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Classical ghost imaging is a new paradigm in imaging where the image of an object is not measured directly
with a pixelated detector. Rather, the object is subject to a set of illumination patterns and the total interaction
of the object, e.g., reflected or transmitted photons or particles, is measured for each pattern with a single-pixel
or bucket detector. An image of the object is then computed through the correlation of each pattern and the
corresponding bucket value. Assuming no prior knowledge of the object, the set of patterns used to compute
the ghost image dictates the image quality. In the visible-light regime, programmable spatial light modulators
(SLMs) can generate the illumination patterns. In many other regimes, such as x rays, electrons, and neutrons,
no such dynamically configurable modulators exist, and patterns are commonly produced by employing a
transversely translated mask. Moreover, in visible-light regimes, mask switching rates exceeding the fastest
SLMs may often be achieved through transverse translation (e.g., rotation) of a nonconfigurable mask. In this
simulations-based paper we explore some of the properties of masks or speckle that should be considered
to maximize ghost-image quality, given a certain experimental classical ghost-imaging setup employing a
transversely displaced but otherwise nonconfigurable mask.
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I. INTRODUCTION

Classical ghost imaging is a computational imaging tech-
nique that can have advantages over conventional imaging
in terms of signal-to-noise ratio (e.g., [1]), achievable spatial
resolution (e.g., [2,3]), and minimal imaging dose (e.g., [4,5]).
The term arises from the quantum-optics origin of the tech-
nique [6–9] that was thought to originally rely on the spooky
action at a distance of entangled photons. Subsequently, it
was realized that the only property of the entangled photons
required is correlation [10,11], thereby enabling a classical
variant of ghost imaging to be conceived [12]. The experiment
setup for classical ghost imaging and techniques for image
computation from measurements are detailed in Sec. II. For an
overview of ghost imaging (GI), both quantum and classical,
see Ref. [13].

*Also at CTLab: National Laboratory for Micro Computed-
Tomography, Advanced Imaging Precinct, The Australian National
University, Canberra, ACT 2601, Australia; andrew.kingston@anu.
edu.au

Classical GI is based on structured illumination, and the
set of illumination patterns employed dictates the properties
of the recovered image in terms of resolution, contrast, and
illumination dose required. Thus, the choice of illumination
patterns is an important consideration, but difficult since how
these properties are influenced by the illumination patterns is
not necessarily intuitive. In GI with visible light, there are
many readily available methods to generate arbitrary illumi-
nation patterns. These include conventional projectors [14],
spatial light modulators (SLMs) [15], and digital micromirror
devices (DMDs) [16]. In these cases it is straightforward to
explore different orthogonal bases, such as that for the Walsh-
Hadamard transform [17], or patterns with random-fractal
properties [18], etc. However, for GI probes that have been
explored more recently, such as x rays [19,20] and neutrons
[3], methods to generate patterns are much more limited to
date. The key limitation, here, is the nonexistence of high-
resolution dynamically configurable beam-shaping elements
that are the x-ray or neutron equivalent of a spatial light
modulator [21–23]. While x-ray ghost-imaging experiments
have been designed to use patterns based on natural variations
in intensity (e.g., via hard x-ray speckles in the synchrotron
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radiation emitted by individual electron bunches [19]), if
control is required over the properties of the patterns, then
some form of rotating or translating mask is required up-
stream of the object [20,24–26]. Moreover, in the visible-light
regime, translating (rotating) nonconfigurable masks can have
switching rates that exceed that of the fastest available SLMs
[27–29].

Masks provide attenuation or propagation-based phase
contrast [30] to the incident illumination. They can be
made from natural materials with a randomized structure
or be specifically designed and fabricated. Examples in the
literature for hard x-ray and neutron classical ghost imaging
include copy paper [24], sandpaper [25], sand grain pack [26],
salt grain pack [3], porous gold film [20], metal foam [31],
electroplated gold foil on a glass substrate to create a set of
binary pixelated masks (324 pairs of 128 × 128 pixel pat-
terns) [32], and gadolinium oxide (Gd2O3) Hadamard patterns
etched onto a silicon substrate (1024 patterns of 32 × 32 [33]).

Given no prior knowledge of the object, we seek to
understand what properties of transversely displaced noncon-
figurable masks are important and how to measure them. We
aim to understand the practical strengths and weaknesses of
masks in order to identify the most appropriate choice for a
given experiment.

Regarding the properties of illumination patterns used in
classical GI, there are many experimental questions to con-
sider. How many measurements should be taken? How much
should the mask be transversely translated between each mea-
surement? What mean intensity is required per measurement
and how accurate should exposure times be to yield acceptable
ghost images? How precise does mask translation need to be
for a given spatial resolution? If a specified balance is desired
for the three factors of (i) resolution, (ii) ghost-image contrast,
and (iii) sample dose, what class of ghost-imaging mask will
be optimal?

In what follows we seek to provide some mask analysis
tools to be able to answer some of these questions. The
tools we present are based on conventional image analysis
techniques such as the point-spread function (defined as the
average Green’s function of the system), Fourier ring correla-
tion, and Fourier spectral power distribution, as well as some
common mathematical analysis methods including singular-
value decomposition, matrix rank, and perturbation theory.

We close this introduction with a brief overview of the
remainder of the paper. Section II provides the details of
classical GI experiments and image reconstruction from mea-
surements. The types of pattern explored in this paper, which
may be either naturally occurring or designed, are defined
and some examples are presented in Sec. III. The effects
of pattern properties on ghost-image quality are explored in
Sec. IV, which covers ghost-image resolution (Sec. IV A),
the amount of independent information in the set of patterns
(Sec. IV B), the size of the total mask used to create a set
of patterns (Sec. IV C), and robustness to various experi-
mental conditions (Sec. IV D). This last subsection explores
the effects of photon-shot noise (Sec. IV D 1), pattern mis-
alignment (Sec. IV D 2), slowly varying illumination intensity
(Sec. IV D 3), multiscale masks (Sec. IV D 4), illumination
dose fractionation questions (Sec. IV D 5), and mask fabri-
cation imperfections (Sec. IV D 6). The main findings are

summarized in Sec. V. These findings are interpreted in prac-
tical terms in Sec. VI to aid in mask design and/or selection
given experiment conditions and required outcomes. This is
followed by some concluding remarks and a presentation of
future research directions in Sec. VII.

II. CLASSICAL GHOST IMAGING

Figure 1 shows a simple schematic for a wide class of
computational variant of classical ghost-imaging experiments
that employ a single nonconfigurable mask. Here the experi-
ment is broken into two stages. In the first stage, a source (1)
illuminates a mask (2), to produce a pattern over the imag-
ing plane that is prerecorded or characterized by a pixelated
detector (3). In the second stage, the sample (4) replaces
the pixelated detector at the imaging plane. The previously
recorded patterns illuminate the sample (5) and the transmit-
ted signal then propagates to a “bucket detector” (6), namely, a
position-insensitive detector or sensor which merely records a
single number that is proportional to the total exposure which
falls upon it. The mask may be transversely displaced, as
indicated, with the resulting set of illumination patterns over
the sample entrance surface (3) being assumed known. Mask
rotation may also be employed. The classical ghost-imaging
problem then seeks to infer the transmission function of the
sample, given the set of known illumination patterns and the
associated numbers measured by the bucket.

Classical GI experiments do not directly record the image
of an object. Quanta (e.g., x-ray photons, neutrons, elec-
trons, etc.) that pass through the sample are not registered
or imaged by a position-sensitive detector. GI experiments
are a patterned-illumination method that divides the object
measurements into two components: (i) the set of images
of the patterned illuminations, and (ii) the total object in-
teraction (e.g., transmission, scatter, fluorescence, etc.) with
each patterned illumination. If the patterned illuminations are
not repeatable, then measurements (i) and (ii) must be taken
simultaneously, e.g., by utilizing a beam splitter. However,
for repeatable illumination patterns, e.g., from a transversely
translating mask that modulates the incident illumination,
measurements (i) and (ii) can be taken sequentially. The
sequential variant is known as computational GI [34]. Here,
the illumination patterns in (i) are either prerecorded with
a pixelated position-sensitive detector, or are controlled and
thus known a priori, e.g., employing a digital micromirror
device in optical classical GI.

Assume the sample to be sufficiently thin that the pro-
jection approximation [35] holds. The intensity transmission
function of the sample is therefore a well-defined function of
transverse coordinates (x, y). Representing the transmission-
function image of the object as t (x, y), we can model the
GI measurement process mathematically as follows: (i) is
specified as a set of J illumination patterns with recorded and
predicted intensity Aj (x, y) for j ∈ ZJ ; (ii) is represented as
the correlation of the pattern with the object image, i.e.,

b j =
∑

x

∑
y

A j (x, y)t (x, y) for j ∈ ZJ . (1)

The set of total object interactions is recorded with a
bucket detector and referred to as bucket values or bucket
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FIG. 1. Schematic for computational variant of classical ghost transmission imaging using a single nonconfigurable mask to create the
patterned illumination. (a) Pattern characterization with a pixelated detector, (b) bucket measurements with a single sensor.

measurements. The model for this measurement process is a
set of linear equations that can be represented in matrix form
as

At = b, (2)

where t is the object image, t (x, y) in vector format, the matrix
A has J rows with each row being the illumination pattern,
Aj (x, y), as a row vector, and b is the set of J corresponding
bucket values.

The illumination patterns Aj (x, y) can be thought of as a set
of basis vectors, while the corresponding bucket values bj are
the coefficients. In that sense, GI records the image in another
space and to map the measurements back into image space
is to invert the process, i.e., t = A−1b. As the intensity mea-
sured from our illumination patterns is always non-negative,
basis vectors are not orthogonal (unless the mask is a delta
function, i.e., a pinhole). By removing the mean value from
the measured illumination patterns (as well as bucket values)
they can be made closer to orthogonal. We can then rewrite
the background-subtracted measurements as

Ãt = b̃, (3)

where

Ã j (x, y) = Aj (x, y) − 1

J

∑
k

Ak (x, y)

= Aj (x, y) − 〈A(x, y)〉 (4)

and

b̃ j = b j − 1

J

∑
k

bk = b j − 〈b〉. (5)

If this set of background-subtracted illumination patterns (or
basis vectors) are orthogonal, then the inverse operator is the
adjoint operator, i.e., ÃT = Ã−1.

A set of random illumination patterns are not orthogonal
but can be considered close to orthogonal in some sense and
we can approximate ghost-image recovery using the adjoint
operation as follows:

t ≈ ÃT b̃. (6)

This expands to give the conventional ghost-imaging recov-
ery equation commonly reported in the literature (see, e.g.,
[4,36]):

t (x, y) ≈
∑

j

A j (x, y)(b j − 〈b〉). (7)

Rather than subtracting the mean bucket signal in the ad-
joint operation, the background signal can be compensated
for by performing one Landweber iteration [37], with the
initial estimate being a constant image equal to the mean
transmission of the object over all measurements. This can
be efficiently calculated as

t (x, y) ≈ μ +
∑

j

A j (x, y)

⎛⎝b j − μ
∑

x

∑
y

A j (x, y)

⎞⎠, (8)

where

μ =
∑

j

b j

/ ∑
j

∑
x

∑
y

A j (x, y). (9)

This was shown in Ref. [38] to be more robust than the con-
ventional adjoint method, particularly for weakly interacting
objects that result in high-intensity bucket signals.

