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Eigenchannel analysis of super-resolution far-field sensing with a randomly scattering analyzer
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A method of analysis for a randomly scattering analyzer offering far-subwavelength spatial resolution with
coherent light is presented, and the attributes are supported by numerical simulations. Without constraints,
far-field detection generally results in a spatial resolution of about one wavelength, mathematically explained
through the loss of the evanescent field information in a plane-wave expansion. Enhanced spatial resolution is
shown to be possible because of relative motion with a structured field and the resulting information available.
It is shown that detected information through a scattering analyzer results in enhanced spatial sensitivity with
motion of an object in a structured field, and that this is accompanied by changes in the relative distribution of
significant eigenvalues of the transmission matrix modeling the analyzer. Thus, the character of the random ana-
lyzer is shown to influence the far-field spatial resolution. A random analyzer, in principle, allows subwavelength
sensitivity whose resolution is limited only by measurement accuracy and precision, when fields are scattered
from a moving object or when some other relative change causes a modified field. Consequently, use of a random
analyzer offers substantial impact in a variety of applications.
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I. INTRODUCTION

The physics of disordered media is of substantial im-
portance in quantum transport and statistical optics, with
broad ramifications that include the modeling of small-scale
electronic devices and imaging through scattering media. Fun-
damentally, despite the information that, in principle, exists
in heavily scattered coherent waves, extraction or control
remains challenging. We describe the concept of super-
resolution spatial sensitivity from changes in the position
(motion) of an object with a structured coherent background
field, when measurements are made through a randomly
scattering analyzer slab. Despite being in the far field,
subwavelength spatial information about a moving object be-
comes available, and the sensitivity relates to the properties of
the random analyzer. Experiments indicate far-subwavelength
motion sensitivity [1], and these results are investigated in
relation to extracting subwavelength (super-resolution) spatial
information about an object using numerical simulations in
conjunction with a presented method of analysis that involves
the eigenvalue decomposition of random matrices. Breaking
the (far-field, wavelength-scale) diffraction limit on spatial
resolution, without resorting to fluorescence and use of the
point spread function of a microscope, opens scientific and
application domains.

The substantial theoretical contributions related to elec-
tronic transport in disordered wires (see, for example,
Ref. [2]) have been drawn upon by work to model the prop-
agation of electromagnetic waves through scattering media
via the transmission matrix [3,4]. Understanding how to de-
termine the eigenchannels in random media is a critical step
to the coupling of coherent optical waves into these channels
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[5,6]. With control of these input channels, such as by using
a spatial light modulator, it becomes possible to focus laser
light through substantial amounts of scatter, as would occur
in biological tissue. While random scatter of light is limiting
in some situations, it has been exploited in the concept of a
random spectrometer, where the frequency-dependent trans-
mission of a multimode optical fiber provides sensitivity in
measured speckle to changes in frequency [7]. We provide
the dimension where randomly scattering material acts as an
analyzer for enhanced sensing of geometrical features from
spatial changes in the incident field. These changes could be
due to the motion of a scatterer or set of scatterers, or the result
of small deformations in a solid-state material.

This paper explores the topic of randomly scattering ana-
lyzers using random matrix theory. It is shown that the ability
of such an analyzer to enhance sensitivity is accompanied by
certain changes in the probability distribution of the eigenval-
ues of the transmission matrix that models the analyzer. This
builds on the concept of object motion in structured illumina-
tion [8,9]. A randomly scattering analyzer is used to greatly
enhance far-field sensitivity to a subwavelength change, with
insight into how such enhancement may be improved upon.

In this paper, motion is modeled quasistatically, so the
object in question can be considered stationary at each discrete
time step while the fields in question are measured or calcu-
lated. Also, because our analysis focuses primarily on sensing
and not imaging, we use the term “resolution” to refer to the
length scale of the object’s geometrical differences that can
be distinguished by a sensing system, without assuming that
an image can be formed with detail at this length scale (but
with the implication that information to do so is, in principle,
available).

Section II begins with a mathematical description that links
speckle intensity correlations through a scattering analyzer
to the eigenvalue distribution of the analyzer’s transmission
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matrix. Section III then describes the finite element method
(FEM) simulations that demonstrate the relationship between
the amount of scatter in the analyzer and the eigenvalue
distribution, and these results are examined in Sec. IV by
comparing them to existing distributions from the literature.
These comparisons show only partial agreement with the
bimodal distribution, with improvement demonstrated when
the amount of scatter is increased, yet good agreement with
the quarter-circle distribution, despite only partial fulfillment
of the distribution’s requirements. An illustrative example
is given in Sec. V, demonstrating that the presence of a
scattering analyzer greatly improves far-field sensitivity to
a subwavelength feature change. Discussion and conclusion
sections follow.

II. CORRELATIONS AND EIGENVALUES

In this section, we formulate intensity correlations rep-
resentative of measured data in terms of field correlations.
This allows us to incorporate the field transmission matrix
associated with the randomly scattering analyzer, which we
investigate using random matrix theory in Sec. IV.

For this derivation, we assume zero-mean circular Gaus-
sian statistics for the detected field [10], which have been
found in previous experiments and numerical simulations [1]
involving a scattering analyzer. This derivation and the follow-
ing eigenvalue simulations in Sec. III therefore collectively
provide a deeper understanding of the underlying mechanisms
that result in enhanced sensitivity. However, as will be demon-
strated in Sec. V, such statistics are merely sufficient, but not
necessary, for achieving subwavelength far-field sensitivity.

Assuming Gaussian statistics allows us to apply what is
sometimes known as the complex Gaussian moment theorem
[10,11] and write the ensemble-averaged intensity correlation
in terms of the correlation of the detected fields (through a
polarizer) �(rd ) at different object positions r and r + �r as

〈Ĩ (rd ; r)Ĩ (rd ; r + �r)〉 = |〈�∗(rd ; r)�(rd ; r + �r)〉|2
〈I (rd ; r)〉〈I (rd ; r + �r)〉 , (1)

where ∗ represents complex conjugation, rd is the detector
position, which is fixed, and the intensities are normalized as
Ĩ = (I − 〈I〉)/〈I〉. The 〈·〉 is mathematically a configurational
average over the random scatterer locations (but obtained ex-
perimentally from speckle intensity data captured by a camera
[8]). Equation (1) is relevant to the extraction of information
about moving objects inside scattering media with coherent
fields [12], and it can be used as a basis to invert for such
object information from measured data involving a randomly
scattering analyzer.

We seek understanding about the scattering analyzer
through which �(rd ) [or, more precisely, Ĩ (rd )] is mea-
sured. This can be done with a scattering matrix and, in
particular, the transmission submatrix T ≡ S21. Here, S21

refers to the wave transmission submatrix of a 2 × 2 block-
matrix formulation for the scattering matrix S, which relates
a set of incident and scattered modes. (The properties of
S are detailed in Appendix B 1.) A plane-wave basis for
generating a transmission matrix is relevant for applications
[6] and consistent with (although having differing character
to) the mode-based [13] description or the quantum mechan-

ical treatment of conductance channels [2,14–17] that have
been a substantial focus. Seeking insight into the experimental
results from use of a random analyzer in front of a camera
[1], we therefore pursue a Fourier-domain description of the
speckle intensity correlation over spatial changes (translation
of the diffuser or the incident field, as in the numerical simu-
lations) in (1).

First, we draw upon the generalized Wiener-Khinchin the-
orem [18], which allows the normalized field correlation [12]
to be written as

g(1)(�r; r) = 〈�̃∗(rd ; r)�̃(rd ; r + �r)〉

= 1

2π

∫
�̃∗(kd ; r)�̃(kd ; r + �r)eikd ·�rdkd

≡ 〈�̃∗(kd ; r)�̃(kd ; r + �r)〉, (2)

where �̃ is the normalized field (whose coefficient of normal-
ization differs from that of the normalized intensity Ĩ by a
square root, due to the relationship between � and I), kd is
the conjugate variable corresponding to rd [the spatial variable
at the detector that is evaluated at a single point in (1)], and
the 〈·〉 now corresponds to spectral integration and hence a
sum over plane waves with randomly distributed complex
coefficients.

We next discretize the plane-wave transmission matrix de-
scribing the analyzer and consider a discrete Fourier-domain
representation for T, so we may analyze its eigenvalue decom-
position using tools from random matrix theory. The vector
with complex amplitudes describing the output plane-wave
spectrum for �̃(kd ), using a normalization consistent with (1),
is

y = Tx, (3)

where T is the (M × N complex, non-Hermitian) transmission
matrix (we will assume M = N), and x is a vector of incident
plane-wave coefficients with a uniformly discretized (prop-
agating in our analysis) spectrum. We use a singular value
decomposition (SVD), T = U�VH , where � is a diagonal
matrix of the singular values of T, the matrices U and V are
unitary, and H denotes the Hermitian transpose. This allows us
to write the average normalized discrete (over transverse wave
vector) intensity correlation in the detector half space as

cI = yH
0 yt = (Tx0)H (Txt ) = xH

0 TH Txt

= xH
0 (V�H�VH )xt , (4)

where y0 and x0 contain the complex spectral amplitudes
for the spatial reference position r, and yt and xt those for
the translated diffuser or field situation with position r + �r,
the unitary property of U has been used, and �H� is a di-
agonal matrix containing the (real, positive) eigenvalues Tn

(n = 1, . . . , N) of the matrix TH T, k of which are significant
(and those close to unity most important). Discretizing the
transmission matrix in this way allows us to study the con-
tinuous correlations that appear in (2) using random matrix
theory.
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FIG. 1. The 2D numerical simulation arrangement showing a
section of a 6 µm-thick random analyzer slab (the full breadth of the
slab is wider than the displayed section). The randomly populated
blue squares have side lengths of 200 nm, as shown in the enlarged
inset. They consist of dielectric material and have a fill fraction of
50%, while the gray region is free space. At the top and bottom are
perfectly matched layers (PMLs) in a scattered field solution. The
angle (θ in the figure) of the incident plane wave (phase front
conceptually shown in brown) was swept over ±1.4416 rad, while
the analyzer was kept stationary. The plane waves had Ez, Hx, Hy

polarization and the free-space wavelength was λ = 850 nm. The
total electric field was measured at the detector plane (red), a distance
of 4λ from the top boundary of the scattering slab (this distance is not
shown to scale).

