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Dark and bright modes, and their coherent control in dipolar metasurface bilayers
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Several plasmonic nanoparticles supporting dipolar resonances can couple to form normal modes. Here, we
develop an analytical model to explain the formation of nonradiative “dark” and radiative “bright” modes through
radiative coupling in bilayers consisting of dipolar nanoantenna arrays that are separated by a subwavelength
distance. We also include near-field contributions in our model and show that the absorption and reflectance
spectra obtained from our model agree reasonably well with the respective finite-difference time-domain simu-
lation results for both perfectly aligned and misaligned bilayers. The ability to vary the reflection and absorption
spectra of these bilayers by changing the material and geometrical parameters has potential applications in the
design of efficient spectral filters. We also show that we can selectively excite these modes by adjusting the phase
between two counterpropagating normally incident fields, which has applications in all-optical modulators and
switches based on purely linear interferometric effects.
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I. INTRODUCTION

Noble-metal nanoparticles support localized surface plas-
mons, which are oscillations of free electrons in the nanoparti-
cle coupled to the electromagnetic field and can lead to strong
resonant scattering and absorption of light [1,2]. A collection
of these nanoparticles can be used to tailor the scattering
and absorption of light at the nanoscale, which has been the
subject of extensive research during the past few decades for
applications related to cloaking [3,4], wave-front engineer-
ing [5–7], harmonic generation [8], and all-optical switching
[9,10] and to the properties of materials with artificially en-
gineered parameters such as permittivity and permeability
[11–17]. Mode hybridization in a plasmonic dimer, where two
identical nanoparticles are placed at a subwavelength sepa-
ration, has been studied extensively [18–23]. These dimers
can support “dark” modes that have a significant local-field
enhancement in their interstices. They are “dark” in the sense
that, if the variation of the incident field over the dimer is
neglected, they cannot be excited because of their vanishing
dipole moment [18,21,22].

Dark modes in dimers can, however, be excited by lin-
early polarized light incident along the dimer axis because of
higher-order multipole moments of the structure. The large
field enhancement [24] and narrow absorption linewidths,
which result because of the weak radiation from these
higher-order multipole moments, make these “bilayer” dimer
structures a promising platform for nonlinear optical appli-
cations [10], including plasmonic nanolasers [25,26]. The
antiparallel polarization distribution of these dark modes
forms a quasicurrent loop with an effective magnetic dipole,
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which can be a useful building block for an effective negative-
index material [27,28]. Usually, arrays of these nanostructures
are fabricated in order to observe a measurable extinction
response. In an array with lattice constants smaller than the
dipolar resonance wavelength, the far-field coupling between
the nanostructures can modify the radiative damping rate
such that it scales proportionally with the number density of
nanostructures [29]. Previous studies of cooperative modes
in metasurface bilayers were restricted to spherical or disk-
shaped nanoparticles made of noble metals with resonances at
visible or near-infrared frequencies [30–34]. These nanoparti-
cles have a low scattering efficiency due to their small dipolar
polarizability [35–38] and are also affected by the presence of
multipolar modes and large absorption losses in most plas-
monic materials due to interband transitions at ultraviolet
frequencies.

Here, we theoretically investigate bilayers of dipolar
nanoantenna arrays separated by a fraction of their dipolar
resonance wavelength at near-infrared frequencies. We show
that radiative coupling in this bilayer leads to the formation
of bright (symmetric) and dark (antisymmetric) modes [39]
and discuss how the short-range nonradiative coupling shifts
these resonances. We also compare the reflectance and ab-
sorption spectra calculated from our analytical model with
those obtained from finite-difference time-domain (FDTD)
simulations for both perfectly aligned and slightly misaligned
bilayers. We show that the dark modes can make a signifi-
cant contribution to the optical response; although they are
weakly driven, their weak radiation rate leads to significant
excitation. Finally, we discuss the selective excitation of these
dark and bright modes by varying the relative phase be-
tween two equal-intensity counterpropagating fields, which
is also referred to as the coherent control of absorption
[40,41].
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FIG. 1. Diagram of the bilayer structure of two nanoantenna
arrays spaced by a separation d and excited by a normally incident
plane wave E inc.

II. ANALYTICAL MODEL

Our structure comprises two square arrays of dipolar
nanoantennas that have an in-plane lattice constant of a and
are separated by a subwavelength distance d . Figure 1 shows a
diagram of the bilayer along with the assumed coordinate sys-
tem. The first array is assumed to be in the (z = −d/2) plane,
and the second array is assumed to be in the (z = d/2) plane.
The bilayer is excited by a plane wave E inc = Eincei(ω̃nz−ωt )x̂.
In our analytic modeling we assume the dipoles are polarized
along the x axis. Here, ω is the angular frequency of the field,
n is the refractive index of the background medium (assumed
to be BK7 glass), and ω̃ = ω/c.

A. Single nanoantenna array

We follow the method detailed earlier [29] to model the
response of a single nanoantenna array. The nanoantennas in
the array are modeled as point dipoles with a dipole moment

p that is related to the electrostatic polarizability
↔
α0 by the

following equation:

p = ε0n2 ↔
α0 E tot, (1)

where ε0 is the vacuum permittivity, n is the refractive index
of the surrounding medium, and E tot is the electric field at the
point dipole, given by

E tot = E inc + 1

4πε0

2

3
inω̃3 p + (

↔
β0 +

↔
β ) · 1

ε0n2
p. (2)

Here, E inc = Eincx̂ is the field incident on the dipole, the sec-
ond term on the right-hand side of (2) is the radiation reaction

of the dipole itself, the purely real dyadic
↔
β0 is the dynamic

depolarization term that accounts for the field retardation over

the volume of the nanoantenna, and the dyadic
↔
β is the

dynamic interaction constant of the array that includes the
retarded field contributions at the dipole from all the other
dipoles in the array [29].