While this provides an approximate inversion, the problem
itself may not have a solution or may have many solutions, de-
pending on whether it is underconstrained or overconstrained.
A better inversion in general may be formed using the Moore-
Penrose pseudoinverse as follows:

t = (ÃT Ã)−1ÃT b̃. (10)

In cases where the matrices become too large to compute
the inverse, algorithms such as the Kaczmarz method [39]
or Landweber iteration converge to the same result in an
iterative fashion, and exiting the iteration early (i.e., be-
fore convergence) serves as a regularization method. The
Kaczmarz method proceeds as follows:

t̂k+1 = t̂k + λÃT
j

b̃ j − Ã ĵtk

‖Ã j‖2
. (11)

Here k denotes the iteration number, λ is a relaxation parame-
ter in (0,1], j = k(mod J ) (although often with a randomized
order), and Ã j is the jth row of A representing the jth mean-
corrected illumination pattern. The initial estimate of t, i.e.,
t0, is typically the zero vector.

We can see from these equations that the properties of the
illumination patterns in A are fundamental to the performance
of classical ghost imaging. In the context of classical x-ray
and neutron ghost imaging considered here, together with
other forms of classical ghost imaging employing radiation
and matter wave fields for which dynamic configurable beam
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shaping elements do not exist, these patterns may be generated
by a translating or rotating a nonconfigurable mask. Similar
remarks apply to visible-light ghost imaging (and the closely
related field of single-pixel-camera imaging) using rotating
nonconfigurable masks [27–29]. In what follows we seek to
provide some mask analysis tools to be able to choose an
appropriate mask for a given GI experiment.

III. ILLUMINATION PATTERN CATEGORIES

There are many different types of illumination pattern that
can be produced, using masks that introduce either attenuation
contrast or propagation-based refraction contrast [30] to the
incident illumination. Here we summarize the types of mask
explored in this work. Broadly speaking, these may be par-
titioned into the categories of (i) masks made from natural
materials with a randomized structure, and (ii) masks that
are specifically designed and fabricated with certain desirable
properties. Example illumination patterns from each type of
mask are depicted in Fig. 2.

Natural random structures are commonly found as grain
distributions such as sandpaper and bead packs, or their dual
structure, foams, that are typically metallic. Some example
illumination patterns in this class are presented in column
(i) of Fig. 2 from experiments with either neutron or x-ray
illumination. We have included a nickel foam, coarse and finer
grit sandpaper, and grain packs of steel (ball bearings, nuts,
bolts, and washers) and iodized table salt. Care must be taken
when selecting and/or creating these masks to ensure some
degree of randomness. For example, a foam with uniform
bubble size or bead pack with uniform bead size may exhibit
regular crystalline properties with too much symmetry (i.e.,
too high a degree of medium-range order) and therefore yield
insufficient unique patterns for GI.

Before proceeding, there are two points we wish to empha-
size, regarding masks made from natural random structures:

(a) Random or near-random bubble networks, such as
metallic foams, will typically have a projected density
distribution that has a significantly smaller characteristic
transverse length scale, in comparison to the characteristic
diameter of the bubbles.1 This implies that the autocorrelation
of the projected density, which is closely related to the point
spread function (PSF) associated with the simplest forms of
computational ghost imaging [21,26,38], will be surrounded
by an annular halo whose radius is on the order of the mean
bubble size. This annular halo, while often small in amplitude
relative to the central autocorrelation (PSF) peak, may
nevertheless be comparable in strength to the central peak in
an integrated-signal (total power) sense. Such PSF rings or
annular halos can cause serious problems with ghost-imaging
reconstructions. To avoid such problems, the mask transverse
translation between measurements, or stride, should be bigger
than the uniform bubble dimension, rather than merely bigger
than the characteristic size of the speckles generated by the
mask, when bubble-network masks are employed for the pur-

1This statement applies to random-bubble slab-type masks whose
longitudinal slab thickness is significantly larger than the bubble
diameter.

FIG. 2. Column (i): Example (128 × 128)-pixel patterns formed
by natural random structures after illumination with x rays. (a-i)
Nickel foam (pixel pitch 30 µm), (b-i) 80 grit sandpaper (pixel
pitch 28 µm), (c-i) 120 grit sandpaper (pixel pitch 28 µm); and il-
lumination with thermal neutrons with pixel pitch of 101 µm: (d-i)
ball bearings, nuts, bolts, washers inside concentric Al cylinders,
(e-i) large-grained, iodized, table salt inside concentric Al cylinders.
Column (ii): Example (47 × 47)-pixel patterns generated to simu-
late patterns from natural random structures. (a-ii) Gaussian random
noise, (b-ii) Gaussian random noise convolved with a kernel with
σ = 1 pixel, (c-ii) binary random noise, (d-ii) binary random noise
convolved with a kernel with σ = 1 pixel and (e-ii) 2 pixels. Column
(iii): Example (47 × 47)-pixel patterns generated to form binary de-
signed and fabricated masks. (a-iii) A URA mask that forms part of
an orthogonal set, (b-iii) an FRT based mask that forms part of an
orthogonal set, (c-iii)–(e-iii) fractal masks generated with (α, β ) =
(1.0,0.02), (1.1,0.02), (1.0,0.01).

poses of classical ghost imaging. A similar statement applies
to the inverse of bubble-network masks, such as slab-type
masks composed of randomly packed spheres or ellipsoids,
when the slab thickness is much larger than the characteristic
diameter of the particles.

(b) Some self-assembled random structures, such as
masks associated with the Ising model in the vicinity of a
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thermodynamic phase transition [40], have a hierarchy of
speckle sizes that corresponds to a random fractal over a spec-
ified range of length scales [18]. Such masks are statistically
self-similar over a range of length scales, which has the very
useful property that they are invariant with respect to a change
of spatial scale, over a specified range of length scales. These
random-fractal masks, which have a range of speckle sizes,
may be useful in classical ghost imaging contexts where a
range of spatial resolutions may be used to interrogate an
object, e.g. with a low-resolution “scoping scan” to identify
a particular region or regions of interest, followed by a finer-
resolution ghost-imaging experiment localized to the region
or regions of interest. For our purposes, such random-fractal
masks will be taken to have an inverse-power-law dependence
of their power spectrum with respect to radial spatial fre-
quency, over a Fourier-space annulus whose inner and outer
radii delineate the range of length scales over which the
random-fractal mask is statistically self-similar.

In order to simulate illumination patterns from natural
masks, here we have used several types of random noise:

(1) normalized Gaussian random noise, i.e., A(x, y) =
min(max (a(x, y), 0), 1), where a(x, y)

iid∼ N (μ, σ 2), with
mean μ and standard deviation σ ;

(2) uniform random noise in the range (0,1), i.e., A(x, y)
iid∼

U (0, 1);
(3) binary random noise (i.e., discrete uniform noise from

{0, 1}), i.e., A(x, y)
iid∼ Bernoulli( 1

2 ).
Illumination patterns with different feature sizes and/or

resolution are simulated by convolution of the random masks
with a Gaussian blurring kernel, i.e., A ∗ K , where K is de-
fined as follows:

K (x, y) = 1

2πσ 2
exp[−(x2 + y2)/2σ 2]. (12)

Here, the standard deviation σ determines the resulting fea-
ture size. Assuming that the full-width at half-maximum is a
reasonable measure of the feature size, we can estimate these
features to be distributed around 2.355σ pixels in diameter.
The resulting pattern may also be binarized using a thresh-
olding operation. Some examples of these simulated random
illumination patterns are presented in column (ii) of Fig. 2.

The set of illumination patterns employed for GI, i.e.,
Aj (x, y) in Eq. (1), is formed by taking a sample, or subset,
of the larger pattern A as follows:

Aj (x, y) = A(x j + x, y j + y), (13)

for some offset (x j, y j ) associated with pattern j. An example
of offsets that form an M × quot(J, M ) grid of mask subsets
can be defined as x j = sxrem( j, M ) and y j = syquot( j, M ) for
some integer M and strides sx, sy ∈ Z. Note that the required
range, or footprint, of (x, y) in A must be much larger than
that for each mask Aj and increases in proportion to the stride
selected. This translating mask definition of patterns is distinct
from having separate patterns Aj built using the methods
described above; here, the different patterns Aj can have some
overlap. An important benefit of this construction is that much
smaller overall patterns A need to be built: using distinct
Aj requires a total of JNxNy pixels (where J is typically of
order NxNy), but overlapping Aj requires on the order of only

Nx + Ny pixels (depending on the strides sx and sy). Where
pattern construction is difficult and/or expensive, using over-
lapping patterns can have significant practical benefit.2

In order to minimize fabrication complexity, designed
masks are typically binary. The two-dimensional (2D) binary
patterns described above that simulate natural random struc-
tures can be manufactured in a reasonably straightforward
manner (depending on the scale involved). Apart from ease of
manufacture, a further benefit of binary masks is that an illu-
mination pattern with a binary distribution maximizes pattern
variance; this is important since the signal in ghost imaging
is related to pattern variance [41]. Binary masks can have
a random structure, be designed to form an orthogonal set,
or have other desirable properties. In this work we will look
at the performance of random binary masks with a range of
feature sizes (as demonstrated in Figs. 2(c-ii)–2(e-ii).

We also utilize masks that are orthogonal under translation,
such as those based on uniformly redundant arrays (URA)
constructed using quadratic residues [42], and a technique
based on the finite Radon transform (FRT) [43]. We have prev-
iously presented and explored these patterns as potential
masks in Ref. [44]. The magnitude of the Fourier transform
of these URA and FRT orthogonal masks is uniform across
all spatial frequencies. This means that each measurement,
using these masks to generate illumination patterns, probes
all frequencies simultaneously. An example of both of these
mask categories is presented in Figs. 2(a-iii) and 2(b-iii),
respectively.

Binary masks must typically be fabricated with a specific
resolution in mind and their properties (particularly the
pattern variance) often degrade quickly as resolution is
coarsened. Here we explore binary fractal masks that maintain
statistical properties over a range of spatial frequencies
and enable flexibility in resolution. A degraded ghost
image reconstructed at a high resolution can still achieve a
reasonable low-resolution image in this case. One method to
generate fractal masks is by convolution of a random binary
mask with a blurring kernel that decays with a power law in
spatial frequency (kx, ky) such as

H (kx, ky ) = γ√
k2

x + k2
y

α

+ β
, (14)

with α around 1, β close to zero, and γ set to normalize the
result (cf. Refs. [45–47]). Convolution can then be performed
in the Fourier domain, i.e., A′ = F−1(F (A)H ) and the result
binarized by thresholding. Example illumination patterns
with α ∈ {1.0, 1.1} and β ∈ {0.01, 0.02} are presented in
Figs. 2(c-iii)–2(e-iii).