III. FEM SIMULATION

In relation to (4), the specific nature of the eigenvalues,
and the character of the random elements of T, should dictate
the characteristics of the analyzer. We pursue this point now
in relation to numerical simulations, which give a solution to
the sinusoidal steady state Maxwell’s equations (at circular
frequency, ω, corresponding to the wavelength of the light, λ)
on a mesh. These FEM simulations use the arrangement in
Fig. 1, yielding the results summarized in Fig. 2. There, we
use T to represent a random variable whose samples are Tn

(after a normalization process described in Sec. IV A). The
FEM solution domain, shown in Fig. 1, used a scattered field
formulation (so the incident field is added to form the total
field), perfectly matched layers (PMLs) on the incident and
transmission sides (artificial boundaries that are highly ab-
sorbing and represent unbounded space by limiting reflections
back into the domain [19]), periodic boundaries on the left
and right sides, and N = 141 different incident plane-wave
directions (over ±1.4416 rad and representing the complete
propagating spectrum). The transverse wave numbers, kx, of
these plane waves were assigned the values 2πm/Lx, where m
is an integer and Lx is the transverse period in Fig. 2, so each
is considered a mode of the periodic geometry. We used only
propagating modes because the scattering slab is in the far
field (regarding the small object features of interest). We note

FIG. 2. (a) Empirical density functions p(T ) for the normalized
transmission eigenvalues T of the matrix TH T for a plane-wave
spectrum with N = 141. Each histogram consists of 25 bins and
contains ten independently generated random instances of the scat-
tering slabs whose configurations are listed in Table I, and is plotted
with a vertical log scale. We compare these empirical probability
distributions to the theoretical bimodal probability distribution in
order to see if convergence occurs as the degree of scatter in the
analyzer is changed. (b), (c) The lower and upper ends of the plot
in (a), respectively, are shown in greater detail. The lowest-scatter
curve in (c) has a discontinuity: it ends at 0.9, and has a single point
at 0.98. As the optical thickness of the scattering slab increases, the
relative proportion of eigenvalues near T = 0 increases, even slightly
surpassing the theoretical bimodal distribution for some configura-
tions. No clear pattern or agreement is found for the eigenvalues near
T = 1. Potential reasons for this are discussed in Sec. IV C 4.
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TABLE I. The parameters for defining the five types of randomly
scattering analyzers that were used in the numerical simulations, as
well as the corresponding average speckle contrast ratios (CRs).

Slab type Thickness Ly Dielectric εr CR

Lowest scatter 1 µm 3 0.9876
Low scatter 3 µm 3 1.0284
Medium scatter 3 µm 5 1.0616
High scatter 6 µm 5 1.0672
Highest scatter 9 µm 5 1.0710

that the field solution in the analyzer is done to numerical pre-
cision and that the total field solution is Fourier transformed
(with respect to x) to form the plane-wave spectrum. The an-
alyzer is discretized into square regions of 200 nm × 200 nm,
each of which is randomly assigned material (dielectric or
free space) at a fill factor of 50%. The breadth is Lx = 60 µm
and the level of scatter is controlled by thickness (Ly) of the
analyzer and the dielectric constant (εr) of the filled regions,
as described in the first three columns of Table I. The detector
plane is a distance of 4λ from the analyzer and spans the
entire breadth of the geometry (Lx). Data are collected at N
points that are distributed uniformly across the detector plane,
and a discrete Fourier transform is performed to calculate the
elements of matrix T. All these aspects of the FEM simulation
are elaborated upon in Appendix A.

The transmitted field along the detector line is Fourier
transformed to provide the spatial frequency complex am-
plitudes and hence the entries in T. The calculated density
functions of the normalized eigenvalues (of TH T) is given
in Fig. 2 for each level of scatter. This data set includes
ten random instances of each type of scattering analyzer,
and the curves became smoother as the number of instances
increased. Note the clear trend in the numerical data for
increasing scatter: a larger proportion of eigenvalues near
zero.

The last column of Table I contains data that describes
how closely the detected speckle fields satisfy the assump-
tion of zero-mean circular Gaussian statistics that was made
in Sec. II to form (1). If the real and imaginary parts of
the electric field each follow an identical zero-mean Gaus-
sian distribution, then the magnitude squared of the field
follows a negative exponential distribution [10]. The con-
trast ratio (CR) of such a distribution, which is the ratio of
the standard deviation to the mean of the intensity, is 1. To
calculate these, a normally incident plane wave was shone
onto each of the scattering analyzers and the y component
of the Poynting vector, Sy, was measured along the detector
plane at points spaced λ/100 apart. For each such instance
of each type of scattering analyzer, the mean and standard
deviation of these values of Sy were calculated, and the CR
calculated from these. For each type of analyzer, the ten
resulting CRs were averaged together, and these averaged
results are displayed in the last column of Table I. These
suggest that if the relative dielectric constant εr is large, then
increasing the analyzer thickness Ly may result in field statis-
tics that are increasingly far from being zero-mean circular
Gaussian.

IV. EIGENVALUE DISTRIBUTIONS

In this section, we introduce two theoretical eigenvalue
distributions from random matrix theory: the bimodal distri-
bution and the quarter-circle distribution. They are compared
to the empirical eigenvalue distributions derived from our
numerical simulations in Secs. IV C and IV D, after a prelim-
inary definition and calculation in Secs. IV A and IV B.

A. Normalization

The theoretical eigenvalue distributions typically appear in
scaled form. However, unless a special case is taken when
scaling the incident plane-wave amplitudes, the eigenvalues
in question will not, in general, be limited in this way. To
make these comparisons more appropriate, normalizations are
performed.

Section IV C compares the eigenvalues of TH T to the bi-
modal distribution. For these comparisons, let us define T̂n,m,p

as the nth eigenvalue of TH
m,pTm,p, where Tm,p is the transmis-

sion matrix of the mth (m = 1, . . . , 10) random instance of a
scattering analyzer with slab type p (p = 1, . . . , 5, for each
row in Table I). The normalized eigenvalues Tn are derived
from these T̂n,m,p according to

Tn = T̂n,m,p

T̂max
, (5)

where

T̂max = max
n,m,p

T̂n,m,p.

By normalizing all eigenvalues from different slab types with
the same scaling value, we are able to compare all of these
eigenvalue distributions to one another. The resulting eigen-
values, which were always nonzero, fall in the range Tn ∈
(0, 1]. This normalization process will be implicitly assumed
throughout the remainder of this paper.

Section IV D similarly compares the singular values of
both Re(T) and Im(T) to the quarter-circle distribution. Each
of these sets of singular values is normalized using methods
analogous to (5).

B. Estimated mean-free path length

To contextualize these simulations, we use the Beer-
Lambert law to estimate the mean-free path length, 	, of the
scattering material with εr = 5. It relates to the transmission
coefficient t and the slab thickness Ly, as [20]

t = eLy/	. (6)

Here, t is not the normalized transmission eigenvalue T (de-
scribed in Sec. IV A and used throughout this paper), but
instead the ratio of the power flowing through the detector
plane to the power incident upon the slab.

The transmission coefficient t was calculated for each of
the ten instances of the medium-, high-, and highest-scatter
configurations (see Table I), and the exponential model in (6)
was fit to the data. The results are shown in Fig. 3, and the
fitted mean-free path is 	̂ ≈ 2.8 µm. Except for the lowest-
scatter configuration, all the slabs listed in Table I have a
thickness Ly � 	̂.
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FIG. 3. Modeling the relationship between the transmission co-
efficient t , given in (7), the slab thickness Ly, and the mean-free
path 	, using the Beer-Lambert law. The relative dielectric constant
is εr = 5 for the material being modeled. The fitted curve gives an
estimated value of 	̂ ≈ 2.8 µm.

C. Bimodal distribution

The bimodal distribution has arisen when discussing
the transmission matrix eigenvalues in scattering systems
[2,13,21]. It has been widely presented in full formality [2,21],
although the development had been underway for some time
[14,24]. It has also been investigated in relation both to waveg-
uide problems with random scatter [13] and to statistical
optics and imaging applications [3]. Prior to the appearance
of an explicit form for this distribution, qualitative descrip-
tions based on various analyses have been included in the
study of conductance in one-dimensional disordered systems.
Dorokhov [22] discusses a decreasing number of highly con-
ducting states as the wire length increases, and Imry [14] gives
a qualitative result based on a heuristic argument. Pendry et al.
[23] prove what can be considered a binary approximation to
the continuous bimodal distribution, showing that the trans-
mission coefficients take on values of either 0 or 1 in the limit
of increasing wire length.

The bimodal density function for Tn (samples drawn from
the random variable T ) is given by

pbm(T ) = T0

T
√

1 − T
, (7)

for T ∈ [δ, 1], δ being positive and small compared to unity,
and T0 the scaling parameter for the distribution to integrate
to unity. See Appendix B for a derivation. Note that this
distribution contains a nonintegrable singularity at T = 0 (but
not at T = 1), which is why T cannot span the full range
[0, 1].

The presence of the singularity in (7) makes the value of
δ nonarbitrary. The peak near T = 0 grows larger as δ → 0,
but the normalization accomplished by T0 results in the sup-
pression of the rest of the distribution. Therefore, as δ → 0,
the peak near T = 1 appears to shrink relative to the peak
near T = 0. The values of δ and T0 are thus intertwined.
The correct choice of δ is discussed below in Sec. IV C 4.