In the chosen coordinate system,
↔
α0 is a 3 × 3 diag-

onal matrix whose elements α0,ii for i = {x, y, z} depend
on the material permittivities of the nanoantenna and the
surrounding medium, as well as its shape. The resonance
frequency ω0 in the electrostatic limit is given by the condition
Re[α−1

0,ii (ω0)] = 0. We now define an effective polarizability

↔
α shift that includes the electrostatic response of each nanoan-
tenna along with the resonance shifts due to the retardation

contributions
↔
β0 and Re[

↔
β ],

↔
α

−1

shift = ↔
α

−1

0 − ε0n2(
↔
β0 + Re[

↔
β ]). (3)

The term Im[
↔
α

−1

shift] is the same as Im[
↔
α

−1

0 ], which ac-
counts for absorption losses in the nanoantenna. The term

Im[
↔
β ] includes the radiation reaction contributions from all

the other nanoantennas in the array and, for a linearly polar-
ized excitation along the length of the nanoantenna assumed
here (aligned with the x axis), is given by [42]

Im[βxx] = − 1

6π
(nω̃)3 + nω̃

2a2
. (4)

From Eqs. (1)–(4), we can write, after some simplification,

α−1
shift,xx px = ε0n2

(
Einc + iω̃

2ε0na2
px

)
. (5)

We drop the suffixes x from now on, and from (5) we write

α−1
eff = α−1

shift − iω̃n

2a2
, (6)

where αeff is the polarizability of the nanoantenna defined
in terms of the incident field, so that p = ε0n2αeffEinc. Fig-
ures 2(a) and 2(b) show the spectra of the real and imaginary
parts, respectively, of α0 (blue solid lines), αshift (red dashed
lines), and αeff (black dot-dashed lines) of a representative
gold nanoantenna in a square lattice with a lattice constant
a of 250 nm. The nanoantenna parameters are taken to be
the same as those in Choudhary et al. [29], and we keep
a fixed at 250 nm in all the results presented here. We use
the permittivity data from Johnson and Christy for gold [43]
and the refractive index data from the Schott optical glass
data sheets [44] for the surrounding BK7 glass. The scat-
tering, absorption and extinction cross-section spectra of the
nanoantenna are shown in Fig. 7 in Appendix A. As shown
in Fig. 2, the effect of the retardation components is to shift
the nanoantenna resonance, while the radiation reaction term
contributes to its broadening.

We now define the polarization P of the nanoantenna array
as the dipole moment per unit area, which is essentially the
product of the dipole moment p of a nanoantenna in the array
and the number density of these nanoantennas (= 1/a2 for a
square array with lattice constant a). So we write

P = ε0n2αeff

a2
Einc. (7)

The x component of the electric field from this lattice of elec-
tric dipoles at a position (l1a + �x, l2a + �y, z), with (l1, l2)
being the lattice indices in the xy plane and �x,y being the
displacements from the lattice points (l1a, l2a), is given by

Ex(Rl + �, z) = iω̃

2ε0n
Peiω̃n|z| + π

ε0an2
Txx(�, z)P, (8)

where Rl = l1ax̂ + l2aŷ and � = �xx̂ + �yŷ. The first term
on the right is the long-range radiative field, whereas the
second term is the short-range near field that decays rapidly

023521-2



DARK AND BRIGHT MODES, AND THEIR COHERENT … PHYSICAL REVIEW A 107, 023521 (2023)

200 300 400

Frequency (THz)

-200

-100

0

100

200
R

e[
]/

V
0

shift

eff

100 200 300 400 500

Frequency (THz)

0

50

100

150

200

250

300

Im
[

]/
V

0

shift

eff

(b)

(a)

FIG. 2. Spectra of the (a) real and (b) imaginary parts of polariz-
abilities normalized to the volume of a cuboidal gold nanoantenna
(185 nm long, 105 nm wide, and 20 nm thick and embedded in
BK7 glass) in the electrostatic limit (blue solid lines), including
only the retardation of the nanoantenna and the array (red dashed
lines), and including both retardation and the radiation reaction of the
nanoantenna and the array (black dot-dashed lines). The nanoantenna
polarizability model is taken to be the same as in [29], and the array
lattice constant is assumed to be 250 nm.

with z. See Appendix B for the full derivation of (8) and the
expression for Txx(�, z).

B. The bilayer structure

We now consider the bilayer structure, wherein the two
lattice planes are assumed to be laterally misaligned such that
the lattice points in the second (first) plane are displaced by �

(−�) with respect to lattice points in the first (second) plane,
with the lattice points then in the first plane. The field at each
dipole plane now includes not only the incident field E inc but
also the radiated field and the near field from the other plane.
Hence, we can write the polarization of both dipole arrays as

P2,1 = ε0n2αeff

a2

[
Eince±iω̃nd/2 + Ex(±�,±d/2)

]
, (9)

where we consider the unit cell to be centered at the origin
for simplicity. Multiplying both sides of Eq. (9) by α−1

eff and
substituting (6), we get, after some simplification,

α−1
shiftP2,1 = ε0n2

a2
Eince±iω̃nd/2 + iω̃

2a2
(P2,1 + P1,2eiω̃nd )

