig. 4. It can be
seen that for a given ψ1, the maximum squeezing value of
the phase-sensitive CFWM process can be achieved when

FIG. 4. The values of IDS as a function of phases ψ2 and ψ3

for different values of ψ1 when G1 = G2 = G3 = 3, β1 = 1, and
β2 = β3 = 0.0977. Plane i represents the squeezing value of the
phase-insensitive CFWM process, and curved surface ii represents
the squeezing value of the phase-sensitive CFWM process. (a) ψ1 =
0: the maximum squeezing value of the phase-sensitive CFWM
process is achieved when ψ2 = ψ3 = 0, 2π . (b) ψ1 = π/2: the
maximum squeezing value of the phase-sensitive CFWM process
is achieved when ψ2 = ψ3 = 0.2181π . (c) ψ1 = π : the maximum
squeezing value of the phase-sensitive CFWM process is achieved
when ψ2 = ψ3 = 0, 2π . (d) ψ1 = 3π/2: the maximum squeezing
value of the phase-sensitive CFWM process is achieved when ψ2 =
ψ3 = 1.783π .
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FIG. 5. The values of IDS as a function of the intensity gain G.
Red dashed line: the squeezing value of the phase-insensitive CFWM
process; red solid line: the maximum squeezing value of the phase-
sensitive CFWM process as predicted by Eq. (6).

phases ψ2 and ψ3 are the values given in the caption. In
the current situation, the maximum squeezing value of the
phase-sensitive CFWM process for phases ψ1 of 0, π/2, π ,
and 3π/2 are 0.018 (−17.349 dB), 0.034 (−14.692 dB), 0.558
(−2.533 dB), and 0.034 (−14.692 dB), respectively. It can
also be found that the squeezing value of the phase-insensitive
CFWM process is always 0.040 (−13.979 dB). Therefore,
compared to the phase-insensitive CFWM process with the
same gains G1 = G2 = G3 = 3 [35,36], our phase-sensitive
CFWM process can lead to about a 55% (3.370 dB) IDS
enhancement when ψ1 = ψ2 = ψ3 = 0, 2π .

Fourth, we consider the more general situation of the IDS
of our phase-sensitive CFWM process, in which the intensity
gains G1 = G2 = G3 = G (1 � G � 4). Based on the exper-
imental results in our previous work [35], this intensity gain
range requires each pump beam in our scheme to have a power
of about 0 to 240 mW. Here one can easily calculate the
maximum squeezing value of IDS from Eq. (5), which is given
by

IDSmax = 1 + 4G2 − (2G − 1)
√

4G2 + 1

ζ
, (6)

where ζ = −1 + 6G − 16G2 + 16G3 + 4
√

G − 1G
3
2

(2G − 1) − √
4G2 + 1(2G − 1)2 + 4

√
2(G − 1)G

3
2√

4G + (
√

4G2 + 1 + 1)(−2 + 1
G )(

√
G − 1 + √

G). This
value can be achieved when β1 = 1, β2 = β3 =
−1+3G−6G2+4G3−(1−3G+2G2 )

√
4G2+1

2G(G−1) , and ψ1 = ψ2 = ψ3 = 0,
2π . It is interesting to examine how the IDS enhancement
varies with the intensity gain G. These results are summarized
in Fig. 5. It can be found that the squeezing values of
these two configurations decrease with the increase of the
intensity gain. Moreover, the maximum squeezing value of
the phase-sensitive CFWM process is always better (lower)
than the squeezing value of the phase-insensitive CFWM
process. In the current case with G1 = G2 = G3 = G, the IDS
value of the phase-insensitive CFWM process is at least two
times that of the phase-sensitive CFWM process if G � 1.16.
In other words, the IDS of the phase-sensitive CFWM process

is at least 50% (3 dB) better than that of the phase-insensitive
CFWM process if G1 = G2 = G3 � 1.16.

We now consider the ISS generated from the phase-
sensitive CFWM process. The value of ISS among the four
output beams of our phase-sensitive cascaded scheme with
respect to the SNL is given by

ISS =
Var(N̂a2 + N̂a′

2
+ N̂b2 + N̂b′

2
)
SQZ

Var(N̂a2 + N̂a′
2
+ N̂b2 + N̂b′

2
)
SNL

= 1 + β1 + β2 + β3 + ξ

γ
, (7)

where ξ = 8G1[G1(−1 + G2 + G3)2(1 + β1) + G2
2(−β1 +

β2) − G2(−1 − 2β1 + 2G3 + 2G3β1 + β2) + (−1 + G3)
(1 + β1 − G3 + G3β3)] + 8

√
G1(G1 − 1)β1[−1 + G2+G3 −

2G2G3 + 2G1(−1 + G2 + G3)2] cos(ψ1) + 16G1(−1+G2 +
G3)