TABLE II. The bottom and top 10% means of the calculated
normalized transmission eigenvalues Tn. This data agrees with the
model’s argument that, as the level of scatter increases in the an-
alyzer, the eigenvalue distribution becomes more bimodal (even
though this trend can be only partially found in Fig. 2).

Slab type Bottom 10% Top 10%

Lowest scatter 2.5959 × 10−3 0.2301
Low scatter 3.6097 × 10−4 0.3203
Medium scatter 7.1288 × 10−5 0.3936
High scatter 2.1257 × 10−6 0.5791
Highest scatter 1.4675 × 10−7 0.7235

However, because the empirical eigenvalues are being binned
in a histogram, these extrema are not preserved, and this
method of choosing of δ and T0 does not result in theoretical
bimodal distributions that match the empirical distributions.
Choosing δ as the center of the lowest histogram bin results in
the theoretical bimodal distribution curve shown in Fig. 2.

1. Empirical eigenvalue distributions

Figure 2 shows the empirical density functions for the
normalized transmission eigenvalues T of the matrix TH T
for a plane-wave spectrum with N = 141. Each histogram
consists of 25 bins and contains ten independently generated
random instances of the scattering slabs whose configura-
tions are listed in Table I, and is plotted with a vertical log
scale (base 10). In addition to the normalization discussed in
Sec. IV A, the histograms for each slab configuration are each
renormalized (this time along the vertical axis, as opposed to
the horizontal axis) so they each integrate to unity, making
them valid probability distributions.

The lower and upper ends of the plot are shown with
greater detail in Figs. 2(b) and 2(c), respectively. We com-
pare these empirical probability distributions to the theoretical
bimodal probability distribution to investigate trends as the
degree of scatter in the analyzer is changed. No comparison is
made to the quarter-circle distribution because that would be
inappropriate, as is discussed in Sec. IV D 2.

Increasing analyzer scatter representative of the diffusion
regime is expected to yield a bimodal density [2], a trend sup-
ported by normalized eigenvalues with a space-based T [25].
We find that, as the optical thickness of the scattering slab
increases, the relative proportion of small eigenvalues (close
to T = 0) increases, even slightly surpassing the theoretical
bimodal distribution for some configurations, implying only
moderate agreement with this theory.

No clear pattern is evident in Fig. 2 for the relatively large
eigenvalues (close to 1) and the amount of scatter considered.
The results also do not match the bimodal distribution, and the
expected peak near T = 1 is not evident.

2. Statistics of the bimodal distribution

As a measure of the shape of p(T ), the bottom and top 10%
means of the normalized transmission eigenvalues are shown
in Table II. These were calculated by first taking the eigen-
value sets for each random analyzer (normalized uniformly
so the maximum eigenvalue seen anywhere is 1, as detailed
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in the caption of Fig. 2), adding up the bottom and top 14
eigenvalues (which, out of N = 141 elements, corresponds to
just under 10% each), and dividing each by the sum of these
normalized eigenvalues. Finally, these ratios are averaged to-
gether.

Figure 2 clearly shows an increasing proportion of closed
channels as the analyzer scatter increases, and the bottom
10% means in Table II agree with this trend. The top 10%
means also demonstrate an increasing proportion of trans-
missive channels as the scatter increases, though no clear
corresponding trend appears in the figure. These two patterns
in Table II suggest that more agreement with the theoreti-
cal bimodal distribution may emerge as the thickness Ly is
increased, despite the findings in Sec. IV B that Ly exceeds
the estimated mean-free path length, 	̂. Still, an increase in
scatter is accompanied by higher proportions both of closed
channels and of channels that are at least partially open, and
we associate this with the demonstrated increased sensitivity
to changes in the field incident on the analyzer (see Sec. V).

3. Impact of angular support

Here we explore the effect of reducing the angular support
of the set of plane waves used in T. Figure 4 shows the effects
of using different subsets of central modes (the lowest-order
modes, whose kx is close to zero), with the highest-scatter slab
type (Table I). Interestingly, reducing this set of plane waves
seems to have a somewhat similar effect on the eigenvalue dis-
tribution as reducing the amount of scatter in the analyzer: the
peak near zero shrinks in height. However, no trend appears
near T = 1.

4. Assumptions of the bimodal distribution

For further insight into potential reasons for the absence
of the high-eigenvalue peak in Fig. 2, we turn to the deriva-
tion [2] of the bimodal distribution. Appendix B has the
relevant background details and derivations. One important
assumption involves the values xn, which are related to the
eigenvalues Tn that appear in (7) by

T = 1

cosh2x
(8)

or

x = cosh−1

(
1√
T

)
, (9)

where x is a random variable of which xn are samples (similar
to the relationship between T and Tn). This notation for x
and xn are used in keeping with existing literature, though the
notation used in Appendix B 6 differs.

It has been noted that, for the scattering regime where the
bimodal distribution is an appropriate model for the trans-
mission eigenvalues, the probability distribution for xn tends
toward uniform [2,17]. Indeed, such uniformity forms a basis
for the derivation of the bimodal distribution (7), as shown in
Appendix B. We therefore apply the transformation defined in
(9) to the values of Tn that are plotted in Fig. 2. The resulting
xn are compared to a uniform distribution in Fig. 5.

Figure 5 shows that these xn are not, in fact, uniformly
distributed, meaning that the scattering regime resulting from

(a)

(b)

(c)

FIG. 4. Comparison of empirical density functions for the nor-
malized transmission eigenvalues T from the SVD of TH T for
different amounts of angular support in the set of incident plane-wave
modes. Only the highest-scatter slab type (described in Table I)
was used. Only the central angles were kept, meaning those whose
angles of incidence were closest to normal with respect to the slab.
(a) The data here were taken from the same simulations that were
used to generate Fig. 2, and were processed similarly. The bimodal
probability distribution is also shown, for comparison. (b), (c) The
lower and upper ends of the plot in (a), respectively, are shown in
greater detail. Note that, as the set of incident plane waves becomes
less complete (with respect to the set of propagating modes), the
relative proportion of small eigenvalues (close to 0) decreases. No
clear relationship emerges between the number of modes used and
the relative proportion of large eigenvalues.
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FIG. 5. Density functions for the x calculated from the empirical
distributions of T that are shown in Fig. 2, using (9). The histograms
were calculated using a similar method to those in Fig. 2, except
that 50 bins were used instead of 25. They are not uniform distri-
butions, thus indicating that the scattering regime resulting from our
simulations is not the same as the one in which we would expect to
see a bimodal eigenvalue distribution, but the trend toward uniform
as scatter increases is clear. This explains the absence of the high-
eigenvalue peak in Fig. 2.

our simulations is not the same as the one in which we would
expect to see a bimodal eigenvalue distribution. This explains
the absence of the high-eigenvalue peak in Fig. 2. However,
the curves do appear to approach the uniform distribution as
the amount of scatter increases, when looking at the region
xn > 1. On the other hand, such a relationship does not ex-
ist for the other notable region, around xn < 1. In fact, this
behavior is analogous to that of Fig. 2: the low-eigenvalue
peak grows higher as the amount of scatter increases, while
the high-eigenvalue peak does not. The relationship between
these two figures is not coincidental. Equation (9) is strictly
monotonically decreasing for T ∈ (0, 1), which is the range of
T plotted in Fig. 2. Therefore, the left side of Fig. 5 is related
to the right side of Fig. 2(a), and vice versa. For this reason,
the normalization procedure performed on Tn (Sec. IV A) may
play a role in the steep feature around xn < 1.

These results suggest that we may expect the lower peak of
the bimodal eigenvalue distribution in Fig. 2 to continue to be
better represented as the amount of scatter in the analyzer is
increased. While the upper peak has not appeared for the types
of scattering slab used in this paper, the results of Sec. IV C 2
suggest that both peaks may grow as the amount of scatter
is further increased. While the assumption does not hold that
the scatterers are far apart compared to the wavelength, this
is unlikely to be the cause for the lack of an upper peak,
as the CRs in Table I are close to unity. The relatively low
number of eigenvalues near T = 1 means that statistical con-
vergence in this region may not have been achieved. It has
been suggested that using an incomplete set of channels when
calculating the transmission matrix could cause this T = 1
peak to fail to appear [13], though our simulations use the
full set of propagating plane-wave modes. However, there are
differences between our simulations and those of Goetschy

and Stone [13]. For one, the contrast between the regions of
high εr and low εr within the scattering medium is higher in
our simulations than in theirs. Also, their scattering medium
was about twice as large (relative to the wavelength λ) as our
largest slab, in both dimensions. As a result, they had over
thrice our number of eigenvalues (N = 485 versus N = 141).
Their findings indicate a certain sensitivity of the presence
of this high-eigenvalue peak to the angular spectrum of the
incident field, and Fig. 4 shows that the same explanation
holds here regarding the bimodal eigenvalue distribution.

D. Quarter-circle distribution

We now turn our attention to a different eigenvalue distri-
bution. While the bimodal distribution arose from a physical
background, the quarter-circle distribution originated from
random matrix theory. Specifically, it first appeared dur-
ing a derivation by Wigner of the eigenvalue distribution
of random-sign real symmetric matrices [26]. This class of
matrices was generalized in later work [27], allowing the
distribution to be applied to real symmetric Gaussian matrices.

Wigner’s research was further extended by Marčenko and
Pastur in several ways, notably allowing for complex-valued
matrices [28]. The constraints on the properties of the ran-
dom matrix for this eigenvalue distribution to be valid have
been loosened over time. We will simply note here that they
are satisfied by independent and Gaussian-distributed matrix
elements, but a more thorough review of the history of the
quarter-circle distribution and its assumptions can be found
in Appendix C. The simplified quarter-circle density function
that we use, with σ ∈ [0, 1], is

pqc(σ ) = 4

π

√
1 − σ 2, (10)

where σ is a random variable corresponding to the eigenval-
ues of the appropriate random matrix. We have so far been
studying the eigenvalues of the random matrix TH T, since
they relate to the correlation data, as presented in (4). When
studying the quarter-circle distribution though, we consider
the field transmission matrix T. We also consider its singular
values, rather than its eigenvalues, as explained next.