± π

a3
Txx(�, d )P1,2, (10)

where we have used Txx(�, d ) = Txx(−�,−d ). We then de-
fine PA = (P1 + P2)/2 and PM = (P2 − P1)/2 using (10), the
first being the average of the plane polarizations and the sec-
ond being the difference between them. After some algebraic
manipulation, we have

PA = ε0n2αA

a2
Einc cos(ω̃nd/2), (11)

PM = i
ε0n2αM

a2
Einc sin(ω̃nd/2), (12)

where

α−1
A = α−1

shift + S(�, d ) − iω̃n

a2
cos2

( ω̃nd

2

)
, (13)

α−1
M = α−1

shift − S(�, d ) − iω̃n

a2
sin2

( ω̃nd

2

)
, (14)

and

S(�, d ) = ω̃n

2a2
sin(ω̃nd ) − π

a3
Txx(�, d ). (15)

The resonance frequencies ωA (ωM) of the A (M) mode are
given by the condition Re[α−1

A,M] = Re[α−1
shift] ± S(�, d ) = 0.

Hence, the purely real term S(�, d ) leads to equal and oppo-
site shifts in resonances for the A and M modes with respect
to the resonance of a single layer. The terms Im[α−1

A,M] include
the absorption losses Im[α−1

shift] and the radiative damping
terms given by the last terms on the right in Eqs. (13) and (14).
For very small separations d , such that ω̃nd � 1, the symmet-
ric A mode has almost twice the radiative damping as a single
layer. In contrast, the radiative damping of the antisymmetric
M mode is very small. For such small separations the A mode
is a nominally bright mode with a wider linewidth than the
single array, while the M mode is a nominally dark mode with
a significantly narrower linewidth that, in practice, is limited
by absorption losses within the nanoantenna. Hence, at the
resonance of the M mode (Re[α−1

M ] = 0), the polarizability αM

can be made to be significantly larger than αeff with a careful
choice of design parameters a and d . For this condition, the
amplitude PM of the nominally dark mode can be much larger
than the amplitude PA of the nominally bright mode, which es-
sentially implies that the dipole moments of the nanoantennas
in the different layers are mostly out of phase. We note that
the retardation of the incident field between the two arrays is
large enough to allow the excitation of the M mode at normal
incidence for even perfectly aligned arrays [45].

Using P1 = PA − PM and P2 = PA + PM , we calculate the
expressions for the transmittance (T), reflectance (R), and
absorbance (A) of the bilayer. The forward-propagating field
from the bilayer at a distance z � d/2 is given by

Eforward(z) = eiω̃nz

[
Einc + iω̃

2ε0n
(P1eiω̃nd/2 + P2e−iω̃nd/2)

]
,

(16)

where the first term on the right is simply the retarded incident
field and the remaining terms are the long-range radiative
fields from both nanoantenna arrays. Rewriting P1 and P2 in
terms of PA and PM and using Eqs. (11) and (12), we get, after
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FIG. 3. Absorption spectra of a bilayer structure with no misalignments between the layers and (a) d/a = 0.4 and (d) d/a = 0.6 obtained
from Eqs. (17) and (19) without (blue dot-dashed lines) and with (red solid lines) the near-field terms Txx (0, d ). The black dashed lines are the
respective absorption spectra obtained from FDTD simulations. The reflection spectra for the d/a = 0.4 and d/a = 0.6 structures are shown
in (b) and (e), respectively. The polarization spectra of PA (solid lines) and PM (dot-dashed lines) for the two aforementioned bilayers without
and with absorption losses in the nanoantennas are shown in (c) and (f), respectively, along with Peff for a single nanoantenna plane (black
dashed lines) without and with the absorption losses.

some simplification,

t ≡ Eforward(z)

Einceiω̃nz
= 1 + iω̃n

a2

(
αA cos2 ω̃nd

2
+ αM sin2 ω̃nd

2

)
,

(17)

where t is the transmission coefficient and T = |t |2 gives the
transmittance. Similarly, the backward-propagating reflected
light from the bilayer at a distance z � −d/2 is given by

Ebackward(z) = iω̃

2ε0n
e−iω̃nz(P1e−iω̃nd/2 + P2eiω̃nd/2). (18)

Following a simplification procedure similar to that used in
deriving (17), we can write

r ≡ Ebackward(z)

Eince−iω̃nz
= iω̃n

a2

(
αA cos2 ω̃nd

2
− αM sin2 ω̃nd

2

)
,

(19)

where r is the reflection coefficient and the reflectance R =
|r|2. The absorption is then given by A = 1 − R − T.

Figures 3(a) and 3(d) show the absorption spectra of per-
fectly aligned bilayers (� = 0), with relative separations d/a
of 0.4 and 0.6, respectively. For both bilayers, there is a narrow
absorption peak around 215 THz that, as we discuss later,
corresponds to the resonance of the dark M mode. Includ-
ing the Txx(0, d ) terms in the analytical model redshifts this
absorption peak and results in better agreement between the
analytically calculated spectra and the FDTD simulations. The
dip in the reflectance spectrum, shown in Figs. 3(b) and 3(e),
occurs at the spectral overlap of the bright A mode and the

dark M mode. The reflectance spectrum is largely flat between
this dip and 320 THz, with an average reflectance of 80%, and
essentially forms a stop band. The broad absorption resonance
of the A mode can be observed in the analytical spectra beyond
350 THz and blueshifts as d is reduced. In the FDTD result, an
additional absorption peak around 320 THz is due to the elec-
tric quadrupolar mode of the nanoantenna (see Appendix A)
and overshadows the absorption peak of the A mode for both
bilayers. Ignoring this multipolar contribution at frequencies
larger than 320 THz, our dipolar analytical model is able
to largely reproduce the results from the full-wave FDTD
simulations with a reasonable accuracy.