√
(G1 − 1)G2(G2 − 1)β1β2 cos(ψ1 − ψ2) +

8
√

G1G2(G2 − 1)β2[1 − 2G3 + 2G1(−1 + G2 + G3)]
cos(ψ2) + 16G1(−1 + G2 + G3)

√
(G1 − 1)G3(G3 − 1)β3

cos(ψ1 − ψ3) + 16
√

G1(G1 − 1)G2(G2 − 1)G3(G3 − 1)β2β3

cos(ψ1 − ψ2 − ψ3) + 8
√

G1G3(G3 − 1)β1β3[1 − 2G2 +
2G1(−1 + G2 + G3)] cos(ψ3). This result can easily be
calculated through the use of Eq. (4). As we can see from
Eq. (7), the ISS value of the phase-sensitive CFWM process
also changes with G1, G2, G3, β1, β2, β3, ψ1, ψ2, and
ψ3. Therefore, it is also necessary to explore how these
parameters influence the ISS properties of the phase-sensitive
CFWM process. For simplicity, we set all intensity gains of
each FWM process to be equal, and we use G to denote the
intensity gain, i.e., G1 = G2 = G3 = G. In Fig. 6, we plot
the ISS values of the phase-sensitive CFWM process as a
function of the intensity ratios β2 and β3 when the phases
ψ1 = ψ2 = ψ3 = π for ratios β1 of 0, 0.5, 1, and 5 and gains
G of 2, 3, and 4. It is clear that in the case of β1 = 1, the
maximum squeezing values of ISS for different gains can be
achieved when the intensity ratios β2 and β3 are the values
given in the caption of Fig. 6, which are 0.049 (−13.054 dB),
0.018 (−17.349 dB), and 0.010 (−20.177 dB) for gains G of
2, 3, and 4 respectively. In addition, as shown in Figs. 6(a),
6(e), and 6(i), the ISS values for different intensity gains are
higher than the SNL (ISS = 1) when β2 and β3 are equal
to zero, which means that the phase-insensitive CFWM
process cannot generate the ISS. As shown in Fig. 7, we
plot the ISS values of the phase-sensitive CFWM process
as a function of phases ψ2 and ψ3 for different values of
intensity gain G and phase ψ1 when the intensity ratios β1,
β2, and β3 are particular values. It can be seen that when the
phases ψ1 = ψ2 = ψ3 = π , the maximum squeezing values
of ISS for different gains can be achieved, which are 0.049
(−13.054 dB), 0.018 (−17.349 dB), and 0.010 (−20.177 dB)
for gains G of 2, 3, and 4 respectively. Furthermore, we can
find from Figs. 6 and 7 that the ISS value decreases with the
increase of the intensity gain.

Similarly, we consider the maximum squeezing value of
ISS of our phase-sensitive CFWM process in the general
case of G1 = G2 = G3 = G (1 � G � 4), which can easily be
calculated from Eq. (7). It is expressed as

ISSmax = 1 + 4G2 − (2G − 1)
√

4G2 + 1

ζ
. (8)
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FIG. 6. The ISS values of the phase-sensitive CFWM process as a function of β2 and β3 when ψ1 = ψ2 = ψ3 = π for ratios β1 of 0, 0.5, 1,
and 5 and gains G of 2, 3, and 4. (a)–(d) G = 2: the maximum squeezing value is achieved when β1 = 1 and β2 = β3 = 0.1577. (e),–(h) G = 3:
the maximum squeezing value is achieved when β1 = 1 and β2 = β3 = 0.0977. (i)–(l) G = 4: the maximum squeezing value is achieved when
β1 = 1 and β2 = β3 = 0.0705.

This value is achieved when β1 = 1, β2 = β3 =
−1+3G−6G2+4G3−(1−3G+2G2 )

√
4G2+1

2G(G−1) , and ψ1 = ψ2 = ψ3 = π .
From Eqs. (6) and (8), it is clear that the values
of the maximum IDS and the maximum ISS are
equal.