Another set of binary masks that should be mentioned is
the Hadamard masks. These are an orthogonal set of patterns
that can be considered to form a basis set for a binary form of
Fourier transform. They are commonly employed in optical
GI using rapidly transformable discrete structuring methods

2We note that for classical GI with visible light, devices such as
projectors and spatial light modulators make constructing nonover-
lapping patterns straightforward.
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such as a projector, SLM, or DMD. They are less practi-
cal when considering mask fabrication since each mask is
a unique pattern (as discussed in more detail in Sec. IV C).
By design, each pattern probes a limited range of spatial
frequencies. This can be useful since it provides multiscale
capabilities, but is not a good choice of basis if the object
being imaged is sparse in Fourier space. We believe the key
properties of Hadamard masks, insofar as they pertain to the
key themes of this study, are captured by the other masks
explored in this work.

In the remainder of this paper, we explore the properties
and performance of the patterns described in this section, in
the context of GI. We do so with the aim of establishing some
rules of thumb to enable appropriate mask selection and/or
design for a given physical scenario.

IV. EFFECT OF ILLUMINATION PATTERN PROPERTIES
ON GHOST-IMAGE QUALITY

A. Achievable resolution

The spatial resolution of a ghost-imaging system can be
predicted by the properties of the point-spread-function (PSF)
of that system. The PSF is the average impulse response of the
entire computational imaging process. A point object, such as
a pinhole, serves as the impulse input and the PSF is defined
as the average representation of that point or impulse as it
is scanned over the entire imaging field of view (FOV). The
result of imaging an object with the system is approximated as
the ideal image convolved with the PSF. Thus, the sharpness
of the PSF determines the achievable spatial resolution of
the imaging system. An example metric to specify spatial
resolution, in this context, is the full-width at half-maximum
(FWHM) of the PSF [48].

Let the Green’s function G(x∗,y∗ ) describe the point spread
effects about the point (x∗, y∗). Note that a recovered ghost
image can be composed as a weighted sum over the set of
Green’s functions. G(x∗,y∗ ) can be simulated by applying the
ghost-imaging process (simulating the experimental measure-
ments and image recovery) to the Dirac delta at (x∗, y∗),
i.e., δ(x′ − x∗, y′ − y∗). The expected Green’s function, or the
average over all coaligned Green’s functions, can be realized
by shifting each G(x∗,y∗ ) to be about a common point. Shifting
about (x, y) = (0, 0), the PSF is defined as

PSF(x, y) = 1

NxNy

∑
x∗

∑
y∗

G(x∗,y∗ )(x + x∗, y + y∗). (15)

Since classical ghost imaging is a computational imaging
system, the PSF depends on the image reconstruction method
used. In this section we discuss two image reconstruction
schemes: (a) well-conditioned ghost-image recovery using the
differential adjoint of the imaging system [Eq. (8)], and (b)
an approximation to the pseudoinverse using Kaczmarz iter-
ation [39]. We denote the PSF associated with each of these
methods as the adjoint PSF and inverse PSF, respectively. The
adjoint and inverse images and corresponding PSF for several
types of illumination patterns are presented in Figs. 3 and 4.

Note that for orthogonal sets of illumination patterns, the
adjoint PSF is equal to the inverse PSF [see Fig. 3(a)] and is a
delta function with a FWHM of 1.0 pixel (px) [see Fig. 4(a)].

FIG. 3. Example (i) (47 × 47)-pixel illumination patterns, (ii)
adjoint reconstruction, and (iii) four iterations of Kaczmarz recon-
struction. All examples contain 2209 patterns in the set and the
grayscale window for the example patterns shown is [0,1]. (a) Uni-
formly redundant array (orthogonal under translation), (b) Gaussian
random, (c) Gaussian random blurred by a Gaussian kernel with
σ = 1.0 px, (d) random binary, (e) random binary with larger feature
sizes. All patterns were generated by scanning a larger pattern in a
square grid pattern with step size of 1 px.

However, in general, the adjoint PSF will be more diffuse than
the inverse PSF. Observe from the examples in Fig. 4 that for
the Gaussian and binary random masks with sharp pixel-sized
features [examples (b) and (d), respectively], that the adjoint
PSF is as sharp as the inverse PSF (both with a FWHM
of 1 px). Looking at the corresponding example adjoint and
Kaczmarz iteration reconstructed images in Fig. 3 we see that
all images have a similar sharpness but the adjoint images,
(ii), have more artifacts that are cleaned up by iteration in
(iii). While the PSF profiles have tails close to zero, each
specific instance of the Green’s function for these masks has
large positive and negative variation in the tails that produce
these artifacts but cancel each other out in the determination
of the PSF. When the patterns are blurred or their feature size
increases [examples (c) and (e), respectively, in Figs. 3 and 4],
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FIG. 4. The (i) adjoint and inverse PSF, and (ii) FRC analysis
associated with the sets of ghost images from Fig. 3. The legends in
(e) apply to all plots.

then the adjoint PSF becomes significantly degraded [FWHM
of (c) 3.7 px and (e) 2.5 px], while the inverse PSF is only
slightly affected [FWHM of (c) 2.5 px and (e) 1.2 px].

Another method to determine image resolution is Fourier
ring correlation (FRC) [49,50]. FRC estimates resolution by
correlating two independent images (or measurements) of the
same object over a range of spatial frequencies (i.e., rings
in Fourier space). Low correlation occurs when the signal is
dominated by noise or artifacts and indicates the limit to mea-
surement resolution. We can see this in the plots in Figs. 4(c)
and 4(e), where the adjoint curves cross the 2σ threshold
at 0.28/px and 0.33/px, respectively. This corresponds to a
FWHM of 3.6 and 3.0 px, respectively, which corresponds
with the adjoint PSF analysis. Also we observe that, for the

Kaczmarz curve in Fig. 4(c-ii), resolution can be estimated as
0.40/px = 2.5 px; this again matches the inverse PSF analysis.

In light of the remarks above, this section explores the
factors that affect the PSF and thus ghost-imaging resolution.

1. Limitation of pattern characterization resolution

A factor that affects the sharpness of both the adjoint and
inverse PSF, and sets the upper limit to ghost-imaging sharp-
ness, is the resolution to which the illumination patterns can be
characterized. No matter how much addition and subtraction
of illumination patterns is performed, high spatial frequencies
that are not measured, cannot be recovered.

A simple example of this limitation can be seen by compar-
ing examples (b) and (c) in Figs. 3 and 4. Here the illumination
pattern in both cases is created from a scanned random Gaus-
sian mask. In example (b) the mask was characterized with
1-px resolution, while in example (c) the imaging system
had a blurring kernel with σ = 1.0 px (corresponding to a
resolution of 2.4 px). The degradation of both the adjoint
and inverse PSF can be observed. The FWHM of the inverse
PSF and adjoint PSF should be 2.4 px and 2.4

√
2 = 3.3 px,

respectively, and corresponds to 0.42/px and 0.3/px in FRC
analysis. These estimates are consistent with the values mea-
sured by simulation.

It can also be seen from the resolution star images re-
constructed in Fig. 3(c) [when compared with those from
Fig. 3(b), where pattern characterization was ideal] that the
Kaczmarz iterations, while able to considerably improve the
image quality, do not alter the limitation that high-frequency
information remains inaccessible.

Note that, to ensure robustness, the mask translation (or
stride) used between each pattern subset illuminated should be
selected to be greater than the resolution to which the mask is
characterized. For the blurred Gaussian pattern, example (c) in
Figs. 3 and 4, the resolution could be estimated as the FWHM
of the Gaussian used to blur the image, i.e., 2.4 px. The results
when using patterns with a 3-px step size in mask translation
are presented in Figs. 5 and 6, example (b). Here we observe
that the tails on the adjoint PSF are significantly improved and
the corresponding adjoint image recovered is much improved
in comparison to the 1px translation case. FRC analysis shows
similar resolution, however, the effects from artifacts cause
less degradation at lower spatial frequencies.

2. Effect of minimum feature size in patterns

When selecting an appropriate natural material for use
as a mask, such as a foam or grain pack, it is useful to
understand the importance of feature size and characteristic
lengths. What size grains should be selected? What mask
transverse-translation step size should be used between each
pattern used?

Some examples of binary patterns with different feature
sizes and different pattern strides (translation step sizes), ex-
amples (c)–(f), are presented in Figs. 5 and 6 for comparison.
In all cases the patterns are characterized to the maximum,
2-pixel, resolution. We observe that the adjoint PSF has a
triangular shape resulting from the convolution of step func-
tions of binary features with the specified size. It can also
be observed from the inverse PSF profiles, the Kaczmarz
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FIG. 5. Example (i) (47 × 47)-pixel illumination patterns, (ii)
adjoint reconstruction, and (iii) four iterations of Kaczmarz recon-
struction. All examples contain 2209 patterns in the set and the
grayscale window for the example patterns shown is [0,1]. (a) Gaus-
sian distribution blurred by Gaussian with σ = 1.0 px [same as
Fig. 3(c)], 1-px stride; (b) blurred Gaussian distribution, 3-px stride;
(c) random binary with medium feature sizes [same as Fig. 3(e)],
1-px stride; (d) random binary with medium feature sizes, 3-px
stride; (e) random binary with large feature size, 1-px stride; (f)
random binary with large feature size, 6-px stride. All patterns were
generated by scanning a larger pattern in a square grid pattern with
step size as indicated by stride.

reconstructed images, and the FRC plots, that Kaczmarz it-
eration can attain maximum resolution. In an ideal scenario,
feature size in the masks is not important, rather the critical
factor is the sharpness of the features in the patterns.

In practice, however, these systems are ill conditioned and
iterative inversion schemes are highly unstable (subject to

FIG. 6. The (i) adjoint and inverse PSF, and (ii) FRC analysis
associated with the sets of ghost images from Fig. 5. The legends in
(f) apply to all plots.

noise, pattern misalignment, etc.). It is prudent not to rely
on these schemes to extract the ghost-imaging information.
Conversely, the adjoint is a robust operation and orthogonal
masks are ideal in this situation as the adjoint is then equal to
the inverse. However for other types of mask, we can improve
the adjoint reconstruction by making the set of patterns closer
to orthogonal. This can be achieved by setting the pattern
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transverse-translation step to be greater than or equal to the
minimum feature size. The results in examples (b) and (d)
of Figs. 5 and 6 show that the adjoint image is significantly
improved by this strategy. The tails of the adjoint PSF ap-
proach zero in these cases; it is these nonzero tails in (a)
and (c) that can cause the low-frequency artifacts. We also
note that the artifacts in the Kaczmarz-reconstructed images
are higher frequency (more noiselike). In the FRC plots of
Fig. 6 we observe that the lower-frequency artifacts in (a) and
(c), with 1-px step-size pattern translation, cause significant
degradation of the correlations at the coarse scale, making it
difficult to even resolve the corresponding image in Fig. 5. We
observe a more typical FRC trend for examples (b) and (d),
that have larger step-size pattern translation, with high corre-
lation at low frequencies, up to a relatively sharp transition
into the levels of noise.