Figures 3(c) and 3(f) show the spectra of PA (solid lines)
and PM (dot-dashed lines) of the two bilayers without and with
the absorption losses, respectively. The polarization spectra of
a single nanoantenna array Peff (black dashed lines) without
and with the absorption losses are shown in the respective
panels. The absorption losses are excluded by replacing α−1

shift
with Re[α−1

shift] in (6), which, as observed in Fig. 3(c), leads
to narrower resonances throughout. However, for a single
array the collective radiation reaction of the array is signifi-
cantly larger than the absorption losses. Hence, ignoring the
absorption losses leads to a barely perceptible narrowing of
the spectrum of Peff . For the bilayer, the PA and PM modes
have equal and opposite resonance shifts with respect to the
resonance of Peff . The resonance linewidth of (dark) PM is also
much narrower than that of (bright) PA, and PM is significantly
larger than both PA and Peff at its resonance even with the
absorption losses. Figure 4 shows the normalized field polar-
ization (Px = ε0εrEx/a2) at the resonances of the A (top) and
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FIG. 4. Normalized real (left panels) and imaginary (middle panels) parts of the field polarization Px (x, z) = ε0εr (x, z)Ex (x, z)/a2 in a
single unit cell of a bilayer structure with d/a = 0.4 in the xz plane. The field distribution Ex is obtained from FDTD simulations, and εr is
the relative permittivity of the medium at a point (x, z). The top (bottom) panels show the polarization distributions at the resonance of the A
(M) mode. The panels on the right show linecuts of the respective modes along the z axis (black dotted lines in the left and middle panels),
Px (0, z)/|Px (0, z)|. The yellow shaded regions represent the z locations of the nanoantennas.

M (bottom) modes in the xz plane of a single unit cell of the
bilayer with d/a = 0.4. Here, εr is the relative permittivity at
a given location, and Ex is the local field obtained from FDTD
simulations. Consistent with our predictions, we observe that
for the A (M) mode, Px within both nanoantennas have the
same (opposite) phase. The large field enhancements at the
corners of the nanoantennas are due to the large field gradient
at these metallic corners, also known as the “lightning rod”
effect [46,47].

We now consider the effect of misalignments between the
layers, which is a typical fabrication error in multilayered
metasurfaces. Figure 5 compares the reflectance spectra of
bilayers without [Fig. 5(a)] and with [Fig. 5(b)] misalign-
ments ({�x,�y} = {0.2a, 0.2a}) for various separations d/a
between the layers indicated in the legend. The solid lines
are the reflectance spectra obtained from the analytical model,
while the dashed lines are obtained from FDTD simulations.
We note that the positions of the reflectance dip in the sim-
ulated and analytically calculated spectra for both perfectly
aligned and misaligned structures agree reasonably well with
an accuracy larger than 95%. Additionally, the effect of
misalignments becomes more pronounced as the separation
between the layers is reduced. This effect is not surprising, as
the Txx(�, d ) terms that lead to retardation induced resonance
shifts in both PA and PM get larger as d is reduced and are
sensitive to lattice misalignments. For the smallest separation
considered here, this misalignment-induced resonance shift is
as large as 12 THz (or about 75 nm). Hence, along with d and
a, the lattice misalignments {�x,�y} are another set of param-
eters that can be used for designing broadband spectral filters.

III. COHERENT PERFECT ABSORPTION

Our analysis so far has been restricted to a single incident
field on the bilayers, which behaves as a one port system.
We now consider the situation in which the bilayers are
excited by two counterpropagating fields E1ei(ω̃nz−ωt )x̂ and
E2e−i(ω̃nz+ωt )x̂, which is essentially a two-port scenario. Both
the phases and the amplitudes of the incident fields E1,2 now
constitute another set of parameters for the coherent con-
trol of scattering and absorption of light [40,41,48,49]. We
note that even with misalignments, the bilayers are symmet-
ric with respect to the direction of excitation under normal
incidence, which is also evident in the relation Txx(�, d ) =
Txx(−�,−d ). Accordingly, we define a 2 × 2 symmetric scat-
tering matrix Sscat that relates the vector of incoming fields
[E2 , E1]T to the outgoing fields [E−

2 , E−
1 ]T as[

E−
2

E−
1

]
= Sscat

[
E2

E1

]
=

[
r t
t r

][
E2

E1

]
, (20)

where r and t are the transmission and reflection coefficients
defined in (17) and (19), respectively.

For the specific set of input fields where there are no
outgoing fields, i.e., [E−

2 , E−
1 ]T is a null vector, the incoming

radiation is converted to trapped radiation that dissipates non-
radiatively within the system. This effect has been referred to
as coherent perfect absorption (CPA) and is the time-reversed
counterpart of laser action [40,41,49]. Setting [E−

2 , E−
1 ]T to

a null vector in (20) leads to the condition that for a non-
trivial solution of (20) to exist, |det(Sscat )| must approach
zero, or |r2 − t2| ≈ 0. The symmetric solution (r + t ) ≈ 0
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FIG. 5. Reflectance spectra of (a) perfectly aligned and (b) mis-
aligned bilayers with {�x,�y} = {0.2a, 0.2a} with various separa-
tions d/a shown in the legend. The solid reflectance curves were
calculated using the full analytical model with the near-field terms
Txx (0.2a, 0.2a, d ), and the dashed curves were obtained from FDTD
simulations.

corresponds to the eigenvector [E2 , E1]T = [1 , 1]T , which
implies that the CPA condition is satisfied when E2 = E1.
Similarly, the antisymmetric solution (r − t ) ≈ 0 corresponds
to the eigenvector [E2 , E1]T = [1 , −1]T , or the CPA condi-
tion is satisfied when E2 = −E1. We also note that it is not
possible to satisfy either of the CPA conditions with a single
array of dipolar nanoparticles that is not backed by a reflector
[50].