1. Empirical singular value distributions

While the work by Marčenko and Pastur shows that
complex-valued random matrices can have quarter-circle-
distributed eigenvalue distributions, the assumptions made
in their derivation are somewhat unclear in our context. As
detailed in Appendix C, they all refer to properties of the
random matrix that are more formal than what we have access
to. Therefore, rather than investigating the complex-valued
matrix T, we will instead use the real-valued matrices Re(T)
and Im(T) (the real and imaginary parts of T, respectively).
These matrices are not symmetric, so their eigenvalues are
complex, in general. The (real-valued) singular value distri-
butions of these matrices are compared to the quarter-circle
distribution in Fig. 6. These singular values (normalized as
described in Sec. IV A) of Re(T) and Im(T) are denoted by σR

and σI , respectively. The decision to compare these matrices’
singular value distributions to the quarter-circle distribution
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FIG. 6. Density functions for the normalized singular values of the matrices (a), (c), (e) Re(T) and (b), (d), (f) Im(T) for a plane-wave
spectrum with N = 141. The data here were taken from the same simulations that were used to generate Fig. 2, and was processed in a similar
way. (a) and (b) show probability distributions corresponding to Re(T) and Im(T), respectively. (c) and (e) show the lower and upper ends,
respectively, of (a) in greater detail. (d) and (f) correspond to (b) in the same way. The theoretical quarter-circle distribution is included for
comparison, and good agreement with it is found. This is somewhat surprising, as symmetry is a requirement for quarter-circle statistics, (as
discussed in Sec. IV D), and the matrices Re(T) and Im(T) are not symmetric nor are their entries independently distributed. This may explain
why the empirical distributions, compared to the quarter-circle distribution, tend to have more eigenvalues close to 0, and fewer eigenvalues
close to 1.

is not merely a practical one: it is actually the more correct
choice of comparison in a rigorous sense.

By reviewing the details of the quarter-circle distribution
more closely (see Appendix C), we note that the matrix T
already satisfies one of the distribution’s requirements. In
forming (1), we required the detected fields (and hence the en-
tries in T) to be zero-mean circular Gaussian. That is, both the
real and imaginary parts of T [Re(T) and Im(T), respectively]

have been assumed to have zero-mean Gaussian statistics in
(1). If these matrix entries are independently distributed as
well, then the only remaining constraint [27] required for
the eigenvalues (singular values) to follow a quarter-circle
distribution is for these two matrices to be symmetric. For
example, if such independence were to exist, then the ma-
trices Re(T) + Re(T)
 and Im(T) + Im(T)
 (where 
 rep-
resents the transpose) would be expected to have eigenvalue
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distributions that follow the quarter-circle distribution. In-
deed, the quarter-circle distribution has been found exper-
imentally when studying the singular value distribution of
transmission matrices for disordered media [3]. However, it
will now be shown that such assumptions on T are incompat-
ible with the matrix TH T having a quarter-circle eigenvalue
distribution.

2. Applicability of the quarter-circle distribution

For completeness, a proof is included in this section that
the matrices T and TH T cannot simultaneously satisfy the
assumptions of the quarter-circle distribution. This is done
by assuming the statistics of T and proving that the diagonal
elements of TH T are distributed according to an Erlang distri-
bution (which is related to the χ2 or chi-square distribution)
rather than the required exponential distribution.

The Erlang and χ2 distributions [29] are both special cases
of the Gamma distribution. The Erlang distribution with shape
parameter k and rate parameter γ , denoted by Erlang (k, γ ),
has the density function

fEr(x; k, γ ) =
{

γ kxk−1

(k−1)! e−γ x x � 0

0 otherwise,
(11)

while the χ2 distribution with n degrees of freedom (denoted
χ2

n ) has the density function

fχ2 (x; n) =
{

xn/2−1

2n/2�(n/2) e
−x/2 x � 0

0 otherwise.
(12)

The connection between the Erlang and χ2 distributions is
interesting. Comparing (11) and (12), we note that an Erlang
distribution with rate parameter γ = 1/2 and shape parameter
k = n/2 is equivalent to a χ2

n distribution.
Next, it can be shown [29] that, given n independent Gaus-

sian random variables zi with zero mean and unit variance,
their sum of squares

∑n
i=1 z2

i follows a χ2
n distribution. Due to

the equivalence between the Erlang and χ2 distributions, this
means that, if the number of such Gaussian random variables
n is even, then this sum follows an Erlang(n/2, 1/2) distribu-
tion.

Now, the matrix TH T is, in general, complex-valued
(with Hermitian symmetry), except for the diagonal elements,
which are real-valued. If TH T is an N × N matrix, then the
ith element along its diagonal is given by

(TH T)ii =
N∑

j=1

Re(Ti, j )
2 + Im(Ti, j )

2. (13)

Therefore, if the elements of T are independently distributed
zero-mean Gaussian random variables, then the diagonal ele-
ments of TH T follow a χ2

2N distribution, which is equivalent
to an Erlang(N, 1/2) distribution. Regardless of the behavior
of the (complex-valued) off-diagonal matrix elements, these
diagonals prevent TH T from satisfying the requirements for
its eigenvalues to follow a quarter-circle distribution.

Still, the statistics resulting from (13) do hold a certain con-
ceptual similarity with those mentioned in Sec. II. Zero-mean
circular Gaussian field statistics result in intensity statistics

TABLE III. Statistics of the T matrix elements resulting from
the numerical simulations: mean distance correlation (Dist. corr.)
and mean contrast ratio (CR). These values indicate how indepen-
dently distributed they are and how Gaussian-distributed they are,
respectively. Both of these properties relate to the quarter-circle
distribution.

Dist. corr. CR

Slab type Re(T) Im(T) T

Lowest scatter 0.5044 0.5048 0.9876
Low scatter 0.5045 0.5043 1.0284
Medium scatter 0.5043 0.5049 1.0616
High scatter 0.5050 0.5047 1.0672
Highest scatter 0.5056 0.5050 1.0710

that follow an exponential distribution (sometimes called neg-
ative exponential [10]), which has the distribution [29]

fex(x; γ ) = γ e−γ x, (14)

where γ is the rate parameter. By comparing (11) and (14), we
see that the exponential distribution is merely a special case
of the Erlang distribution, with shape parameter k = 1. This
means that, if we were to let N = 1 in (13) (corresponding to
a single random plane wave and a single measurement), then
we would indeed have negative-exponential statistics in TH T,
resulting in an albeit trivial case of a quarter-circle-distributed
eigenvalue.

3. Statistics of the quarter-circle distribution

Section IV D 2 showed that, if the conditions are satisfied
for the eigenvalues of T to be described by the quarter-circle
distribution, then they cannot be satisfied by TH T. Here we
examine how closely the required conditions are met by T.

One condition on the matrix entries is that they must be
independently distributed [27] (except for the symmetry of
the matrix). We will use the distance correlation [30] between
pairwise matrix elements of some matrix A to measure this
independence. For reasons discussed above, A = Re(T) and
A = Im(T) will be examined, and the results are displayed
in Table III. For this analysis, each matrix element Ai, j is
considered a random variable, where i, j ∈ {1, . . . , 141}. For
each type of scattering slab, any given random variable Ai, j

can be said to have been sampled ten times, as that is the
number of slab instances of each type that were numerically
generated. For any pair Ai, j and Ai′, j′ , their distance corre-
lation can be computed as a measure of independence. The
resulting average distance correlations were thus calculated
[31] and are shown in Table III. Note that the distance corre-
lation between two random variables is 0 if and only if they
are independent. The results indicate that the matrix elements
are not independent and do not approach independence for the
slabs that we have simulated.

The final column of Table III contains the mean CRs corre-
sponding to the complex elements of the matrix T, which were
also displayed in Table I. As discussed in Sec. III, a mean
CR near 1 is an indicator that the field follows a zero-mean
circular Gaussian distribution. These statistics are repeated
here to gauge how closely the elements of the real-valued
matrices Re(T) and Im(T) each follow zero-mean Gaussian
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FIG. 7. Diagram of two apertures in a 200-nm-thick PEC film
(green). This is placed 2λ in front of the analyzer (blue) to demon-
strate super-resolution sensitivity to the absence or presence of the
central PEC segment (λ/10 across). When this central segment is
removed, the single remaining aperture has a width of λ. The PEC
otherwise spans the entire breadth of the geometry, Lx . As in Fig. 1,
there is a separation of 4λ between the analyzer and the detectors
(red), which, in this case, measure the y component of the time-
average Poynting vector.

distributions with identical variances. These same statistics
therefore appear in two different contexts throughout this
paper. As a result, we would expect that, as the field more
closely approaches zero-mean circular Gaussian statistics, the
eigenvalues of the matrices Re(T) and Im(T) more closely
approach a quarter-circle distribution.

Still, it should be noted that an assumption of zero-mean
circular Gaussian field statistics was made in forming (1)
only because of the basis of a moment theorem used to relate
intensity and field correlations. However, the discrete mathe-
matical description in Sec. II involving field correlations over
space, notably (4) and the ensuing treatment of TH T, does not
require Gaussian properties and remains valid regardless of
the field statistics.

V. SUPER-RESOLUTION FAR-FIELD SENSITIVITY

We have previously established [1], with experimental and
simulation-based data, that the use of a randomly scattering
analyzer can enhance subwavelength sensitivity to either a
shifting incident electric field or a changing field associated
with a remote shifting object. This section elaborates upon
that result by demonstrating super-resolution sensitivity in a
fundamental way: distinguishing between two features that
are separated in space by a subwavelength distance.