3. Optimizing pattern translation stride

We observe in Figs. 5 and 6 that pattern translation stride,
or step size, can affect the robustness and quality of ghost-
image recovery depending on the feature sizes present, as well
as the resolution of pattern characterization. In this section we
present three methods to estimate an appropriate transverse-
translation step size, to optimize GI performance.

Method 1. Analyzing the Fourier spectral properties of
the patterns, we can identify a characteristic length scale
(if present3). A stride equal to the characteristic length (or
feature size) is the minimum required to avoid pattern re-
dundancy. The power spectra of Gaussian and binary (47 ×
47)-pixel masks with non-trivial properties used earlier are
presented in Fig. 7(a). The angular-averaged power spec-
trum gives the signal strength or variance of the features at
each resolution (or spatial frequency). It can be defined as
follows:

P(k) = C
∑

kx

∑
ky

|F{A}(kx, ky)|2δ(k −
√

k2
x + k2

y

)
. (16)

Here F{ f }(kx, ky) denotes the 2D discrete Fourier transform
(DFT) of an image, f (x, y), k is the radial spatial frequency
(presented in units of cycles per image), and C is a normal-
ization constant that is chosen to make the maximum value
equal unity. Note that in Fig. 7(a) the horizontal axis has been
modified to be a function of step size, defined as half a wave-
length or 47/2k for spatial frequency k. We have investigated
the following: (i) Gaussian distributions blurred by a Gaussian
with σ = 1 px [as used in Fig. 3(c)]; (ii) binary distributions
with medium-sized features [approximately 2.6 px, similar to
that for (i)]; (iii) binary distributions with large-sized features
(approximately 4.8 px). We observe in this figure that the
modified power spectrum of both (i) and (ii) peak at a step
size or stride of 4 px. The power spectrum of (iii) peaks at a
step size of approximately 8 px.

Method 2. Given a master mask A, this method simu-
lates GI using patterns from subsets of this mask that are
selected with different strides, investigating the normalized

3We here allude to the fact that, for fractal masks, a characteristic
length scale does not exist.

FIG. 7. Methods to determine translation step size. Each demon-
stration is applied to (47 × 47)-pixel masks with dotted lines
indicating a Gaussian distribution blurred by a Gaussian with σ =
1.0, dashed lines indicating a binary distribution with a medium
feature size (approximately 2.6 px), and dashed-dotted lines indi-
cating a binary distribution with a large feature size (approximately
4.8 px). (a) Normalized mask power spectrum with step size defined
as half a wavelength, i.e., 47/2k for spatial frequency k; (b) normal-
ized mean-square error (MSE) as a function of step size; (c) stable
rank as a function of step size.

mean-square error (MSE) of the adjoint image. Here the mean
is removed from the input and adjoint images and they are
scaled to have a standard deviation of 1.0 before calculating
the mean-squared difference. A plot of MSE with pattern
stride has been presented in Fig. 7(b) for the set of masks
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under investigation here. Again we observe that (i) and (ii)
show similar trends, with MSE reducing rapidly until the
stride is 3 px. The plot for (iii) seems to decrease up to
approximately a 6-px stride, beyond which it is flat.

Method 3. Again given a master mask A, and a field of
view, the stable rank [see Eq. (17) in Sec. IV B] as a function
of pattern stride stabilizes once stride is sufficiently large.
Stable rank has been plotted for the example patterns in
Fig. 7(c). The plots exhibit a more gradual transition than
MSE [seen in Fig. 7(b)] and a more conservative estimate of
required stride emerges. Here, (i) and (ii) both seem to peak at
approximately 5 px, while (iii) peaks at approximately 8 px.

Each of the presented stride-determination methods has
advantages and disadvantages and could be preferred in dif-
ferent scenarios. Moreover, other methods exist. There are
four length scales to consider in the determination of mask
stride: (i) desired resolution of the object, (ii) characteristic
length scale of the object, (iii) resolution of the mask or pat-
tern, and (iv) characteristic length of mask features. Method
1 requires the minimum amount of information (even just a
single pattern image could be enough) and is the simplest
computationally, requiring just analysis of the Fourier trans-
form of the pattern. It is therefore ideal for quick analysis of
natural mask patterns. However, not all mask patterns contain
a characteristic length scale, e.g., fractal masks and masks
that are orthogonal under translation (since the latter have a
flat Fourier power spectrum); in this case we would require a
stride that is greater than all remaining length scales (i)–(iii)
above since a stride that is too small collects redundant infor-
mation. Method 2 is more generally applicable and potentially
more robust than method 1, but is computationally more ex-
pensive, not user friendly for experimentalists, and requires
knowledge of the full master mask. Since GI is simulated in
this method, it requires an object or image; while this makes
the method less general, it does have the advantage that it can
also include object properties (i) and (ii) in the determination.
It could also be used to validate or verify the results from
method 1. Method 3 is similar to method 2 in complexity
and information required. It is more general, being purely
based on properties of the masks, however, it does not probe
length scales (i) and (ii) and it does not seem to be as precise.
Finally, the field of view and/or number of masks used in the
calculation must be limited in scope, to be able to perform
singular value decomposition of the matrix A.

B. Recorded information

While the number of measurements taken in ghost imaging
certainly dictates experiment time, it may or may not also
dictate the image quality. More bucket values recorded with
new illumination patterns will generally yield a superior ghost
image. However, if a new illumination pattern is a copy of a
previous one, or can be constructed as a linear combination of
two or more previous patterns, then the new measurement is
redundant. At best it merely contributes to the signal quality of
previous measurements. However, from an experimental point
of view it would be better to increase the exposure time (and
thus signal-to-noise ratio) of the existing measurements than
to add this new measurement since translating the mask to

this new position adds dead time to the experiment and adds
the potential for positioning errors.

A set of maximally independent illumination patterns is re-
quired to minimize these wasted measurements. The number
of effectively unique measurements (or nondegenerateness)
can be defined as the rank of the set of illumination patterns in
matrix form A. Here, A has the number of rows equal to the
number of patterns and the number of columns equal to the
number of pixels representing each pattern. Theoretically the
rank can be defined as the number of nonzero singular values
of A, however, practically speaking it is defined as the number
of singular values above some noise floor.

Let A = U�VT be the singular value decomposition of A
where the columns of U and V are the left- and right-singular
vectors of A, respectively. � is a diagonal matrix with its
entries being non-negative real numbers that are the singular
values of A. These singular values when ordered from largest
to smallest are denoted σ1 � · · · � σn. Here n is the minimum
of the number of patterns and the number of pixels.

To avoid the instability of rank determination, we recom-
mend using the numerical rank proposed by Rudelson and
Vershynin [51]. It is defined as the Frobenius norm of A
divided by the spectral norm of A, i.e.,

rank(A) = ‖A‖2
F

‖A‖2
2

=
∑

j σ
2
j

σ 2
1

. (17)

This is also known as the stable rank since it avoids specifying
an arbitrary cutoff noise level as required to compute the exact
rank of a matrix. It always assumes a value less than or equal
to the exact rank (but exactly equal if A is orthogonal or has
exact rank 1) and is stable under small perturbations of A
such as from the presence of noise. The normalized singular
vales for the example illumination patterns in Fig. 3 have
been plotted in Fig. 8(a). From these singular values we can
calculate the stable rank according to Eq. (17).

For the singular value decomposition (SVD) curves pre-
sented in Fig. 8(a), the stable ranks are as follows: URA
patterns, 2110; Gaussian patterns, 361; blurred Gaussian pat-
terns, 59.1; binary patterns, 391; binary patterns with medium
sized features, 92.1. The full rank of all these systems is 2209,
so we observe that (apart from the orthogonal case of the
URA patterns) the stable rank can significantly underestimate
the rank. For example, for the Gaussian and binary patterns,
the singular values reduce almost linearly in Fig. 8(a), hence,
one would assume a conventional rank estimate to be close to
full in these cases. However, looking at the results in Fig. 3
(particularly the adjoint recovered image), it does give a good
indication of the relative performance of the sets of patterns.
We therefore propose that the stable rank can be used to
compare patterns.

To investigate the effect of increasing pattern translation
step size, or stride, between measurements, the normalized
singular values for the examples in Fig. 5 have been presented
in Fig. 8(b). For the Gaussian-blur case, the rank is 77.4 for a
stride of 1 px; this becomes a rank of 104 with a stride of 4 px.
For the binary patterns with medium sized features, the rank is
70.0 when the stride is 1 px, while rank increases to 170 when
stride is 3 px. For the binary patterns with large sized features,
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FIG. 8. (a) The normalized singular values plotted in descending
order of magnitude for (a) the set of examples included in Fig. 3, and
(b) the set of examples included in Fig. 5.

the rank is 26.0 when the stride is 1 px, while rank increases
to 60 when stride is 6 px.

From the shape of the plots in Fig. 8(b), the reported values
of rank, and the results in Fig. 5, we observe that increasing
the step size to be similar to feature size improves all metrics.
We observe from the plots in Fig. 8(b) that the normalized
singular values are improved with a larger stride for σ values
greater than 0.003. This is not too important since, beyond
this, information can only be extracted in cases with extremely
high signal-to-noise ratio measurements.

Note that here we use normalized singular values (scaled
so σ1 = 1) rather than the absolute singular values. This is be-
cause we are not considering the absolute level of information
in each mask, which is affected by mask material properties
such as mean and variance in mask transmission (opacity).
Our concern is the relative amount of extra information pro-
vided by each mask pattern or, conversely, the relative amount
of redundancy in each extra mask pattern. We conclude by
noting that the actual (non-normalized) singular values are
used in Sec. IV D 1 when considering the robustness of masks
to noise.

C. Information density, or mask footprint

Assuming that a mask is being used to generate the set
of patterned illuminations in classical GI, then ideally the

smallest mask possible is preferable, without sacrificing re-
constructed ghost-image quality. A smaller mask requires
less translation (which generally allows cheaper or more pre-
cise translation stages), less material, and less fabrication per
mask. We want to minimize the footprint of the total set of
patterns, or maximize information content achievable for a
given mask size. There are two categories of considerations:
those for designed masks and those for natural masks.

For natural masks, typically (but not necessarily) com-
posed of grains or foams, the step size, or stride, between illu-
mination patterns generated is one of the primary properties
dictating the required total mask dimensions. Section IV A
demonstrates that the optimal step size is determined by
the feature size present in the image of the mask; a mask
composed of smaller features is therefore preferable by this
metric. However, smaller features typically result in less pat-
tern contrast and perhaps a tradeoff must be made, e.g., when
choosing between sandpaper grades, or perhaps a different
grain material could be used, e.g., metal filings instead of sand
grains.