IV. EFFECTS OF THE LOSSES AND THE PHASE
FLUCTUATIONS

Since there are unavoidable losses and phase fluctuations
in the real experiment, in this section, we study the effects of
the losses and the phase fluctuations on the squeezing values

FIG. 7. The ISS values of the phase-sensitive CFWM process as a function of ψ2 and ψ3 when β1, β2, and β3 are certain values for
phases ψ1 of 0, π/2, π , and 3π/2 and gains G of 2, 3, and 4. (a)–(d) G = 2, β1 = 1, and β2 = β3 = 0.1577. (e)–(h) G = 3, β1 = 1, and
β2 = β3 = 0.0977. (i)–(l) G = 4, β1 = 1, and β2 = β3 = 0.0705. All of the maximum squeezing values for different gains are achieved when
ψ1 = ψ2 = ψ3 = π .
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of our phase-sensitive CFWM process and the correspond-
ing phase-insensitive CFWM process with the same intensity
gains. The discussion is divided into two parts: the effect
of the losses is investigated in Sec. IV A, while Sec. IV B
concerns the effect of the phase fluctuations.

A. Effect of the losses

We first study the effect of the losses in the case of ideal
phase locking (no phase fluctuations). By modeling the losses
with the optical beam splitters [50–52], the output fields of the
three FWM processes in our scheme can be written as

â1,loss =
√

(1 − η1)(1 − τ )(
√

1 − L1â1 + √
L1v̂1)

+
√

1 − (1 − η1)(1 − τ )v̂2,

b̂1,loss =
√

1 − η2(
√

1 − L2b̂1 + √
L2v̂3)

+ √
η2v̂4,

â2,loss =
√

(1 − η3)(1 − λ1)(
√

1 − L3Â2 + √
L3v̂5)

+
√

1 − (1 − η3)(1 − λ1)v̂6,

b̂′
2,loss =

√
(1 − η4)(1 − λ2)(

√
1 − L4B̂′

2

+ √
L4v̂7) +

√
1 − (1 − η4)(1 − λ2)v̂8,

â′
2,loss =

√
(1 − η5)(1 − λ3)(

√
1 − L5Â′

2

+ √
L5v̂9) +

√
1 − (1 − η5)(1 − λ3)v̂10,

b̂2,loss =
√

(1 − η6)(1 − λ4)(
√

1 − L6B̂2 + √
L6v̂11)

+
√

1 − (1 − η6)(1 − λ4)v̂12, (9)

where Â2 = √
G2â1,losseiθx + eiθ2

√
G2 − 1b̂′†

1 , B̂′
2 =√

G2b̂′
1 + eiθ2

√
G2 − 1â†

1,losse
−iθx , Â′

2 = √
G3â′

1 +
eiθ3

√
G3 − 1b̂†

1,losse
−iθy , and B̂2 = √

G3b̂1,losseiθy +
eiθ3

√
G3 − 1â′†

1 . L1, L2, L3, L4, L5, and L6 are the absorption
losses of â1, b̂1, â2, b̂′

2, â′
2, and b̂2 in three 85Rb vapor cells,

respectively. η1, η2, η3, η4, η5, and η6 are the propagation
losses of â1, b̂1, â2, b̂′

2, â′
2, and b̂2 due to imperfect

propagation, respectively. λ1, λ2, λ3, and λ4 represent
the detection losses of â2, b̂′

2, â′
2, and b̂2 due to imperfect

quantum efficiencies of the detectors, respectively. τ is the
extraction loss introduced by extracting the interference signal
from beam â1 for phase locking [53]. ν̂i (i = 1, 2, . . . , 12)
represents the vacuum field introduced by losses. For
simplicity, we consider all the absorption losses (L1, L2, L3,
L4, L5, and L6) as L, all the propagation losses (η1, η2, η3,
η4, η5, and η6) as η, and all the detection losses (λ1, λ2, λ3,
and λ4) as λ. In general, the measurements can be performed
by using silicon photodetectors (PDB450, Thorlabs) with a
transimpedance gain of 105 V/A and quantum efficiency of
about 97%, i.e., λ = 0.03. In this way, when considering
losses in experiment (L = 0.05, η = 0.03, λ = 0.03,
τ = 0.01), we can calculate the maximum squeezing value
of the phase-sensitive CFWM process and the squeezing
value of the corresponding phase-insensitive CFWM process
with the same intensity gains G1 = G2 = G3 = G. As shown
in Fig. 8, the solid and dashed lines stand for the maximum
squeezing value of the phase-sensitive CFWM process and the

FIG. 8. Comparison of squeezing values between the phase-
sensitive CFWM process and the corresponding phase-insensitive
CFWM process with the same intensity gain G in the lossy sit-
uation of L = 0.05, η = 0.03, λ = 0.03, τ = 0.01. Solid line: the
maximum squeezing value of the phase-sensitive CFWM process;
dashed line: the squeezing value of the phase-insensitive CFWM
process.

squeezing value of the phase-insensitive CFWM process in
the lossy situation, respectively. We can see that the squeezing
values of both the phase-sensitive CFWM process and the
phase-insensitive CFWM process decrease with the increase
of the intensity gain G. Moreover, we find that the squeezing
value of the phase-sensitive CFWM process is always better
(lower) than that of the phase-insensitive CFWM process,
demonstrating that the enhancement of our technique holds
also in the presence of the losses.