From (17) and (19), we write the antisymmetric CPA con-
dition as

r − t = −
(

1 + 2inω̃

a2
αM sin2 ω̃nd

2

)
= 0, (21)

which, with the use of (14), simplifies to

α−1
shift − S + inω̃

a2
sin2 ω̃nd

2
= 0. (22)

At the resonance of the M mode, Re[α−1
shift] − S = 0.

Recalling that Im[α−1
shift] = Im[α−1

0 ] and that Im[α−1
0 ](=

−Im[α0]/|α0|2) is negative, we get the following simplified
antisymmetric CPA condition at the resonance of the M mode:∣∣Im[

α−1
0

]∣∣ = nω̃

a2
sin2 ω̃nd

2
. (23)

Similarly, the simplified symmetric CPA condition at the res-
onance of the A mode can be written as∣∣Im[

α−1
0

]∣∣ = nω̃

a2
cos2 ω̃nd

2
. (24)

The CPA conditions (23) and (24) can also be interpreted
as critical coupling conditions to the M and A modes of the bi-
layer, respectively, wherein the absorption losses are balanced
by radiative coupling losses to the respective mode. For very
small separations between the bilayers, such that ω̃nd � 1,
the right-hand side of (23) becomes proportional to (d/a)2,
while the right-hand side of (24) becomes proportional to
1/a2. For the nanoantenna arrays with significantly larger col-
lective radiation reaction than absorption, it is straightforward
to see that the antisymmetric, and not the symmetric, CPA
condition (23) should hold true when ω̃nd � 1. Figure 6(a)
shows the spectra of |det(Sscat )| for various separations d/a of
perfectly aligned bilayers. The minima, indicated by the blue
regions in the plot, indicate the separations d/a where the CPA
conditions are satisfied for a particular range of frequencies.
The black (white) contours identify the antisymmetric (sym-
metric) sets of CPA solutions. We note that the variation of
|det(Sscat )| shown in Fig. 6(a) is very similar to the variation
of the absorption spectra of a perfect absorber consisting of a
single dipolar metasurface backed by a reflector [50].

As a metric for CPA, we define the joint absorption A [41]
as follows:

A = 1 − |E−
1 |2 + |E−

2 |2
|E1|2 + |E2|2 . (25)

Specifically, for equal-amplitude fields with a phase difference
of φ, or E2 = E1eiφ , from (20) we get, after some simplifica-
tion,

A = 1 − |r|2 − |t |2 − (r∗t + rt∗) cos φ. (26)

The spectra of A for symmetric (φ = 0, solid blue lines)
and antisymmetric (φ = π rad, solid red lines) excitations
and the absorption spectrum A for a single incident field
(dashed black lines) are shown in Figs. 6(b) and 6(c) for two
perfectly aligned bilayers with separations d/a of 0.34 and
1.08, respectively. As shown in Fig. 6(a), the separation d/a
of 0.34 (1.08) satisfies the antisymmetric (symmetric) CPA
condition. Accordingly, the joint absorption A in Fig. 6(b)
approaches unity for antisymmetric excitation (red) at the
resonance of the M mode and is significantly smaller than
the absorption A for a single incident field around the reso-
nance of the A mode. On the other hand, A under symmetric
excitation (blue) is almost twice the absorption A for single-
field excitation around the resonance of the A mode and is
significantly smaller than the corresponding single-field ab-
sorption around the resonance of the M mode. The opposite
trend holds true for the bilayer that satisfies the symmetric
CPA conditions shown in Fig. 6(c) as the symmetric (anti-
symmetric) mode becomes the dark (bright) mode for this
bilayer.

Thus, the excitation by two counterpropagating fields of
equal intensity is a way of mode matching the incident fields
to either the bright mode or the dark mode by adjusting the
relative phase of the fields. Figure 6(d) shows the variation
with respect to the relative phase φ of A at the single-field
absorption resonance frequency of the two bilayers shown
in Figs. 6(b) (blue solid line) and 6(c), respectively. The
maximum variation in A achievable at the CPA condition is
given by the magnitude of the difference in A for in-phase
(φ = 0) and out-of-phase (φ = π ) excitation after substituting
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FIG. 6. (a) Spectra of |det(Sscat )| for various separations d of perfectly aligned bilayers. Absorption spectra of a bilayer with (b) d/a = 0.34
and (c) d/a = 1.08 for a single normally incident field (black dashed lines) and two counterpropagating normally incident fields with equal
amplitude and the same phase (blue lines) and opposite phases (red lines). (d) The joint absorption A as the phase difference φ between
the two fields E1,2 is varied (solid lines) for bilayers with d/a = 0.34 (blue lines) and d/a = 1.08 (red lines). The respective maximum
single-incident-field absorption values are shown by dashed lines.

the CPA conditions r = ±t in Eq. (26). After some simpli-
fication, we find that the maximum achievable variation in
A is approximately 4R, with R being the reflectance of the
bilayer for a single incident field. We observe a variation in
A as large as 0.9 for d/a = 0.34 and 0.82 for d/a = 1.08 at
the respective CPA frequency. These estimated values of the
variation in A are close to the values of 4R for the respective
bilayers with a single-field excitation. This property makes
these bilayers useful for applications in all-optical modulation
and switching without the need for any optical nonlinearity.
The relative phase-dependent absorption also implies that the
bilayer essentially behaves as an absorptive interferometer at
the CPA point and has applications in areas such as pattern
recognition [51,52].