A. Super-resolution far-field simulation

The object’s features take the form of two apertures in a
200-nm-thick perfect electric conductor (PEC) film that oth-
erwise spans the entire breadth of the geometry, as illustrated
in Fig. 7. A small central PEC segment is added or removed,
creating either one large aperture or two smaller apertures in
the PEC. The PEC plane is placed below the analyzer slab
(see Fig. 1), so the incident field has to pass through the
apertures before reaching the analyzer. There is a free-space
margin of 2λ between the PEC and the bottom PML (for
numerical purposes). There is also a gap of 2λ between the

PEC and the bottom of the analyzer slab. For each of the
configurations in Table I, ten different random analyzer slabs
were generated (except for the highest-scatter case, which
required more memory than was available on our compute
server); the resulting correlations were averaged together. We
also compare to a control case, in which no random analyzer
is present at all. The correlation curves shown in Fig. 8 were
calculated as described in Appendix A 5.

It should be noted that, since the aperture construction
has a total size of λ, the far-field distance is approximately
2(λ)2/λ = 2λ away. Because this is, in fact, the distance
between the aperture construction and analyzer slab (when
applicable), this analyzer can be considered a far-field sensing
system.

The correlations plotted in Fig. 8 were calculated over the
changing detected speckle intensity patterns that resulted from
translating the aperture system shown in Fig. 7 through a
normally incident plane-wave background field. Specifically,
the aperture system is translated in intervals of λ/10, up to
a maximum of λ/2 in each direction (+x and −x). This
contrasts with our previous work [1], in which the detected
speckle intensity patterns change in response to a translating
(randomly generated) background speckle field, with every-
thing else being stationary. Here, the translating apertures
render it unnecessary to have a shifting speckle field or to
even have a stationary one, which is why we switch to us-
ing a simple normally incident plane wave. This has the
added benefit of eliminating one of the sources of randomness
in the simulations (the other being the distribution of ran-
dom scatterer positions in the analyzer, which still remains).
This improves the distinguishability between the one-aperture
and two-aperture cases by effectively removing what can be
thought of as a source of noise.

B. Speckle intensity correlations

Figure 8 exhibits several patterns. Without a scattering an-
alyzer, the one-aperture and two-aperture cases are difficult to
distinguish. When a scattering analyzer is added, the decorre-
lation curves become more distinguishable. This demonstrates
far-field super-resolution sensing.

It should be noted that, while the one-aperture and two-
aperture curves in the no-analyzer case are separated by much
less than when an analyzer is present, the mere presence
of any separation at all may suggest the possibility of such
super-resolution sensing without an analyzer (albeit with less
effectiveness). However, noise has been neglected. Our in-
terest here is in enhancing the separation of the two object
cases, which indicates an ability to distinguish them in a noisy
environment. The key point is that sensitivity is enhanced by
the analyzer.

1. Using standard slab types

We began by using the same types of scattering analyzers
that are parameterized in Table I (except for the highest-scatter
type, which our computer had insufficient memory to simu-
late), with εr ∈ {3, 5}. Some expected patterns are noticeably
absent from Figs. 8(a) and 8(c) for this situation. For the
lowest-scatter and low-scatter analyzer types, an increase in
scatter results in a faster decorrelation as well as greater
separation between the one-aperture and two-aperture curves.
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FIG. 8. Correlations over shifting aperture(s), illuminated by a normally incident plane wave, with or without an analyzer slab. (a) shows
slab types listed in Table I, while (b) shows slabs all with dielectric constant εr = 2. (c), (d) are the same as (a), (b), but zoomed in. The
different colors each represent a different type of analyzer (or lack thereof). The solid lines represent one aperture, while the dashed lines
represent two apertures. Error bars are shown based on averaging the results of ten different random analyzers (where applicable). While the
difference between the one-aperture and two-aperture setup is difficult to distinguish in the absence of an analyzer slab, they become more
distinguishable with the addition of a scattering random analyzer. This demonstrates far-field super-resolution sensing. (a), (c) The same types
of analyzer from Table I are used. Surprisingly, increasing the amount of scatter does not consistently result in faster decorrelation and greater
separation (sensitivity). (b), (d) After lowering the dielectric constant to εr = 2, however, increasing the amount of scatter does result in faster
and more separated decorrelations.

This increases sensitivity, and it reinforces prior results [1]
(even though we have used a plane-wave illumination in this
paper rather than the speckle-field illumination of the previous
work). However, the medium-scatter and high-scatter ones do
not follow this pattern. By consulting Table I, we notice that
this change comes about with the transition from εr = 3 to
εr = 5.

2. Reduced dielectric constant

Exploring this lack of a consistent trend, we also tried sim-
ulating analyzers with a lower dielectric constant, εr = 2, with
the results in Figs. 8(b) and 8(d). When using εr = 2, a more
complete pattern emerges: By increasing the thickness of the

scattering analyzer (and therefore increasing the amount of
scatter), the speckle decorrelates more quickly, and there is a
greater difference between the one-aperture and two-aperture
decorrelation curves, thereby resulting in greater sensitivity.
This suggests that increasing the thickness of a randomly
scattering analyzer, rather than the dielectric constant, may
be a preferable method of increasing far-field subwavelength
sensitivity.

C. Object function comparison

Figure 8 shows that, for the no-analyzer case, the two-
aperture correlation decays slightly more quickly than the
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one-aperture correlation. This can be understood by consid-
ering the Fourier transform of the object function (aperture
arrangement), which gives an approximation for its effect in
the far field. Here, the object function is being used as a
proxy for the fields that lie within the aperture(s). The far-field
approximation of a compact source or field distribution can
be written in terms of the spatial Fourier transform of the
source distribution, regardless of position. This vector field
result requires the distance to the detector points be large
relative to both the wavelength and the source size, hence
the size of the effective source in wavelengths is relevant. In
our case, we have a periodic transverse arrangement, where
the period is very large compared to the wavelength. With a
small aperture and a relatively large spatial period, we can
move into the far field of the aperture at a distance that is
still much less than the period. If the object function is only
nonzero where the apertures exist, then (ignoring the periodic
boundary conditions) the object functions are estimated as

o1(x) = rect

(
x

λ

)

and

o2(x) = rect

(
x

λ

)
− rect

(
x

λ/10

)

for the one-aperture and two-aperture case, respectively,
where rect(x) is a rectangle function of unit width. We have
thus assumed that the field has constant amplitude across the
aperture (generally used as an approximation when the aper-
ture is large compared to the wavelength and with a normally
incident plane wave), but here applied to a small aperture
for qualitative insight. The Fourier transforms of these object
functions are

O1(kx ) = λ sinc

(
λkx

2

)
(15)

and

O2(kx ) = λ sinc

(
λkx

2

)
− λ

10
sinc

(
λ

10

kx

2

)
, (16)

for sinc(kx ) = sin(kx )/kx. Comparing (15) and (16), we see
that the addition of the small PEC segment (Fig. 7) in the
two-aperture case slightly narrows the far-field aperture re-
sponse, as shown in Fig. 9(a). The autocorrelation functions
are very similar in Fig. 9(b), though this is a slightly differ-
ent metric than the method based on the Pearson correlation
coefficient, which is used to generate Fig. 8 and is detailed in
Appendix A 5.

We note that the decorrelation rate order in Fig. 8 ap-
pears to reverse when a scattering analyzer is added: the
one-aperture correlation decays faster than the two-aperture
correlation. This might be expected given earlier experimental
work involving extraction of the (patterned) field incident
on a randomly scattering slab from speckle intensity cor-
relations over position [32,33]. It was found that a larger
object (circular apertures in a screen with greater separation
in this case), having a narrower spatial Fourier transform
(far field distribution), resulted in a slower decorrelation with
measurements through a randomly scattering slab [32]. The
basic understanding from this earlier work, with translated

FIG. 9. (a) Fourier transforms of the object functions for the
one-aperture case and two-aperture case, (15) and (16), respectively.
These transforms were then both normalized to maximum values of
one. Only the main lobes of these sinc functions are shown here,
though the side ripples do exist. Note that the two-aperture case
results in a slightly narrower far-field aperture response. This is why,
for the no-analyzer case in Fig. 8, the two-aperture case decorrelates
slightly faster than the one-aperture case. (b) Autocorrelations of the
object function Fourier transforms, again normalized to unit maxima.
They are very difficult to distinguish, and the inset shows how close
the zero crossings are. This similarity demonstrates the power of the
random analyzer to increase sensitivity.

patterned fields incident on a random medium and measured
intensity speckle correlations over translated position, is that
the Fourier magnitude of the incident field spectrum (from the
object) is being accessed (and the incident field could thus be
determined with phase retrieval). In the cases considered here,
the double aperture system in Fig. 7 has the narrower Fourier
transform (Fig. 9) and also the slower decorrelation in Fig. 8,
with use of the analyzer. As the aperture system is translated,
the total field is changed everywhere. This means that the
situation is not exactly as in Ref. [32], where a remote (at a
substantial distance) beam was patterned and sensed through
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TABLE IV. Speckle intensity statistics for the simulations in
Sec. V A. These differ from the statistics in Table I because of the
aperture(s) in the PEC. As discussed in Sec. II, a speckle contrast
ratio near unity indicates zero-mean circular Gaussian field statis-
tics. CRs were calculated for each of the random analyzers used
in generating Fig. 8 and were then averaged together. The CR is
not applicable for the no-analyzer case, because no speckle field is
expected. In a pattern similar to Fig. 8, increasing Ly while keeping
εr = 2 results in statistics that more reliably converge to unity than
increasing both Ly and εr . This suggests a connection between the
statistics of the speckle and the far-field sensitivity of the analyzer.