For designed masks there are more choices to make; one
would ideally select an orthogonal set of masks. One of the
most commonly used masks for this case is the Hadamard
basis set. However, this requires an entirely unique pattern
for each measurement and requires an extremely large mask
footprint. Given a set of (N × N)-pixel patterns, the total mask
size scales with N4 (since we require N2 unique patterns each
of N × N pixels). Even for modest image dimensions like
32 × 32 pixels, a fabricated mask that is 1000 times larger
than the imaging FOV is required. Masks that are orthogonal
under translation are preferable in this sense since these can
be fabricated as a (2N − 1)2 pixel array and so scale with
N2 rather than N4. Some example masks in this category
include uniformly redundant arrays (such as those generated
by quadratic residues [42]), or masks based on the finite
Radon transform (e.g., [43]). Many of these masks should also
be good candidates for compressed sensing since they have
restricted isometry in many compressible transform spaces
(Ref. [52] provides an excellent introduction to compressed
sensing).

Another question that arises in designed masks is that
of differential masks [32,38,53,54]. These require a pair
of masks for each illumination pattern: one to encode the
positive information of the pattern and one to encode the
negative information. This doubles the mask footprint re-
quired for a given set of patterns. Positive and negative mask
pairs are certainly a preferable option when implementing
ternary, {−1, 0, 1}, patterns that contain many zeros, e.g.,
Haar wavelet patterns, and the overall experiment objective
is to minimize dose. They are also useful for removing the ef-
fects of a slowly varying background signal (see Sec. IV D 3).
However, if mask footprint is a major consideration, then this
could also be achieved by monitoring the background signal
with an additional independent sensor. Note that, from the
perspective of photon shot noise, binary differential masks
with 50% coverage provide no advantage over conventional
binary masks, however, they can be advantageous experimen-
tally when an unstable but slowly varying illumination flux
and/or profile is unavoidable; this point is discussed in more
detail in Sec. IV D 3.
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D. Robustness to experimental limitations

1. Robustness to photon shot noise

Here we consider experimental limitations related to mea-
surement noise that can compromise ghost-image quality.
These include (1) limited experiment time which, due to
photon shot noise, limits the signal-to-noise ratio (SNR) of
the measurements; (2) the exposure time, e.g., controlled by
a shutter, may have limited accuracy; or (3) the flux of the
illumination may not be spatially constant and may also have
a time-dependent component. Illumination patterns that are
robust to these limitations are preferable. What property of the
patterns can be used to predict or compare performance in this
respect? Here we will first present a technique to demonstrate
and compare robustness by simulation, then we will show that
the decay rate of the singular values of the set of patterns is a
good predictor of robustness.

Photon shot noise becomes significant for limited exposure
times or photon flux, i.e., low dose, and is modeled by the
Poisson distribution. The variance in the number of photons
measured equals the expected number of photons. We can ex-
plore the quality of ghost-image reconstruction as a function
of measured signal-to-noise ratio (i.e., upstream photons per
pixel per measurement) by simulation.

In Sec. IV A we found that the FWHM of the PSF (ei-
ther adjoint or inverse) is not a good metric of resolution
since it is the tails of the PSF that can degrade image qual-
ity. Instead, we propose that resolution determined by FRC
be used as a metric. In what follows, for each photon flux
under investigation, we have averaged the FRC plots for
100 binary images of circles with uniform random radii and
center positions. We have compared both the adjoint and
inverse (four Kaczmarz iterations, λ = 0.5) reconstructed im-
ages with the input images and define resolution where the
FRC plots cross the one-bit reference line. The results for
the example illumination patterns in Fig. 4 are presented in
Fig. 9.

We observe in Fig. 9 that under these noisy conditions,
Kaczmarz iteration does little to improve the resolution over
adjoint reconstruction for the masks with small feature sizes,
i.e., URA, Gaussian, and binary patterns. However, it can
improve performance for those with larger feature sizes, i.e.,
the blurred Gaussian and binary mask with medium sized
features. Looking at when each plot breaks from full res-
olution, we see that the URA and binary masks provide
full resolution under the most noisy conditions and have
very similar performance; the binary mask with medium
feature size is next best, followed by the Gaussian mask;
the blurred Gaussian mask has the worst performance. We
also note that the rate of resolution degradation is much
slower for the masks with larger feature size; they cross the
plots of small-feature masks and become preferable in certain
scenarios.

From the normalized SVD curves in Fig. 8(a), we can-
not predict these results. We expect to see that the URA
mask provides the best resolution; the small-feature Gaus-
sian and binary masks should be next and have very similar
performance; the large-feature masks should give the worst
resolution, with the Gaussian mask degrading at a higher noise
level but improving, relatively, as noise increases.

FIG. 9. Achievable GI resolution as a function of signal-to-noise
ratio (modified through input x-ray flux) for the set of mask exam-
ples included in Fig. 3. Peak signal-to-noise ratio (PSNR) for this
simulation with Poisson noise is defined as N0/

√
N0 for incident

illumination with an expectation of N0 photons per pixel.

This can be understood more clearly when considering the
factors affecting GI performance under low-dose conditions.
From Ref. [41] we note that the MSE of GI reconstruction is
proportional to the pattern mean and inversely proportional to
the pattern variance. Assuming that an increase in MSE corre-
sponds to a decrease in resolution, we expect that increasing
pattern variance or decreasing pattern mean will improve res-
olution for a given illumination dose. These relationships have
been demonstrated in Fig. 10.

The normalized SVD plots have been scaled by a quan-
tity related to the pattern variance.4 This pattern-dependent
scaling means that any absolute noise floor would assume
a different value for each pattern type. In Fig. 11 we have
plotted the unnormalized SVD values. Here we can assume
a consistent scale of noise across the pattern types. We can
predict GI reconstruction resolution as a function of illumi-
nation dose by determining how many singular values drop
below a noise floor as it is increased. Looking at this fig-
ure, we can qualitatively predict that the size of the larger
singular values (on the left-hand side of the plot) predicts

4Specifically, the scaling for the plots is σ1, and the variance of the
(mean-adjusted) patterns is ‖A‖2

F = ∑
j σ

2
j .
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FIG. 10. Achievable GI resolution as a function of signal-to-
noise ratio (modified through input x-ray flux) for Gaussian masks.
(a) Constant mean mask transmission of 0.5 with different levels
of mask variance and exposure time; (b) constant mask transmis-
sion variance of 0.25 with different mask mean transmission. Note
that only results for the adjoint GI reconstruction are presented;
Kaczmarz iteration gave no significant improvement in performance.

performance in a high signal-to-noise setting. Larger singular
values yield better performance, so we can understand why
the larger-feature masks degrade more slowly with increased
noise than small-feature masks. By contrast, the size of the

FIG. 11. The unnormalized singular values plotted in descending
order of magnitude, for the set of examples included in Fig. 3.

smaller singular values (on the right-hand side of the plot)
predicts performance in a low signal-to-noise setting. Again,
larger values yield better performance and predict the order
in which the plot of each pattern type deviates from full
resolution as noise is increased.

Note that in order to calculate the SVD, the mean pattern
transmission has been removed from the mask images. If two
candidate masks have a similar performance according to the
SVD plots, the mask with the lower mean transmission should
be selected.

2. Robustness to misalignment

When optical dynamic beam-shaping techniques such as
a data projector, SLM, or DMD are not available, structured
illumination is typically produced using a mask that is trans-
lated to produce different patterns. Computational GI involves
characterizing these masks to the required resolution and es-
timating the illumination pattern based on the current mask
position, or prerecording the illumination patterns for a set of
mask positions with a pixelated detector and then repeating
these mask positions for the bucket measurements using a
single-pixel camera and the object in place. In this section we
consider the case where the set of expected patterns associated
with each bucket value is misaligned, due to factors such as
positioning inaccuracies, mask distortion, thermal expansion,
etc. In particular, we seek to understand which properties
of the mask patterns are more robust to such experimental
limitations.

Of relevance here is the perturbation theory of linear
least-squares problems, described by Golub and Van Loan in
Ref. [55], for example. This theory can be applied to the mis-
alignment of patterns during the ghost-imaging measurement
process, to estimate bounds on the accuracy of the recon-
structed ghost image. Suppose we intend to solve the perfect
least-squares ghost-imaging problem stated earlier, i.e., At =
b, where A ∈ Rm×n has m � n and full column rank (i.e.,
overdetermined with linearly independent columns). How-
ever, because of misalignment and measurement errors, in
practice we solve the real least-squares problem

A′t′ = b′. (18)

Provided the misalignment errors of pattern placement are not
too severe (e.g., they are on the order of the pattern char-
acterization resolution), we can say that A′ ≈ A and b′ ≈ b
(yielding a good reconstructed ghost image t′ ≈ t). The final
residuals are r = b − At and r′ = b′ − A′t′.

From Ref. [55, Theorem 5.3.1] we know that if m � n and
b �= 0, and the original problem satisfies

sin(θ ) = ‖r‖2

‖b‖2
�= 1, (19)

and our relative measurement errors satisfy

ε := max

(‖A′ − A‖2

‖A‖2
,
‖b′ − b‖2

‖b‖2

)
<

1

κ (A)
, (20)
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FIG. 12. Example (i) (47 × 47)-pixel illumination patterns, (ii)–(iv) four iterations of Kaczmarz reconstruction with masks misaligned
randomly with shifts (x, y) having a normal distribution with σ = 0.25, 0.5, and 1.0 px. All examples contain 2209 patterns in the set, and
the grayscale window for the example patterns shown is [0,1]. (a) Gaussian random, (b) Gaussian distribution blurred by Gaussian with
σ = 1.0 px, (c) binary random, (d) binary random with medium feature sizes, (e) binary random with large feature sizes. All patterns were
generated as unique sets of random patterns, so mask stride had no effect, and a 2-pixel boundary was set to 0.5 transmission to minimize edge
effects.

then we have

‖t′ − t‖2

‖t‖2
�

(
2κ (A)

cos(θ )
+ tan(θ )κ (A)2

)
ε + O(ε2) (21)

‖r′ − r‖2

‖b‖2
� (2κ (A) + 1) min(1, m − n)ε + O(ε2). (22)

Note that the relative error in the measured residual r′
scales as O[κ (A)ε], while the relative error in the recovered
signal t′ scales as O[κ (A)2ε]. However, there is an exception
if the original problem is consistent (i.e., r = 0, as can be
assumed for the noise-free ghost-imaging problem) since in
this case the error is only O[κ (A)ε)]. Note that this last fact
comes from the identity

tan(θ ) = ‖r‖2√
‖b‖2

2 − ‖r‖2
2

. (23)

Lastly, we note that the condition number κ (A) is defined
as σ1(A)/σn(A), i.e., the ratio of largest to smallest singular

values. Alternatively, if A has full column rank, then

κ (A) = ‖A‖2‖A†‖2 = ‖A‖2‖(AT A)−1AT ‖2. (24)

We also find in Ref. [55, Theorem 5.7.1] that for underde-
termined systems with full rank, the relative error in t′ also
has a magnitude of O[κ (A)ε], provided we take the minimal-
norm solution for both the original and perturbed systems, and
ε < σm(A).

The accuracy of ghost imaging under pattern misalign-
ment errors is therefore directly related to both the condition
number of the patterns and the relative magnitude of errors
introduced by pattern misalignment, i.e., ‖A′ − A‖2/‖A‖2.
This can be estimated in a straightforward manner as the
relative gradient magnitude of the patterns.