IV. CONCLUSIONS

To summarize, we have studied the formation of dark and
bright modes in a system of two dipolar nanoantenna arrays
separated by a subwavelength distance, using a simple analyt-
ical model based on the point-dipole approximation as well
as full-wave FDTD simulations; the approximate point-dipole
model can be used to explore the response of the system over
a wide frequency range. We have discussed how the radiative
coupling between the layers leads to resonance shifts as well
as linewidth variations, wherein the bright (dark) mode has
a larger (smaller) radiative damping than the single layer.

Our analytical model also accounts for near-field interactions
between the two arrays and can model the scattering and
absorption behavior of the bilayer structure with reasonable
accuracy, including the effects of misalignments between the
two layers. The dark mode can make a significant contribu-
tion to the optical response of the system. Finally, we have
shown that these dark and bright modes can be selectively ex-
cited through two equal-intensity counterpropagating fields by
varying the relative phase between them. And so the scattering
and absorption behavior of these bilayers can be coherently
controlled.

We note that the choice of materials and the geometri-
cal parameters of our system have been motivated by our
in-house fabrication capabilities and our previous successful
demonstration of a single nanoantenna array [29]. How-
ever, our model can be extended to various combinations of
plasmonic as well as dielectric materials and substrates, as
well as to different nanoparticle shapes and sizes, and can
be used to design devices such as spectral filters, optical
switches, and modulators in the spectral range of choice. The
large local-field enhancement for the dark modes can also
be used to enhance nonlinear interactions when integrated
with epsilon-near-zero materials [53]. Last, this analytical
model can be extended to multilayered structures and can
be used to calculate the effective-medium parameters of
these metacrystals, which we will discuss in our followup
work.
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APPENDIX A: SINGLE NANOANTENNA SCATTERING
AND EXTINCTION PROPERTIES

To calculate the dipolar polarizability, and hence the scat-
tering, absorption, and extinction cross sections of a single
nanoantenna in the point-dipole approximation, we use the
same method as described in Appendix B of our earlier
work [29]. Figures 7(a), 7(b) and 7(c) compare the spectra
of the scattering, absorption, and extinction cross sections,
respectively, of the nanoantenna obtained from FDTD (blue
dot-dashed lines) and from the analytical model. The resonant
scattering cross section of an individual nanoantenna is almost
three times the resonant absorption. We see that the simu-
lated and calculated extinction and absorption cross-section
spectra agree reasonably well. For the absorption spectrum,
however, additional features are present at frequencies higher
than the absorption resonance for the FDTD result but not for
the analytically calculated result. These additional features are
due to the multipolar contributions, with the prominent bump
around 350 THz due to the electric quadrupolar component.
Obviously, these contributions are not accounted for in our
dipolar analytical model, and hence, they contribute to the dis-
agreement between the analytically calculated and simulated
spectra for the bilayers in the frequency range 280–380 THz.

APPENDIX B: ELECTRIC FIELD FROM
A TWO-DIMENSIONAL LATTICE

OF IDENTICAL ELECTRIC DIPOLES

Here, we present the derivation of (8), which is the electric
field at a given point in space from a square lattice of identical
electric dipoles of dipole moment p located in the xy plane.
We consider fields at a fixed frequency ω, or

E(r, t ) = E(r)e−iωt + c.c., (B1)

and assuming a source polarization P(r) in a background
medium of refractive index n, we have [54]

P(R; z) =
∫

dκ

(2π )2
P(κ; z)eiκ·R, (B2)

E(R; z) =
∫

dκ

(2π )2
E(κ; z)eiκ·R, (B3)
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FIG. 7. (a) Scattering, (b) absorption, and (c) extinction cross-
section spectra of an individual nanoantenna obtained from FDTD
simulations (blue dot-dashed lines) and from the dipolar analytical
model (red solid lines).

where P(r) = P(R; z), κ = (κx, κy), and

E(κ; z) =
∫

G(κ; z − z′) · P(κ; z′)dz′, (B4)

with G(κ; z) being the Green’s function, given by

G(κ; z) = iω̃2

2ε0w
(ŝŝ + p̂+ p̂+)θ (z − z′)eiw(z−z′ )

+ iω̃2

2ε0w
(ŝŝ + p̂− p̂−)θ (z′ − z)e−iw(z−z′ )

− ẑẑ
2ε0n2

δ(z − z′). (B5)

Here, θ (z) is the Heaviside step function,

w =
√

ω̃2n2 − κ2,
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and

ŝ = κ̂ × ẑ,

p̂± = κ ẑ ∓ wκ̂

ω̃n
,

with κ = |κ|. We assume the lattice positions of the nanoan-
tenna array are

Rl = lxax̂ + lyaŷ,

with a being the lattice constant; l denotes (lx, ly), where lx
and ly are integers. The reciprocal lattice vectors are then
given by

Km = 2π

a
mxx̂ + 2π

a
myŷ, (B6)

where m denotes (mx, my), with mx and my being integers. The
relation eiKm·Rl = 1 holds for any Rl and any Km

In the point-dipole approximation, the polarizations
P(R; z) and P(κ; z) of the plane of dipoles can be written as