Contrast ratio

Slab type One aperture Two apertures

No analyzer n/a n/a
Lowest scatter 2.3196 2.2086
Low scatter 1.9389 1.9627
Medium scatter 1.9795 1.9833
High scatter 1.4852 1.5582
Ly = 1 µm, εr = 2 2.3077 2.5385
Ly = 3 µm, εr = 2 1.9838 2.0466
Ly = 6 µm, εr = 2 1.5096 1.5143

a scattering medium, yet the conclusions on the influence of
the aperture system (where that with a narrower far-field or
source spatial Fourier transform has the faster decorrelation)
are similar. Our results in Fig. 8 could thus be interpreted as
providing access to certain features of the two different object
functions (of the aperture systems) even amid the continual
changes in the total field. However, and of significance here,
the motion effect and the changing fields sensed by the ana-
lyzer provides access to subwavelength object information.

D. Speckle intensity statistics and scattering regime

The speckle intensity patterns that were attained in
Sec. V A are now inspected further. One possible scattering
regime results in zero-mean circular Gaussian speckle inten-
sity statistics, as is discussed in Sec. II. Such statistics are
marked by an intensity CR that is close to unity. With plane-
wave illumination of the object, the resulting CRs obtained
at the detector plane, shown in Table IV, are not close to
unity. When compared to the CRs in the last column of Table I
(which are much closer to unity), these indicate that introduc-
tion of a PEC film with a small aperture(s) has dramatically
changed the field statistics.

When the speckle intensity pattern is examined, an in-
tensity envelope is clearly noticeable, indicating a lack of
uniform intensity statistics. The envelope’s width is consid-
erably larger than the distance over which the correlations in
Fig. 8 are calculated (the first slab of the high-scatter type has
a full width of about 30 µm, or about 35λ), meaning that this
envelope plays only a negligible direct role in the decorrela-
tions. It is also clear that the level of scatter in the analyzers
used here was not high enough to generate zero-mean circular
Gaussian field statistics that are stationary across the entire
breadth of the detector plane, despite the findings in Sec. IV B
that almost all the slab types studied in this paper have a
thickness, Ly, of at least one mean-free path length, 	.

All previous experimental work involving coherent light
passing through a heavily scattering medium [1,8,32,33],
though, has had sufficient scatter to achieve unit CRs, thereby
indicating the presence of such statistics. Because the re-
sults presented here are in a different statistical regime to
previous experimental results, not being zero-mean circular
Gaussian, we should not expect full agreement with all of
their conclusions. Still, cross-referencing Table IV with Fig. 8
suggests that such statistics might be achieved by increas-
ing the thickness Ly while possibly decreasing the dielectric
constant εr . This should also enlarge the intensity envelope,
making the statistics more uniform. Notably, these statistics
show that the results presented herein extend beyond previous
work [1]: super-resolution far-field sensitivity (Sec. V A) to a
subwavelength change is not limited to one particular type of
field statistics, i.e., zero-mean circular Gaussian fields.

E. Proposed explanation

An explanation for the presented super-resolution results
is proposed here, though further exploration is needed to test
parts of it. Because the object and analyzer are outside the
near-field region of each other, practical sensing will not be
based on the evanescent portion of the plane-wave spectrum
for the field scattered by the object. With a measure such as
the illumination domain, or in the numerical problem treated
with a periodic boundary condition (or equivalently, in some
waveguide arrangement), the incident mode will scatter from
the analyzer and generate speckle. In this situation, the object
(the aperture system) is translated in this background field,
and it is the change in the total field (background plus the
scattered field due to the object) that the analyzer senses.
In this manner, far-subwavelength object information can be
encoded from the near field into the propagating spectrum,
as has been previously demonstrated using object motion in
structured illumination [9].

This propagating spectrum is sampled by the random
analyzer. The modes each excite the eigenchannels of the
analyzer slab and are weighted by the corresponding eigenval-
ues. In the extreme case of a completely uniform eigenvalue
distribution (all eigenchannels open, corresponding to no an-
alyzer), any change in one or more of the incident field
modes will be averaged together with all other modes. As the
eigenvalue distribution becomes more selective though (fewer
open eigenchannels, corresponding to a heavily scattering an-
alyzer), any change in certain incident field modes will pass
through with hardly any such averaging at all. As a result
of this diminished set of open channels, spatial sensitivity is
enhanced.

We have shown that intensity correlation information of
the object position is enhanced with use of the analyzer. This
means that, in a given noisy environment, we should be able
to reach deeper into subwavelength geometrical features of
objects under investigation. However, the efficacy in doing
so will relate to experimental specifics. A heavily scattering
analyzer will only be sensitive to changes in its open eigen-
channels. In our experimental and numerical results so far
[1], the changes being sensed have all continued to excite
this shrinking subset of open eigenchannels. However, it also
suggests the possibility of engineering the transmission matrix
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of an analyzer to be sensitive to changes in only a desired
subset of field modes.

VI. DISCUSSION

Our interest has been the character of a randomly scattering
analyzer placed in front of a detector array. This provides
another perspective to earlier work, where it was found that
intensity correlations over translated incident field position
allow retrieval of the field incident on a random medium
based on transmission speckle intensity data as a function of
translated field position [33]. Now we understand that the ran-
domly scattering medium can be adapted to achieve increased
spatial sensitivity to subwavelength geometrical features of an
object in the far field with motion in structured illumination.
Likewise, the idea of coherent imaging in a heavily scattering
random medium [8] can be reinterpreted in terms of the in-
tervening random scatter (such as due to tissue) acting as an
analyzer.

Discrepancies are found in Fig. 2 between the empirical
eigenvalue distributions (Tn) and the theoretical bimodal dis-
tribution. The peak near T = 0 is prominent, though the one
near T = 1 is not, despite evidence for both in Table II. As
shown in Fig. 5, the discrepancy is understood as a conse-
quence of the nonuniformity of xn, which is related to Tn by
(9). This uniformity is a necessary condition for the bimodal
distribution to hold, as detailed in Appendix B. Nonethe-
less, the increasing proportion of closed channels with more
scatter in the analyzer is an important conclusion that is con-
sistent with earlier studies of the bimodal density function
where most eigenchannels are either fully closed or fully open
[2,13,34,35]. Importantly, there is evidence in this paper that
regulating the scattering properties of the analyzer influences
the achievable sensing resolution.

The quarter-circle distribution shows close agreement with
the singular value distributions of Re(T) and Im(T), despite
their lack of both symmetry and independently distributed
matrix entries. This greater degree of agreement with the
quarter-circle distribution than with the bimodal distribution
(of the singular values σ and eigenvalues Tn, respectively) is
notable, and may indicate differing rates of convergence to
these two distributions.

Following the discussion of subwavelength far-field sen-
sitivity in Sec. V, a question naturally arises regarding the
limit of such a technique. One relevant concern applies to
both sensitivity and imaging: uniqueness of the data. If two
inputs (positions of an object, for example) happen to yield
identical sets of measurements, then neither distinguishability
nor inversion for such inputs is possible. If uniqueness can
be assumed for at least a subset of possible inputs though,
then inversion (and therefore imaging) can always be done, in
theory, though the computational efficiency of such a practice
is often reliant upon further assumptions. A second fundamen-
tal concern is the accuracy and precision of the measurements
involved. These relate to the signal-to-noise ratio (SNR) of
the measurements and number of bits used by the sensor’s
analog-to-digital converter (ADC). The law of large num-
bers [29] states that, if enough independent and identically
distributed samples can be drawn from a distribution, then
the sample mean can be made arbitrarily close to the true

mean, effectively achieving an arbitrarily high SNR. In this
context, this means that, with sufficient sampling, any ar-
bitrarily small difference in data sets can be distinguished.
One mitigation on this somewhat idealistic outlook is that, in
practice, most sources of noise are not time invariant, meaning
that an arbitrarily high number of independent measurements
is impossible to achieve (this is also true for other practical
reasons, such as patience). A second, more subtle compli-
cation is that of sampling. For computational methods such
as the one discussed here, comparisons can only be made
between the discretized versions of data output by the ADC.
If the difference between inputs is small enough, then the
corresponding data sets may differ by an amount smaller than
this discretization, bringing back the uniqueness issue and
making these data sets indistinguishable no matter how much
averaging one does. To be clear, these limiting issues of accu-
racy and precision exist in all cases where digital processing
is performed on experimentally derived data, regardless of
whether a scattering analyzer is used, and our method does
not purport to bypass them; it merely approaches them more
quickly than if a scattering analyzer were not used.

Various subsequent steps could be interesting. This paper
raises the prospect of regulating the statistical properties of a
random medium to achieve high spatial sensitivity to changes
in the incident field. For instance, aperiodic structures have
field-control properties that are dependent on the specific
geometrical features of the structure [36]. We now find a rela-
tionship between structures that may be designed for a specific
task and the general statistical character of a random medium
acting as an analyzer for super-resolution spatial sensing.
The analyzer is acting in a compressed sensing framework
[37] where, in our case, spatial field information is encoded
in speckle from multiply scattered light. Optical scatter is
already being employed in the field of lensless imaging, in
which the traditional lens is replaced with a thin diffuser. 3D
imaging is enabled using a convolutional forward model [38],
and while increasing the amount of scatter would likely inval-
idate such an approach, it could result in higher spatial resolu-
tion with the notion of a random analyzer. One-way functions
(functions that are computationally easy to compute but dif-
ficult to invert) form the basis of modern cryptography, but
replacements are increasingly being sought for existing meth-
ods such as prime factorization and discrete logarithms [39].
Physical one-way functions have been studied as a potential
alternative, and their effectiveness is hinged upon the sensitiv-
ity of a heavily scattering medium [40]. Designing a scattering
analyzer using an asymmetric-transfer-function metasurface
[41] could result in increased sensitivity compared to a ran-
dom analyzer. Optimizing the spatial profile of the incident
field has been shown to improve precision in estimations of
parameters through diffuse media [42]. Such optimizations
of the incident field could be combined with the analyzer
concept discussed here, possibly resulting in further improve-
ments of estimation performance or greater sensitivity. All
results have assumed monochromatic light. In an experiment,
this implies suitably high coherence, and in the sense of
speckle statistics, the light source requirements depend on
the degree of scatter. It would be interesting to consider
reduced coherence requirements in relation to enhanced spa-
tial resolution with a random analyzer. With a thin analyzer,
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it may also be possible to utilize the axial wavelength separa-
tion resulting from the chromato-axial memory effect [43,44]
(dilation of the speckle pattern due to spectral shift) to sepa-
rate wavelengths and draw upon enhanced spatial resolution
(where “memory” indicates the approximate angular tracing
of light transmitted through a thin scattering medium with
incident beam angle). Finally, estimation of the axial separa-
tion of two incoherent point sources using a mode sorter [45]
might be reimagined in the context of a random analyzer.