Figure 12 shows the effect of pattern misalignment on the
ghost image achievable through Kaczmarz iteration. In these
examples, each pattern was perturbed in both the x and y direc-
tions, with a random Gaussian distribution having σ = 0.25,
0.5, and 1.0 px. The relative gradient magnitudes of these sets
of patterns are as follows: (a) 2.0, (b) 0.98, (c) 2.0, (d) 1.3,
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and (e) 0.99. Observe from the images reconstructed in (i)–
(iii) that patterns with a higher relative gradient magnitude,
namely (a) and (c), produce sharper but more noisy images
that degrade significantly as the magnitude of misalignment
increases. For (a) the average normalized MSE for the images
exemplified in (iii) over 100 random perturbations degrades
from (i) 0.29, (ii) 0.44, to (iii) 0.80, while for (c) NMSE
degrades from (i) 0.24, (ii) 0.45, to (iii) 0.79. The patterns
with a lower relative gradient magnitude, namely (b), (d), and
(e), have less noise and better contrast that is maintained as
the magnitude of misalignment increases. The most robust to
misalignment according to the NMSE metric over 100 random
perturbations is (b), with NMSE degrading from (i) 0.22, (ii)
0.31, to (iii) 0.56. The NMSE for the binary patterns with
larger features was similar with (d) as (i) 0.23, (ii) 0.34, to
(iii) 0.61, and NMSE for (e) as (i) 0.24, (ii) 0.36, (iii) 0.63.
This correlates very well with the relative gradient magnitude
and indicates that this is a useful metric to predict pattern
performance under perturbation or misalignment.

3. Robustness to slowly temporally varying illumination

A common experimental problem in optical GI is that of
background signal from ambient light fluctuations. A tech-
nique that is commonly used to tackle this problem is that of
differential ghost imaging (DGI). Originally it was observed
that the background signal can be compensated for in a clas-
sical GI setup that uses a beam splitter [38]. In this case,
given the measured illumination pattern Aj (x, y) at the pixe-
lated detector, and assuming illumination ηAj (x, y) is incident
on the object, the mean transmission of the object can be
estimated as bj/[η

∑
x

∑
y A j (x, y)] for bucket measurement

bj . The background signal can then be compensated for by
performing one Landweber iteration, with the initial estimate
being a constant image equal to the mean transmission of the
object over all measurements. DGI was shown to be superior
to the conventional adjoint image recovery, particularly for
high-signal images [or highly transmitting objects, see column
(ii) of Fig. 13]. For constant experiment flux, this is only
true when the mean transmission of the patterns varies from
pattern to pattern; for sets of patterns that have a constant
transmission, such as the URA and FRT orthogonal masks,
DGI yields no improvement [see column (iii) of Fig. 13].
However, measuring the illumination pattern simultaneously
to the bucket measurement means that any variation in back-
ground signal, illumination intensity, or a translating incident
beam profile is captured to some degree, and DGI can com-
pensate for this. A demonstration for variation in illumination
intensity is given in row (d) of Fig. 13, for both random binary
and URA illumination patterns.

For computational GI variants, the illumination pat-
terns Aj (x, y) are prerecorded and are subject to different
background signal, illumination intensity, or beam profile
conditions than during the collection of bucket values. This
can cause significant artifacts in the recovered ghost images.
This has been demonstrated by simulation for illumination
intensity variations in row (e) of Fig. 13. In this scenario, it
has been reported in the literature that employing differen-
tial patterns (i.e., positive and negative pairs of patterns) is
beneficial, e.g., [32,53,54,56]. Using differential patterns as a

FIG. 13. A (47 × 47)-pixel demonstration of differential GI [38]
for (i) low-transmission object (0.0–0.25) with a scanning random
binary mask (4418 patterns), (ii) high-transmission object (0.75–
1.0) with a scanning random binary mask (4418 patterns), (iii)
high-transmission object (0.75–1.0) with a scanning URA mask
that is orthogonal under translation (2209 patterns). (a) Example
mask pattern, (b) the result of adjoint GI with constant illumination,
(c) the result of differential GI (or a single Landweber iteration
given a constant initial estimate equal to the mean transmission of
the object) with constant illumination, (d) the result of differential
GI with slowly varying illumination intensity (patterns recorded si-
multaneously), (e) the result of differential GI with slowly varying
illumination intensity (patterns prerecorded). All measurements had
a Poisson distribution with an expected flux of 1000 photons per
pixel per measurement. Intensity variation had a standard deviation
of approximately 1%.

pair effectively enables zero mean patterns that minimize the
effect of background signal and illumination flux variations.
This also enables ternary (and even grayscale) patterns such
as Haar wavelets to be implemented with maximum SNR or
minimum dose.
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FIG. 14. A demonstration of the effect of positive and negative
mask pattern pairs [53,54] using random binary masks of 47 ×
47 pixels and given (i) slowly varying flux (standard deviation of
1%); (ii) slowly varying background signal [same magnitude as in
(i)]; (iii) Gaussian beam profile with σ = 47 px translating between
each measurement with σ = 3 px in each direction. (a) GI using
6903 unique patterns, (b) GI using 13 806 unique patterns, (c) GI
using the 6903 positive patterns from (i) and the corresponding
6903 negative patterns, (d) GI using 6903 positive and negative
patterns with bucket measurements determined as difference of sig-
nal with positive and negative patterns. Each positive and negative
mask pair was imaged in sequence. All measurements had a Poisson
distribution with an expected flux of 1000 photons per pixel per
measurement.

The advantages and requirements of using differential
masks have been presented in Fig. 14. Here the effect of
several scenarios of incident and background illumination
variations have been simulated. The result of computa-
tional GI with 6903 binary patterns contains severe artifacts
[Fig. 14(a)]. Doubling the number of unique masks makes
very little improvement [Fig. 14(b)], however, adding 6903
inverse patterns instead provides a significant advantage
[Figs. 14(c) and 14(d)]. Here the positive and negative patterns
are measured in sequence, i.e., as a pair. Under conditions of
constant flux, no advantage is gained using differential masks;
in fact, using additional unique masks gives better perfor-
mance. Also note that if the measurements of a pattern and its
negative are separated over time, then there is no advantage.

While differential patterns are ideal for binary masks,
and remove sensitivity to variations in illumination intensity,
background signal, and even beam profile, there are several
considerations when using a translating mask for this tech-
nique. Problems can arise in the differencing result if positive
and negative masks are not aligned accurately. A mask with a
lower gradient (as explored in Sec. IV D 2) may be a prefer-
able choice here. A scanning mask (and its negative) would
minimize the differential mask footprint, however, the pos-
itive and negative mask pairs must be imaged in sequence,
i.e., close in time; this would require rapid and repeatable
switching from one mask to the inverse that places strict
requirements on translation stage speed, repeatability, and
robustness.

To create positive and negative mask pairs for differential
ghost imaging [32,38,53,54], one could employ microlithog-
raphy techniques to manufacture masks whose transmission
functions add to unity at each transverse location. While fea-
sible, such an approach has the disadvantage of requiring two
distinct masks that need to be placed with sufficiently accu-
rate relative positioning in the illuminating beam. A possible
single-mask means for creating positive and negative mask
pairs, in the x-ray domain, employs the phenomenon of mag-
netic x-ray circular dichroism (MXCD) [57]. MXCD refers
to the sample-magnetization dependence of the absorption
of circularly polarized x rays. Since left and right circularly
polarized x rays yield complementary absorption profiles for
magnetic materials, a thin self-organized magnetic film with
randomly oriented domains will yield the required positive
and negative transmission profiles, when sequentially illu-
minated with left and right circularly polarized x rays [58].
Alternatively, a magnetic thin film composed of certain tran-
sition metals can be illuminated with fixed-helicity circularly
polarized x rays, and the illumination energy tuned in the
vicinity of L2,3 edges [59,60] to yield the required contrast
reversal. This gives a potential means for rapid switching
from positive to negative illumination patterns, in the context
of differential ghost imaging. In this way, randomly oriented
magnetic domains in magnetic thin films can give nonfractal
positive and negative random-mask pairs [58–60]. Also, if a
magnetic thin film is rapidly quenched at an initial tempera-
ture that corresponds to the critical point for a thermodynamic
phase transition, e.g., if the magnetic thin film is well de-
scribed by the two-dimensional Ising model at its critical
temperature [18], then the resulting random-fractal mask [40]
can be employed to give positive and negative mask pairs for
differential ghost imaging.

Regarding the utility of positive-negative mask pairs, it
has been pointed out (in the context of differential ghost
imaging [38]) that these may be used to compute a differen-
tial bucket signal that can increase the signal-to-noise ratio
of the resulting GI reconstruction [53,54]. Interestingly, our
simulations suggest that, when a set of 2N random masks
is replaced with N pairs of positive-negative masks, with all
other key parameters (such as the number of photons used to
illuminate each mask) being kept fixed, but with the illumi-
nation flux varying slowly with time, the resulting GI SNR
increases even when the resulting GI analysis does not specif-
ically employ a differential-GI strategy. From a geometric
perspective, positive-negative mask pairs yield function-space
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vector pairs that are antiparallel to one another for all but
the constant-offset degrees of freedom, which improves the
noise robustness of Eq. (6) since the vector sum, implied
by this expression, contains pairs of parallel function-space
vectors whose parallelism reduces the reconstruction’s sensi-
tivity with respect to noise and other imperfections that will
necessarily be present in the GI data.

4. Scalability

We define scalability as the ability to trade image res-
olution for robustness. For example, given noisy measured
bucket values that generate a low-quality ghost image, can
one improve the reconstructed image quality by increasing the
pixel size and reducing the total number of pixels required to
represent the masks and image?

The signal produced from GI with adjoint recovery is an
increasing function of both the number of masks J and the
mask variance σ 2

A (as confirmed in Sec. IV D 1) [21,22,41].
Intuitively, this is because GI works with the mean-corrected
masks (as shown in Sec. II) and the useful component of the
bucket measurements is unrelated to the mask mean μA. In
a multiscale setting we therefore have two competing effects
when reducing pattern and imaging resolution: (1) there is an
increase in measured information relative to data requirements
since reducing the mask resolution reduces the unknowns
in image recovery; (2) mask variance reduces when mask
resolution is reduced and increases the data requirements for
image recovery. To achieve scalability, we must minimize this
second effect.

According to Parseval’s theorem, the variance over an il-
lumination pattern is equal to the sum of the variance of
the discrete Fourier transform (DFT) of the pattern. Note
that reducing resolution by pixel binning truncates the high-
frequency DFT coefficients. We can approximate the effect by
taking the volume under the DFT up to each binned frequency,
which is a measure of how fast the DFT decays with radius.
As an example, consider the case of random binary masks.
A low-resolution instance of the patterns generated by these
masks can be obtained by binning each (2 × 2)-pixel block
into 1 larger pixel. In Fourier space, this equates to selecting
the quadrant around the origin. Since a binary random sig-
nal has statistically uniform DFT coefficient magnitude, the
binned mask variance is reduced by a factor 4. This directly
compensates for the four times reduction in information re-
quired, resulting in no net gain. This has been demonstrated
in row (i) of Fig. 15.