P(R; z) = δ(z)
∑

l

pδ(R − Rl ), (B7)

P(κ; z) = δ(z)p
∑

l

e−iκ·Rl . (B8)

Substituting (B8) in (B4), we get, after some simplification,

E(κ; z) = iω̃2

2ε0w
(ŝŝ + p̂± p̂±) · p

∑
l

e−iκ·Rl eiw|z|. (B9)

Then using (B9) and (B3), we get

E(R; z) = iω̃2

2ε0

∫
dκ

(2π )2w
(ŝŝ + p̂± p̂±) · p

×
(∑

l

eiκ·(R−Rl )

)
eiw|z|. (B10)

We now set R = R j + �, where R j is some lattice site and
� is the displacement from the lattice site; using the lattice
property eiκ·(R j−Rl ) = 1, we get

E(R; z) = iω̃2

2ε0

∫
eiκ·�dκ

(2π )2w
(ŝŝ + p̂± p̂±) · p

×
(∑

l

eiκ·Rl

)
eiw|z|. (B11)

We then use the standard lattice result

a2

(2π )2

∑
l

eiκ·Rl =
∑

m

δ(κ − Km)

in (B11) to get

E(R j + �; z) = iω̃2

2ε0a2

∑
m

eiKm·�

w
(ŝŝ + p̂± p̂±) · peiw|z|,

(B12)
where w, ŝ, and p̂± are now functions of Km given by

ŝ = K̂m × ẑ,

p̂± = Km ẑ ∓ w(Km)K̂m

ω̃n
,

w =
√

ω̃2n2 − K2
m.

For m = (0, 0), w → ω̃n, K0,0 = 0, and K̂0,0 is poorly defined
in this limit. However, regardless of the choice of unit vector
for K̂0,0, we have the condition

ŝŝ + p̂± p̂± → x̂x̂ + ŷŷ,

which gives us the m = (0, 0) field component as

[E(R j + �; z)]m=(0,0) = iω̃

2ε0a2n
(x̂x̂ + ŷŷ) · peiω̃n|z|. (B13)

This is independent of displacement � and has the form of
a plane wave with no fast-decaying components. Hence, this
m = (0, 0) component is the radiative field contribution. For
a small enough lattice constant a, the remaining terms in the
sum in (B12) form the nonradiative contribution,

Enrad(R j + �; z)

=
∑

m �=(0,0)

eiKm·�
[

iω̃2

2ε0a2w
(ŝŝ + p̂± p̂±)

]
· peiw|z|. (B14)

The nonradiative field

Assuming that the lattice constant a is small enough that
for (mx, my) �= (0, 0) we have purely imaginary w, we set

w = iq, (B15)

where q = √
K2

m − ω̃2n2, which can be written in terms of the
indices (mx, my) as

q = 2π

a

√(
m2

x + m2
y

) − ω̃2n2a2

(2π )2
. (B16)

We now define
ω̃na

2π
= η, (B17)

and we can write
Km

ω̃n
= 2π

ω̃na

√
m2

x + m2
y = Dm

η
, (B18)

where Dm =
√

m2
x + m2

y . For the subwavelength lattice con-

stants assumed here, where for (mx, my) �= (0, 0) we have q
real, η < 1, and we can write

w

iω̃n
= q

ω̃n
= 1

η

√(
m2

x + m2
y

) − η2,

which simplifies to

q

ω̃n
= 1

η

√
D2

m − η2 = Dmγm

η
, (B19)

where

γm =
√

1 − η2

D2
m

and is always real and slightly less than unity for η < 1. We
now simplify the prefactor of the unit dyadics in (B14) as

iω̃2

2ε0a2w
= ω̃

2ε0a2n

ω̃n

q
= π

ε0a3n2

η2

Dmγm
. (B20)
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The propagator eiw|z|, which we define as fm(|z|), can also be
simplified to

fm(|z|) = e−q|z| = e− ω̃n
η

Dmγm|z| = e−2πDmγm| z
a |. (B21)

We also define

�(�) = Km · � = 2π

(
mx

�x

a
+ my

�y

a

)
. (B22)

Substituting Eqs. (B20)– (B22) in (B14), we get

Enrad(R j + �; z) = π

ε0a3n2

∑
m �=(0,0)

ei�m (�) fm(|z|)

×
[

η2

Dmγm
(ŝŝ + p̂± p̂±)

]
· p. (B23)

We now simplify the unit dyadics in (B23) in terms of the
cartesian vectors. So we have

K̂m = mxx̂ + myŷ
Dm

,

ŝ = K̂m × ẑ = −mxx̂ + myŷ
Dm

.

Hence, we write

ŝŝ = m2
y x̂x̂ + m2

x ŷŷ − mxmy(x̂ŷ + ŷx̂)

D2
m

(B24)

and

p̂± p̂± = Km ẑ ∓ wK̂m

ω̃n

Km ẑ ∓ wK̂m

ω̃n

= K2
m

ω̃2n2
ẑẑ − q2

ω̃2n2
K̂mK̂m ∓ i

Kmq

ω̃2n2
(ẑK̂m + K̂mẑ),

(B25)

where we have used (B15) for simplification. We use (B18)
and (B19) to further simplify Eq. (B25) above as

p̂± p̂± = D2
m

η2
ẑẑ − D2

mγ 2
m

η2
K̂mK̂m ∓ i

D2
mγm

η2
(ẑK̂m + K̂mẑ).