VII. CONCLUSION

This paper has developed the underlying theory of ran-
domly scattering analyzers, built further understanding of
random matrix theory and the physics of coherent transport,
demonstrated a far-field super-resolution sensing capability,
and offered another dimension for metrology and other ap-
plication domains. This remote sensing approach with a
randomly scattering analyzer is applicable to all wave types
for which a heavily scattering medium exists and that are
coherent enough to produce an effect analogous to optical
speckle, and hence offers substantial scope for impact on
the physical sciences. The presented random analyzer con-
cept offers opportunities for sensing and microscopy where
far-subwavelength spatial information is important. While we
have treated the informational aspects of the analyzer, achiev-
ing identification is possible with calibration, as in the concept
of motion in structured illumination [9]. Based upon the re-
sults presented, it may be possible that measured intensity
data through a random analyzer can be inverted to form a
super-resolution image.

Regarding random matrix theory, we have established
that the eigenvalue distribution for the transmission matrix
that represents a scattering analyzer provides an explanation
for why a more heavily scattering analyzer results in faster
speckle intensity decorrelation. We have shown that the in-
crease in sensitivity made possible by a randomly scattering
analyzer is accompanied by a peak in the distribution of
eigenvalues of TH T near T = 0, and that the lack of a peak in
this distribution near T = 1 is not associated with a lack of fit
between the quarter-circle distribution and the singular value
distribution of either Re(T) or Im(T). When compared to
appropriate field-based data sets, our results show good agree-
ment with the quarter-circle distribution, though the amount
of scatter was likely insufficient for the upper peak of the
intensity-based bimodal distribution to appear.
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APPENDIX A: SIMULATION DETAILS

Here we elaborate upon the different aspects of the nu-
merical FEM [46] simulations that were used to calculate

empirical eigenvalue and singular value probability distribu-
tions (Sec. III) involving the transmission matrix T, as well as
the simulations involving the apertures (Sec. V).

1. Mesh generation

The accuracy of any FEM simulation depends heavily on
the size of the mesh elements. The mesh must be fine enough
that numerical errors are negligible, but increasing the element
density beyond this point merely increases the computational
burden without improving results. The mesh density was pri-
marily controlled by reducing the maximum mesh element
size, while allowing the elements to be smaller than this by
a factor of 10 as necessary (determined automatically by the
FEM software [46]). The resolution of narrow regions (also
determined automatically) was further increased by a factor
of 10.

During our tests for numerical convergence, we found
that regions near rapid material variations need to be more
finely meshed. Therefore, to achieve numerical convergence
while minimizing the computational resources required, the
maximum mesh element size was changed for different parts
of the geometry domain. The necessary mesh densities were
found to differ for the eigenvalue simulations of Sec. III and
the aperture simulations of Sec. V. For the eigenvalue sim-
ulations, subdomain 1 consisted of all the 200-nm dielectric
squares and was meshed with a maximum element size of
λ/40. Subdomain 2 consisted of all the free space in the
domain and was meshed with a maximum element size of
λ/20. Subdomain 3 consisted of the two PMLs and was also
meshed with a maximum element size of λ/20.

When meshing the apertures for Sec. V, care was taken
to ensure that the mesh density near the apertures was high
enough. The region near the aperture(s), both inside and out-
side the film, was meshed to a maximum element size of λ/80,
while the rest of the free space had a maximum element size
of λ/50. The dielectric squares were meshed with a maximum
element size of λ/100. The maximum element size of the
PMLs was increased to λ/10.

We also found that the square corners of the thick PEC film
(but not the corners of the dielectric scatterers) had a local
singularity effect, so they were rounded to a radius of 1 nm to
mitigate this effect.

2. Scatterers

The specified breadth and thickness of the scattering an-
alyzer define its volume, which was discretized into 200-nm
square regions. Exactly 50% of these were filled with dielec-
tric material, with the rest being free space. The locations of
the dielectric squares were randomized, with the distribution
of all possible sets of dielectric positions being a uniform one.

It should be noted that the scattering properties of the sim-
ulated version of the analyzer are different from those of the
analyzer used in previous experiments [1]. First, the (3D) TiO2

scatterers in the experiments were 50 nm in diameter, making
them smaller than the (2D) simulated ones. Also, the scatterers
in the experiment were far apart compared to the wavelength,
whereas that property does not hold in the simulation. The
reason for these changes is that we are able to achieve an
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increased level of scatter in a smaller simulation domain,
which reduces the computational burden to a manageable
level.

3. Boundary conditions

To the left and right of the scattering analyzer (the x-
axis boundaries) were Floquet periodic boundary conditions,
The associated Floquet wave vector had discrete values of
kx = 2πm/Lx for integer m, consistent with the discrete plane-
wave spectrum. Note that, because these match the kx of the
plane waves (see below), this Floquet boundary condition is
equivalent to a continuity boundary condition, as the phase
progression between boundaries becomes zero.

Above and below the scattering analyzer (the y-axis bound-
aries) were free-space regions. These were followed by PMLs,
each with a thickness of 2λ, which are intended to minimize
reflections in the scattered field formulation used, thereby
simulating an infinite medium in the y dimension.

To implement the apertures in the PEC for Sec. V, the three
rectangular shapes shown in green in Fig. 7 were first defined.
The large rectangles left and right of the aperture construction
were assigned each to have edges of infinitesimally thin PEC
(except the ones that touch the periodic boundaries) and the
insides of these rectangles were left as free space. For the two-
aperture setup, the small central rectangular region was also
given PEC edges. For the one-aperture setup, it was left as
free space.

When the field magnitude was plotted just after the aper-
ture system (at a distance of λ/100 away), it resulted in one
or two spatial pulses of approximately the same width as the
one or two apertures (with centers coinciding appropriately),
which is expected.

4. Field generation

The incident plane wave was specified in the FEM soft-
ware as a background field (electric field polarized in the z
direction, referring to Fig. 1, which is orthogonal to the 2D
simulation plane) and the scattered field was solved for. The
total field is then the sum of the background and scattered
fields.

The spectrum of plane waves used for the transmission
matrix simulations (Sec. III) was chosen to be the full set
of propagating modes that are periodic in the geometry. Each
such mode has a transverse wave number of kx = mkx0, where
kx0 = 2π/Lx and the integer m spans the range −mmax � m �
mmax. The maximum mode index, mmax, was chosen as the
highest-order propagating plane wave that is periodic over the
geometry, or

mmax =
⌊

k0

kx0

⌋
=

⌊
2π/λ

2π/Lx

⌋
=

⌊
Lx

λ

⌋
.

In our case, with Lx = 60 µm and λ = 850 nm, we get mmax =
70, for a total of N = 2mmax + 1 = 141 plane-wave modes.
The two outermost plane waves (for which m = ±mmax) have
angles of ±1.4416 radians.

For the aperture simulations (Sec. V), only the m = 0 mode
was used for the incident field, which corresponds to the plane
wave normally incident upon the scattering analyzer. These
fields passed through the aperture system (which consisted

of either one or two apertures, as shown in Fig. 7), thereby
generating the discrete plane-wave spectrum.

5. Detection and processing

The detector plane was positioned a distance of 4λ away
from the scattering analyzer, along which all the detector
points were located. The detector plane spanned the entire
breadth of the geometry.

Our goal was to measure only the far field and minimize
the effect of evanescent fields, but the choice of detector
plane distance is not trivial. Because the periodic boundary
conditions make the scattering analyzer infinite in breadth, it
becomes impossible to use a heuristic for the far-field distance
based on analyzer size. If we instead model the analyzer as
a collection of small apertures of size equal to the 200-nm
dielectric squares, then the far-field distance becomes approx-
imately 2(λ/4)2/λ = λ/8 (since λ = 850 nm). The chosen 4λ

distance was settled on by gradually increasing the distance
until the field statistics (as listed in the final column of Table I)
appeared to converge. Specifically, the medium-scatter slab
was chosen for this convergence analysis and showed a change
in mean CR of about 0.5% between detector distances of
4λ and 5λ. The other analyzer configurations also showed
mean CRs closer to 1 at 4λ than at 1λ, meaning that the
statistics became closer to a zero-mean circular Gaussian.
Another near-field effect of note is optical vortices [47,48],
which involve small regions of alternating positive and nega-
tive time-average Poynting vector (in our case, the component
normal to the detector plane). These were noticed in our
simulations, but their effect had significantly decayed by the
chosen distance of 4λ.

For the transmission matrix simulations, N points were
uniformly distributed along the detector plane, corresponding
to the N plane waves. The z component of the total electric
field (Ez), the only nonzero component due to the polarization
of the incident field, was calculated at these points. Because
of the periodic boundary conditions on either side, it would be
redundant to have detectors on both endpoints of the detector
plane (as they were the same point, due to the periodic bound-
ary condition). To gain true periodicity, we therefore instead
calculated N + 1 uniformly distributed points along the de-
tector plane and placed detectors on N of these, omitting one
of the endpoints. These N values were then passed through a
discrete Fourier transform to calculate the entries of the matrix
T, which we have thereby ensured is a square matrix (as is
assumed in Sec. II).