To construct scalable patterns, we must weight the DFT
coefficients relative to their proximity to the Fourier space
origin, i.e.,

√
k2

x + k2
y . One straightforward technique is to use

the random fractal masks presented in Sec. III. Fractals are
ideal for this since the statistical coefficient weighting decays
with 1/

√
k2

x + k2
y raised to a positive power [see Eq. (14)] (cf.

Refs. [45–47]). In this case, as high-frequency DFT coeffi-
cients are truncated with binning, the majority of signal (and
thus mask variance) persists in the low-frequency region that
remains. This has been demonstrated in row (iii) of Fig. 15.

The benefit of this property is exemplified in Fig. 15, which
compares inverse GI using binary and fractal patterns. As the
resolution is halved each time, four times less measurements

are used. Observe that, since mask variance degrades much
more slowly for fractal masks, the recovered GI quality also
degrades more slowly relative to that for the binary mask. This
can also be viewed as the ability to provide progressive mul-
tiscale GI capability. As an experiment is being conducted,
we can reconstruct higher and higher resolution images of the
object. In the figure we have given GI results after measuring
2048, 8192, 32 768, and 131 072 measurements.

In this sense, scalable masks can be thought of as a lens or
magnifier. When imaging an unknown object, fractals provide
built-in magnification options. One can scan the object with a
small set of masks and recover a low-resolution ghost image.
If greater resolution is required, more mask positions and
bucket measurements can be added until the desired resolution
is achieved.

Another application of scalability arises in scenarios with
extremely low SNR. It is very difficult for the unstable itera-
tive GI inversion schemes to improve on the stable GI adjoint
image recovery result. See column (i) of Fig. 16 for example.
However, scalable masks have traded resolution for robust-
ness, i.e., high-resolution object features are lost in noise
more quickly than for random masks, but the low-resolution
features remain even in extremely noisy scenarios. The rela-
tive over-representation of low-frequency information means
adjoint GI images are extremely robust and it is possible to
extract higher-frequency information beyond this. This has
been demonstrated for fractal masks in column (ii) of Fig. 16.

Fractal masks have many useful properties that are ideal
for the field to develop practical experimental techniques
and protocols. Random fractals give a single fabricated mask
that can be used for a range of spatial scales, enabling
GI at progressively higher resolutions as an experiment
continues. Moreover, such masks are extremely robust to
noise and other experiment deficiencies (such as mask mis-
alignment). As the field matures it is likely that more
application-specific masks will be adopted, however, scal-
able masks are very appealing until that time. Perhaps they
could be used in tandem with dedicated designed masks to
enable a broad scope of the object to determine which de-
signed mask is most suitable. They might also be used to
zoom in to regions of interest, to identify where to focus
high-resolution GI.

As we have already pointed out, natural materials with
fractal-like structures do exist. Some potential mechanisms
that produce these properties were discussed in Sec. III. A
topic for future research would be to explore the possibility of
fractal masks that are orthogonal under translation. We should
also point out that, by design, the Hadamard masks are also
ideal for this scalable property, having patterns ranging from
low to high spatial frequencies.

5. Optimizing dose fractionation

The question of dose fractionation is as follows. Given a
total experiment time, or total illumination dose, how many
measurements J should the time (or dose) be divided into, i.e.,
what fraction of the total dose should be assigned to each mea-
surement? The term originates from computed tomography
(CT) [61] where it was determined that many measurements
with low dose are preferable to few high-dose measurements.
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FIG. 15. Progressive multiscale GI recovery of a (256 × 256)-pixel image during an experiment with downsampling: (a) (8 × 8)-pixel
binning after 2048 measurements, (b) (4 × 4)-pixel binning after 8192 measurements, (c) half-scale, i.e., (2 × 2)-pixel binning after 32 768
measurements, and (d) full scale with 131 072 measurements. Two types of scanning masks with a stride of 32 pixels have been demonstrated:
a binary mask [rows (i) and (ii)]; a fractal mask [rows (iii) and (iv)]. Example masks are given in rows (i) and (iii). The corresponding recovered
ghost images using four Kaczmarz iterations (λ = 0.25) are presented in rows (ii) and (iv). Here an incident flux of 8 photons per pixel was
used per measurement.

The situation is similar for GI, with a tradeoff between the
number of patterns employed and spatial resolution.

This topic has been explored previously (e.g., [1,5,62]),
where various types of experimental noise were considered.
In Ref. [41], the degradation of an n × n pixel adjoint recov-
ered ghost image T̂ compared with the ideal image T was
quantified by the root-mean-square error (RMSE) as follows:

RMSE(T̂ , T ) =
√

1

n2

∑
x

∑
y

(T̂ (x, y) − T (x, y))2. (25)

There are several main contributions to this metric: ar-
tifacts from insufficient patterns or measurements, denoted
RMSE0(T̂ , T ) and RMSE⊥

0 (T̂ , T ); photon shot noise repre-
sented by a Poisson distribution, denoted RMSEp(T̂ , T ); and
per-measurement noise modeled as a Gaussian distribution,
denoted as RMSEm(T̂ , T ). These contributions are added in
quadrature, i.e.,

RMSE(T̂ , T ) = (
RMSE2

0(T̂ , T ) + RMSE2
p(T̂ , T )

+ RMSE2
m(T̂ , T )

)1/2
. (26)
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FIG. 16. (256 × 256)-pixel GI recovery from 131 072 measure-
ments under extremely noisy circumstances: (a) example illumina-
tion patterns, (b) adjoint GI, (c) inverse GI through 100 Kaczmarz
iterations (λ = 0.001). Two types of scanning masks with a stride
of 32 pixels have been demonstrated: a binary mask [column (i)]; a
fractal mask [column (ii)]. Here an incident flux of only 0.08 photons
per pixel was used per measurement.

A model for each type of error introduced was pre-
sented in Ref. [41] as a function of pattern, image, and
experiment properties. It was observed that MSE0 de-
creases with increasing J , while MSEp remains constant
for a fixed experiment time, thus given photon shot noise
only, the more patterns the lower the RMSE. This aligns
with the dose fractionation theorem for CT [61]. How-
ever, a per-measurement noise introduces a consequence for
each additional measurement and MSEm increases with in-
creasing J . When this noise is present, a tradeoff must
occur and an optimum number of measurements can be
calculated.

Assuming GI illumination patterns are produced by scan-
ning subsets of a larger mask, either a designed or naturally
random mask, one question that requires future research is
that of subset-mask position dependence. Is it sufficient to
scan subsets over a local region of a mask? Conversely,
is it always better to distribute the subset positions across
the entire mask as much as possible? Is a grid of positions

desirable? Conversely, are pseudorandom or quasirandom po-
sitions preferable in order to minimize artifacts?

6. Mask fabrication effects

Given a design for a binary mask, the actual fabrication
process can produce something very close to that designed,
but there will be some discrepancies due to the physical pro-
cesses involved. The available fabrication methods introduce
constraints on the lateral mask resolution, the choice of mate-
rial, the aspect ratio, and the uniformity of the mask patterns.
Additionally, each fabrication step can produce an error in the
final result and reduce the efficiency of the mask. A process
with the minimum fabrication steps is desirable.

An efficient process (in terms of cost, time, and fabrication
error) for making a binary mask with micrometer resolution is
to use a combination of photolithography and electroplating
techniques. A summary of the technique is as follows:

(1) A thin metal film, e.g., Au, is first deposited on a
substrate (which can be Si or SiO2). This seed, or conductive,
layer is used as a conductive layer for a subsequent electro-
plating process.

(2) A photolithography process is then applied in three
steps:

(i) A photoresist (positive or negative) is coated on the
metal film. The thickness of the photoresist depends on the
actual thickness (height) of the design mask.

(ii) The pattern of the mask is transferred from a hard
mask into the photoresist layer under UV exposure.

(iii) A developing solution is used to remove the ex-
posed area (positive photoresist case) or unexposed area
(negative photoresist case).
(3) After this step the trenches have been created and are

then filled by a metal, e.g., Au, through the electroplating
process.

(4) In the final step, the remainder of the photoresist is
removed through a lift-off process.

Each fabrication step can have effects on the fabricated
mask patterns. For instance, (i) development time is different
for different structure sizes and densities, and (ii) if a given
mask design is fractal in nature or contains different masks
with different resolution requirements (i.e., different feature
sizes), some parts of the pattern might be overdeveloped. This
causes the lateral pattern resolution to be slightly larger than
the actual design. This effect can be minimized by designing
a mask with consistent feature sizes. For example, the effect
would be insignificant if the resolution of the masks varies
from 10 to 15 µm. This effect can also be ignored for random
masks, where the requirements on mask structure are not
critical. Given these two considerations, these effects have not
been simulated below.

A more important fabrication defect may accrue in the
electroplating process. First of all, there is a limitation on
the choice of material. Electroplating is only readily available
for a limited number of materials, such as Ni and Au. Ni
is cheaper and more available compared to Au, however, it
is not always the best option, especially when using hard x
rays. The thickness (or height) of the electroplated material
should be adjusted for a desired photon energy. For instance,
to achieve 40% transmission of 25-keV x rays, a mask requires
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a thickness of 75 µm of Ni or 14 µm of Au. While gold is
more expensive, it is less challenging in terms of aspect ratio
and mechanical stability.

Aside from these challenges and limitations, there are a
range of electroplating parameters that affect the uniformity
of the electroplated patterns, including the bath size and tem-
perature, the solution pH and concentration, the movement
of electrolyte, and the distance between cathode and anode.
All of these parameters should be adjusted to obtain uniform
electroplated structures. In addition, higher current is recorded
toward the edge of the substrate or wafer compared to the cen-
ter [63]. This means that, if we have a full wafer of structures,
their height is slightly higher at the edges than the center of the
wafer. This is modeled below as a broad Gaussian profile, with
the edges being slightly thicker than the center. As a result,
the transmission through the material across the wafer is not
uniform.

Another factor that affects total transmission through the
mask is the choice and thickness of the seed layer. Its thick-
ness reduces the transmission throughout the wafer. This layer
should be thin enough to maximize the transmission and thick
enough to be a strong conductive layer for the electroplating
process. Generally, an Au film with a thickness of 50 to
100 nm is sufficient for this purpose. In addition, since the
adhesion between gold and most substrates is low, a thin
adhesion layer (usually Cr or Ti) is deposited between the
substrate and the gold layer. This adhesion layer can be as
thin as 10 nm, which is almost transparent for high-energy
x rays. Thus, it can be neglected in hard x-ray transmission
calculations.