(B26)
We now simplify the second and third unit dyadics on the
right-hand side of (B26). For the second unit dyadic, we have

K̂mK̂m = mxx̂ + myŷ
Dm

mxx̂ + myŷ
Dm

= m2
x x̂x̂ + m2

y ŷŷ + mxmy(x̂ŷ + ŷx̂)

D2
m

. (B27)

The third unit dyadic in (B26) can be written as

ẑK̂m + K̂mẑ = ẑ
mxx̂ + myŷ

Dm
+ mxx̂ + myŷ

Dm
ẑ

= mx

Dm
(ẑx̂ + x̂ẑ) + my

Dm
(ẑŷ + ŷẑ). (B28)

Substituting (B27) and (B28) in (B26), we get

p̂± p̂± = −m2
xγ

2
m

η2
x̂x̂ − m2

yγ
2
m

η2
ŷŷ + D2

m

η2
ẑẑ

− mxmyγ
2
m

η2
(x̂ŷ + ŷx̂) ∓ i

myDmγm

η2
(ẑŷ + ŷẑ)

∓i
mxDmγm

η2
(ẑx̂ + x̂ẑ). (B29)

From (B24) and (B29), we write

η2(ŝŝ + p̂± p̂±)

= x̂x̂

(
η2m2

y

D2
m

− m2
xγ

2
m

)
+ ŷŷ

(
η2m2

x

D2
m

− m2
yγ

2
m

)

+ ẑẑD2
m + (x̂ŷ + ŷx̂)

(
−η2mxmy

D2
m

− mxmyγ
2
m

)
+ (ẑŷ + ŷẑ)(∓imyDmγm) + (ẑx̂ + x̂ẑ)(∓imxDmγm).

(B30)

The coefficients of the unit dyadics in (B30) can be further
simplified. So we have

η2m2
y

D2
m

− m2
xγ

2
m = η2m2

y − m2
x

(
D2

m − η2
)

D2
m

= η2
m2

x + m2
y

D2
m

− m2
x = η2 − m2

x .

Similarly,

η2m2
x

D2
m

− m2
yγ

2
m = η2 − m2

y ,

and

−η2mxmy

D2
m

− mxmyγ
2
m = mxmy

(−η2 − γ 2
mD2

m

D2
m

)

= mxmy

(
−η2 − (

D2
m − η2

)
D2

m

)

= −mxmy.

On making the above substitutions, Eq. (B30) becomes

η2(ŝŝ + p̂± p̂±)

= x̂x̂
(
η2 − m2

x

) + ŷŷ
(
η2 − m2

y

) + ẑẑD2
m

+ (x̂ŷ + ŷx̂)(−mxmy) + (ẑŷ + ŷẑ)(∓imyDmγm)

+ (ẑx̂ + x̂ẑ)(∓imxDmγm). (B31)

Substituting (B31) in (B23), we can write

Enrad(R j + �; z) = π

ε0a3n2
T (�, z) · p, (B32)

where T (�, z) is a dimensionless dyadic of the form

T (�, z) = Txx(�, z)x̂x̂ + Tyy(�, z)ŷŷ + Tzz(�, z)ẑẑ

+ Txy(�, z)(x̂ŷ + ŷx̂) + Tyz(�, z)(ẑŷ + ŷẑ)

× Tzx(�, z)(x̂ẑ + ẑx̂),

with

Txx(�, z) =
∑

m �=(0,0)

ei�m (�) fm(|z|)
(

η2 − m2
x

Dmγm

)
,

Tyy(�, z) =
∑

m �=(0,0)

ei�m (�) fm(|z|)
(

η2 − m2
y

Dmγm

)
,
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Tzz(�, z) =
∑

m �=(0,0)

ei�m (�) fm(|z|)
(

Dm

γm

)
,

Txy(�, z) =
∑

m �=(0,0)

ei�m (�) fm(|z|)
(

− mxmy

Dmγm

)
,

Tyz(�, z) =
∑

m �=(0,0)

ei�m (�) fm(|z|)(∓imy),

Tzx(�, z) =
∑

m �=(0,0)

ei�m (�) fm(|z|)(∓imx ). (B33)

The tensor components given in (B33) can be further simpli-
fied by noting that

ei�m (�) = cos[�m(�)] + i sin cos[�m(�)],

and we get

Txx(�, z) =
∑

m �=(0,0)

fm(|z|)
(

η2 − m2
x

Dmγm

)
cos[�m(�)],

Tyy(�, z) =
∑

m �=(0,0)

fm(|z|)
(

η2 − m2
y

Dmγm

)
cos[�m(�)],

Tzz(�, z) =
∑

m �=(0,0)

fm(|z|)
(

Dm

γm

)
cos[�m(�)],

Txy(�, z) =
∑

m �=(0,0)

fm(|z|)
(

− mxmy

Dmγm

)
cos[�m(�)],

Tyz(�, z) = sgn(z)
∑

m �=(0,0)

fm(|z|)my sin[�m(�)],

Tzx(�, z) = sgn(z)
∑

m �=(0,0)

fm(|z|)mx sin[�m(�)]. (B34)

We note that all the tensor components given above are purely
real, which is expected for Enrad(R j + �; z) being a purely
nonradiative field.

For all the dipoles aligned along x̂, which is the case
for the nanoantenna array excited by a normally incident
plane wave polarized along the dipole moments oriented
along the x axis, only the Txx(�, z) tensor component
is nonzero. Hence, the x-polarized electric field from the
sheet of dipoles given by the Eqs. (B13) and (B32) is
as follows:

Ex(R j + �; z) = iω̃

2ε0n

px

a2
eiω̃|z| + π

ε0an2
Txx(�, z)

px

a2
. (B35)
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