B. Effect of the phase fluctuations

In our scheme, since three phase locking processes [54–60]
are needed, the achieved squeezing value is undoubtedly af-
fected by the quality of these three phase-locking processes.
Therefore, in order to ensure the feasibility of our proposal,
we study the effect of the phase fluctuations on the squeezing
value of our phase-sensitive CFWM process by introducing
three phase deviations. In this way, fields â1, b̂1, Â2, B̂′

2, Â′
2,

and B̂2 in Eq. (9) can be rewritten as

â1 = √
G1â0eiδθ1 + eiθ1

√
G1 − 1b̂†

0,

b̂1 = √
G1b̂0 + eiθ1

√
G1 − 1â†

0e−iδθ1 ,

Â2 = √
G2â1,losseiθx eiδθ2 + eiθ2

√
G2 − 1b̂′†

1 ,

B̂′
2 = √

G2b̂′
1 + eiθ2

√
G2 − 1â†

1,losse
−iθx e−iδθ2 ,

Â′
2 = √

G3â′
1 + eiθ3

√
G3 − 1b̂†

1,losse
−iθy e−iδθ3 ,

B̂2 = √
G3b̂1,losseiθy eiδθ3 + eiθ3

√
G3 − 1â′†

1 ,

(10)

where δθ1, δθ2, and δθ3 are the phase deviations of the three
phase-locking processes. For simplicity, we consider all the
phase deviations to be independent and equal, and we use
δθ to denote the phase deviation, i.e., δθ = δθ1 = δθ2 = δθ3.
Based on Eqs. (9) and (10), we can calculate the maximum
squeezing value of our phase-sensitive CFWM process and
the squeezing value of the corresponding phase-insensitive
CFWM process with the same intensity gains G1 = G2 =
G3 = G. As shown in Fig. 9, when considering intensity gain
and losses in experiment (G = 3, L = 0.05, η = 0.03, λ =
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FIG. 9. The squeezing values as a function of the phase fluctua-
tion δθ when G = 3, L = 0.05, η = 0.03, λ = 0.03, and τ = 0.01.
Solid line: the maximum squeezing value of the phase-sensitive
CFWM process; dashed line: the squeezing value of the correspond-
ing phase-insensitive CFWM process.

0.03, τ = 0.01), we plot the maximum squeezing value of our
phase-sensitive CFWM process and the squeezing value of the
corresponding phase-insensitive CFWM process as a function
of the phase fluctuation δθ . It can be found that the maximum
squeezing value of the phase-sensitive CFWM process (solid
line) is always better (lower) than the squeezing value of
the corresponding phase-insensitive CFWM process (dashed
line) for δθ � 0.4 rad, which indicates that the squeezing en-
hancement of our phase-sensitive CFWM process holds also
in the presence of the losses and the phase fluctuations. In
fact, the phase fluctuations of our scheme can be much less
than 0.4 rad, enabled by the phase-locking technology based
on a micro control unit [46]. In this sense, this proposal is
feasible.

V. CONCLUSION

In conclusion, we have theoretically studied a scheme
for enhancing the quadripartite quantum correlation via a

phase-sensitive CFWM process in a 85Rb vapor cell. We
found that the IDS among the four output beams generated
from the phase-insensitive CFWM process [35,36] can be
largely enhanced by introducing a phase-sensitive CFWM
process. Moreover, we found that our phase-sensitive CFWM
process can generate the ISS, which can never be realized
by the phase-insensitive CFWM process. Interestingly, we
found that the maximum squeezing values of these two types
of squeezing in our phase-sensitive CFWM process are the
same when the intensity gains of the three FWM processes
are equal. In addition, we explored the effects of the losses
and the phase fluctuations on the squeezing values of our
phase-sensitive CFWM process and the corresponding phase-
insensitive CFWM process with the same intensity gains. We
found that the squeezing enhancement of our phase-sensitive
CFWM process holds also in the presence of the losses and
the phase fluctuations, which ensures the feasibility of our
scheme. These findings pave the way for experimental imple-
mentation and may have applications in quantum metrology
and quantum communication.
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