As an example case study, we calculated total transmis-
sion through all layers for a fabricated mask and included
fabrication defects in simulation. Given a mask fabricated on
a 500-µm SiO2 substrate with a 20-nm Cr adhesion layer
and a 100-nm Au seed layer, the total transmission of 25-
keV x rays is 0.834. If the patterns are fabricated with
30-µm thick electroplated Au, the transmission through the
patterns would be 0.0778. Hence, the maximum and the mini-
mum transmission throughout the fabricated mask would be
approximately 83.4% and 6.5%, respectively. These trans-
mission effects along with the effect of nonuniformity from
the electroplating process are shown in Fig. 17. Here the
maximum and the minimum transmission through a random
mask and a URA mask are set to 85% and 5%, respec-
tively. A Gaussian profile is applied to the transmission of
the mask, increasing transmission by 8% in the center of the
overall mask. Moreover, a slow variation to the mask trans-
mission with 2% standard deviation is added to the simulation,
to compensate for the nonuniformity of the electroplating
process.

The results in Fig. 17 demonstrate the effects in GI recov-
ery when a binary mask is assumed [Figs. 17(b) and 17(c)]
and when the defects are characterized [Figs. 17(d) and 17(e)].
For the binary masks GI is still possible when incorrectly
assuming perfect binary patterns and Kaczmarz iteration is
able to improve fidelity over adjoint GI, however, artifacts
have become prominent. Since random mask structure is not
critical in the sense that deviations from the intended mask
still yield a useful mask for the purposes of ghost imaging, in-
verse GI after mask characterization works well and gives the

FIG. 17. The effects of including mask fabrication details, as
described in the text, for (i) a scanning binary mask using 4418
measurements, and (ii) a scanning orthogonal URA mask using
all 2209 measurements. (a) Example (47 × 47)-pixel illumination
patterns, (b) adjoint GI assuming the patterns are perfect, (c) four
Kaczmarz iterations assuming the patterns are perfect, (d) adjoint
GI having measured the patterns, and (e) four Kaczmarz iterations
having measured the patterns.

best NMSE overall. For the URA masks that are orthogonal
under translation (given ideal fabrication), assuming perfect
binary patterns still exhibits robust GI recovery. Some low-
frequency artifacts are present, but these results have greater
fidelity than for the random masks. This is also predicted by
Eq. (21), where the errors in the mask ε are magnified by the
condition number in the reconstruction (and orthogonal masks
such as URAs have minimal condition number). The majority
of the orthogonality properties remain, despite fabrication er-
rors. It is interesting to note that mask characterization does
not improve the result significantly since the orthogonality
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properties that are lost are not recoverable by characterization.
We do note that Kaczmarz iteration was able to reduce some
of the artifacts and produced the best result overall.

V. SUMMARY OF FINDINGS

We explored several factors that are important when
considering potential nonconfigurable transversely displaced
masks, either natural or designed, to be used for produc-
ing structured illumination in classical computational ghost
imaging. Our main motivation, for such a mask-based ap-
proach, is classical ghost imaging using radiation and matter
wave fields, such as x rays, neutrons, electrons, muons, etc.,
for which dynamically configurable high-resolution beam-
shaping elements (i.e., the analog of a visible-light spatial
light modulator) do not exist. Our results may also be
applicable in the visible-light domain, e.g., using rotating non-
configurable masks. Below, we summarize our key findings.

(i) Given a translating mask, the translation (or stride),
used between each pattern subset illuminated, should be se-
lected to be greater than the resolution to which the mask is
characterized.

(ii) In an ideal scenario, feature size (to a certain extent5)
is not important. The important attribute is the sharpness of
the features in the patterns. However, under noisy conditions
where iterative inversion may not be useful, opting for smaller
features approaching the required resolution is desirable.

(iii) The robustness of adjoint reconstruction can be im-
proved by making the set of patterns closer to orthogonal. This
is achieved by setting the pattern translation to be greater than
or equal to the minimum feature size.

(iv) The stable rank of a set of patterns was defined, giving
an indication of the relative performance of the sets of pat-
terns. This quantity can be used to compare masks or patterns,
with preference to the masks with higher rank.

(v) Several methods to estimate the optimal mask stride
were presented. These methods explored the power spectrum,
as well as simulated GI MSE and pattern stable rank as a
function of stride.

(vi) Translating masks are optimal in terms of mask foot-
print. Fabricated masks that are orthogonal under translation
only require four times the area of the imaging FOV. This may
be compared with footprints that are thousands of times the
area of the FOV, for sets of unique orthogonal patterns such as
the Walsh-Hadamard set. Differential masks remain difficult
to fabricate and perform experiments with, even for translating
masks.

(vii) When considering robustness to photon shot noise,
the mask variance is a key indicator, with greater variance
giving better results. This is linked to the magnitude of un-
normalized SVD curves of the set of patterns. These curves
provide a good indication of the noise level at which full
resolution is no longer feasible, as well as the degradation
severity as a function of increased noise.

5Feature sizes that are smaller than the pattern characterization
resolution, or larger than (or even approaching the size of) the field-
of-view, are not useful.

(viii) The L2 norm of the mask (or pattern) image gradi-
ent is a good indication of sensitivity to mask misalignment
errors. A mask with a larger L2 norm is more susceptible.
This was verified with simulations of decreasing alignment
precision.

(ix) Differential GI (as defined in Ref. [38]), where the
illumination patterns and bucket values are recorded simul-
taneously, is a good method to deal with slowly varying
illumination intensity or background illumination.

(x) Creating positive and negative mask pairs for differ-
ential ghost imaging [32,53,54] significantly improves GI
robustness in scenarios with slowly varying illumination in-
tensity, background illumination, or beam position. Each
positive and negative pattern must be imaged as a pair in
sequence.

(xi) The concept of mask scalability was introduced and
exemplified through random fractal masks. Fractal masks per-
form well at several magnifications and we believe this type
of mask should be useful in GI development.

(xii) When considering the number of masks to use for
a given experiment duration in GI, i.e., the question of dose
fractionation, more masks are better, given photon shot noise
only. However, if each measurement includes a significant
cost in terms of Gaussian noise, then an optimal number of
masks does exist.

(xiii) The degradation in GI quality due to mask fabrica-
tion defects does not seem to be too significant, provided the
patterns are characterized experimentally. Orthogonal masks
perform reasonably well, even if assuming ideal patterns in
GI recovery.

We emphasize that, in this work, we have assumed no
prior knowledge of the sample or object to be imaged. It is
likely that many of the preceding conclusions will be different
in situations where one has prior knowledge of the sample.
This latter case enables tools such as compressed sensing,
maximum a posteriori methods, or deep-learning methods to
be employed.

VI. RECOMMENDATIONS

We now interpret the above summary in practical terms.
In particular, below we make recommendations as to how to
employ this information, using some example scenarios. We
organize these recommendations under the three key ques-
tions that are given as headings below. Note that to compare
the predicted performance of masks we use mathematical
properties of the set of patterns. Ideally for accurate evaluation
of these properties for natural masks, a full set of acquired
patterns using the mask is required. However, several of the
properties can be estimated from a single, statistically rep-
resentative, pattern. These include the PSF, L2 norm of the
pattern gradient, and power spectrum. Properties such as the
SVD and stable rank could be estimated, and natural masks
compared, using an overview image of the master mask and
generating patterns using a scanning FOV.

Which mask, or set of patterns, should I choose and why?
(A) Selecting a natural mask or designing and fabricating a

mask: Natural masks are a practical choice and are sufficient
for initial GI experiments. However, to push the limits of GI
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in areas such as resolution or dose reduction, fabricated masks
are recommended.

(B) Imaging resolution requirement: If the resolution re-
quired is unknown beforehand, we recommend the use of
fractal masks as they function well over a range of length
scales. The possibilities for natural masks with fractal prop-
erties are outlined in Sec. III. If the resolution requirement
is known, use a mask with features on the order of this size,
although they can be slightly larger. Avoid a mask with fea-
tures that are too regular (or crystalline), e.g., using a periodic
grid or monodisperse beads, as this will not enable sufficient
unique patterns. We can assess this property by comparing the
stable rank of the pattern set or a ring appearing in the PSF
with a radius related to the characteristic length scale of the
mask.

What other experimental conditions affect, or further refine,
my choice of mask?

(C) Unstable illumination flux, beam profile, or back-
ground illumination: Synchrotrons provide an example of
this instability, wherein the accelerator electron beam cur-
rent (and thus x-ray flux) slowly reduces over time and is
periodically “topped-up.” The change in flux over time can
be significant, e.g., on the order of 10%. If one is recording
illumination patterns simultaneously with the bucket values,
employing differential GI image reconstruction [38] is able to
tolerate this instability in illumination. If one is undertaking
a form of computational GI, then either (i) use differen-
tial masks (i.e., positive and negative pairs [32,53,54]), or
(ii) monitor these changes somehow. Some possibilities for
implementing differential masks are discussed in detail in
Sec. IV D 3.

(D) Significant noise: An example of this is when limited
experiment time is allocated or dose reduction is being ex-
plored. In this case, choose masks with the highest variance,
i.e., maximal contrast. Binary masks are optimal from this
point of view. For a moderate amount of noise, choose the
mask with the greatest area under the unnormalized SVD
curve. For the case of extremely high noise levels, choose
masks with the largest unnormalized singular values, such as
a fractal mask.

(E) Inaccurate mask positioning: If the accuracy of the x-y
translation or rotation stages used to move the mask about the
imaging FOV is poor, choose masks that have a lower L2 norm
of the pattern gradient, i.e., smoother masks or masks with
larger features.

What are the experimental requirements for my selected
mask?

(F) Determining mask translation or stride: Transverse
mask translation between illumination patterns should be
greater than the characteristic length scale of the patterns. This
stride can be found by identifying the maximum in the Fourier
power spectrum of an example pattern image (or the other
methods presented in Sec. IV A).

(G) Determining the number of patterns to measure in
an allocated time: If per-measurement noise, e.g., electronic
readout noise, is not significant then more patterns produce a
better GI result (subject to practical considerations like dead
time between measurements). Otherwise, there is an optimal
number of measurements that should be determined, e.g.,
using the methods described in Ref. [41].

VII. CONCLUSION

The quality of a ghost image recovered from an experi-
ment is highly subject to the properties of the illumination
structures used, i.e., the set of patterns employed. For optical
GI, it is straightforward to use a spatial light modulator to
produce any set of patterns, whereby desirable properties such
as orthogonality can be ensured. Given weakly interacting
radiation such as x rays and neutrons, the patterns are typically
produced through the use of an attenuation or refraction mask.
Moreover, in the visible-light regime, high frame rates may
often be obtained using a rotating nonconfigurable mask. In
this simulations-based paper we have outlined methods to
determine which nonconfigurable transversely displaced pat-
terns are preferable over others, to aid mask selection or which
mask design to favor, subject to imaging requirements and
experimental conditions. We explored questions such as reso-
lution requirements, noise levels, mask positioning accuracy,
illumination intensity stability, optimal mask translation, op-
timal number of mask positions, and scalability. The findings
have been summarized and the practical process of selecting
a mask has been proposed in the Recommendations section.
Note, when applying these recommendations, that this study
was undertaken assuming no knowledge of the object to
be imaged. Different rules of thumb will likely apply when
knowledge of the object is leveraged to minimize the number
of measurements recorded. A similar study for this scenario is
the subject of future work.
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