For the aperture simulations, periodicity was not a concern
because we were not calculating a transmission matrix, so
we were free to use more than N detectors. In this case,
we uniformly distributed detectors along the detection plane
with a separation interval of λ/100. These were configured to
detect the y component of the time-average Poynting vector to
form the speckle intensity pattern.

The aperture system was shifted in intervals of λ/10 par-
allel to the x axis, up to maximum distances of λ/2 in each
direction. For each position of the aperture system, the speckle
intensity pattern was calculated at the detector plane. These
speckle patterns were pairwise correlated using the Pearson
correlation coefficient, and these coefficients were averaged
together to form Fig. 8. Let sy be the shift distance of the
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aperture system, so sy = mλ/10 for m ∈ {−5,−4, . . . , 5}.
Also, let 1 � n � Na refer to the (Na = 10) different instances
of the random analyzer. Therefore, if CP(sx1, sx2, n) is the
Pearson correlation coefficient between aperture positions sx1

and sx2 for the nth random analyzer, then the average Pearson
correlation coefficient for relative distance �sx is

C(�sx ) = 1

Na

1

|S(sx )|
Na∑

n=1

∑
{sx1,sx2∈S(sx )}

CP(sx1, sx2, n), (A1)

where S(sx ) is the set of all shift distances sx1, sx2 such that
sx = |sx1 − sx2|.

APPENDIX B: DERIVATION OF RANDOM MEDIUM
TRANSFER MATRIX AND BIMODAL DENSITY FUNCTION

The derivation of the bimodal probability density func-
tion is developed here for completeness, and because we are
unaware of this having been done elsewhere. It begins with
consideration of the matrices that the eigenvalues belong to.

During the mid-to-late 1980s, motivated in part to develop
quantum transport theory in disordered systems [49], a mul-
titude, a multitude of papers considered various mathematical
aspects, as summarized in Beenakker’s review paper [2]. We
draw on specific parts of this body of work only to provide
background for our treatment of random matrix theory for the
analyzer problem.

1. Symplectic character of transfer matrix

The electromagnetic scattering matrix, relating the incident
to scattered wave amplitudes through four submatrices, is
reciprocal (with time-reversal symmetry) and unitary (lossless
materials), resulting in

SSH = I, (B1)

with

S =
[

S11 S21

S12 S22

]
=

[
R T′
T R′

]
, (B2)

where the subscript notation on the scattering parameters is
broadly used in some literature, and lower-case variants of
the reflection and transmission submatrices is common in the
quantum transport literature drawn upon here [2]. In gen-
eral, the four N × N submatrices of S represent nonsymmetry
(differing S11 and S22) and nonreciprocity (differing S21 and
S12). With a lossless reciprocal system, we have SH = S−1.
Additionally, time-reversal invariance gives S = S
, where

 denotes the (nonconjugate) transpose [2,16]. We utilize
the transmission matrix, T in this paper, and S21 = S12 = T
because of this symmetry [50,51], and because the wave
impedances are identical on either side of the random an-
alyzer (given energy normalization). Using the notation of
Beenakker [2], we have

cout = Scin, (B3)

with cin the vector of complex incident mode coefficients
(multiple modes incident from, say, two ports: the left and the
right) and cout that for the scattered amplitudes (at the two
ports). It is useful to explicitly split cin into al and br (incom-
ing on the left and right ports, respectively), and split cout into

bl and ar (outgoing on the left and right ports, respectively),
a notation used by Imry [14] and by Pichard and André [15]
(see either of these references for a diagram). Although the
literature describes the two ports as left and right, it would be
more accurate in this paper to describe them as bottom and
top, as in Fig. 1. Still, left and right will be used here. This
version of (B3) yields [

bl

ar

]
= S

[
al

br

]
. (B4)

Using a standard transformation, one can write the useful
transfer matrix, which relates output (port 2) quantities to
those at the input (port 1) as

cright = Mcleft, (B5)[
ar

br

]
= M

[
al

bl

]
, (B6)

where M is 2N × 2N and written as

M =
[

A B
C D

]
. (B7)

Here we use an upper case Roman notation, rather than the
lower-case Greek equivalents in Mello et al. [16]. The transfer
matrix is useful for cascading systems, because the overall
transfer matrix becomes simply a product of each subsystem
transfer matrix. The eigenvalues of MH M are real because the
matrix product is real and symmetric.

In quantum transport, conservation of current flux is con-
sidered, but in our paper, it is conservation of power (through
the Poynting vector, or energy per unit time) that is imposed.
However, this is a mathematical detail. Conservation condi-
tions lead to [52]

MH�M = �, (B8)

where

� =
[

I 0
0 −I

]
, (B9)

with I and 0 being the N × N identity and zero matrices,
respectively. As a result of this symplectic property (which
has also been referred as “pseudounitarity” [2]), Pichard and
Sarma [53] noted that real transfer matrices are symplectic, as
are products. From time-reversal invariance [54],

M =
[

A B
B∗ A∗

]
, (B10)

where ∗ denotes the element-wise complex conjugate. As a re-
sult of flux (power) conservation and time-reversal invariance,
the elements of the transfer matrix satisfy [16]

AH A − B
B∗ = I, (B11)

AH B = B
A∗. (B12)

In noting from (B8) that |det(M)| = 1, that det(M) is real,
and (based on analytic continuity) that det(M) = 1, it can be
shown that M is symplectic under the more typically used
definition, involving a skew-symmetric matrix, rather than one
such as � with the structure given in (B9). The symplectic

023518-17



PATEL, LUO, AND WEBB PHYSICAL REVIEW A 107, 023518 (2023)

nature of M is proven (Ref. [16], Appendix A) by decom-
posing M into real submatrices to yield M
�M = �, when
combined with (B11) and (B12). This yields the standard
symplectic form, with � skew symmetric (2N × 2N) and
�
� = I.

The pseudounitary character of M allows us to write, from
(B8),

MH = �M−1�, (B13)

M−1 = �MH�, (B14)

since �−1 = �. Consequently,

(MH M)
−1 = M−1(MH )

−1

= (�MH�)(�M−1�)
−1

= (�MH�)(�−1M�−1)

= �MH M�−1

= �MH M� (B15)

= �−1MH M�. (B16)

This similarity transform result (B16) implies that the eigen-
values of (MH M)−1 must be identical to those of MH M [55].
In addition, because M and MH are both symplectic, MH M
will also be symplectic [demonstrated by (B15), due to con-
jugate symmetry of MH M], and will have real and positive
eigenvalues that occur in inverse pairs [14,56].

2. Relating the scattering and transfer matrices

From here until (B35), we follow a line from Pichard’s
1984 Ph.D. thesis [57]. This derivation is also reviewed in part
by Imry [14]. Applying (B14) with (B7) and (B9) yields

M−1 =
[

AH −CH

−BH DH

]
. (B17)

From M−1M = I, one finds

AH A − CH C = I, (B18)

AH B − CH D = 0, (B19)

−BH A + DH C = 0, (B20)

−BH B + DH D = I. (B21)

Using (B7), (B15), (B18), and (B21), it is found that

MH M + (MH M)
−1 = 2

[
AH A + CH C 0

0 BH B + DH D

]

= 2

[
2AH A − I 0

0 2DH D − I

]
. (B22)

Here, Pichard lists out the full set of equations specified by
the matrices S, M, and M−1, using (B4), (B6), and (B17):

ar = Aal + Bbl , (B23)

br = Cal + Dbl , (B24)

al = AH ar − CH br, (B25)

bl = −BH ar + DH br, (B26)

ar = Tal + R′br, (B27)

bl = Ral + T′bl . (B28)

Using these, a set of relationships is deduced between the
elements of S and those of M,

R = −D−1C, (B29)

T′ = D−1, (B30)

T = (AH )
−1

, (B31)

R′ = (AH )
−1

CH . (B32)

It can be shown that these satisfy (B23) through (B28).
Substituting (B30) and (B31) into (B22) [using inversion]

gives

1

4
MH M + (MH M)

−1 + 1

2
I = 2

[
(TH T)−1 0

0 (T′T′H )−1

]
,

(B33)

where I is now the 2N × 2N identity matrix, rather than N ×
N . Inverting (B33) gives

[MH M + (MH M)
−1 + 2I]

−1 = 1

4

[
TH T 0

0 T′T′H

]

= 1

4

[
TH T 0

0 TTH

]
, (B34)

because T = T′. Taking the trace (Tr) gives

Tr(TH T) = 2Tr{[MH M + (MH M)
−1 + 2I]

−1}. (B35)

It should be noted that this result is exact and not an approxi-
mation [14,15,57].

3. Transmission eigenvalues and conductance

We adapt a theory that was developed for electron transport
and localization [50], which under the assumption of low
conductance leads to the approximation that the conductance,
g, is given by Tr(TH T) (in units of e2/h, with a factor of two
to account for spin). Work in the early 1980s to generalize
from one such transmission channel [58] to many channels
argued that, since the overall conductance was finite, the trans-
mission probability of each individual channel must be small
[50,51,59]. Perhaps most notably, it has also been derived
using an assumption that the conductor length is much greater
than the mean-free path length [60,61]. This interpretation
draws a direct analogy between the transport of electrons
through a long disordered region and of photons through a
thick scattering region.

In our case of the field transmission matrix, we can con-
sider this conductance relationship as being exact [4]. We can
thus write

g = Tr(TH T) =
N∑

n=1

Tn, (B36)
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TABLE V. The mean conductance, calculated using (B36), for
the five types of randomly scattering analyzer that are listed in
Table I. The same normalization procedure was performed for this
calculation as has been used elsewhere (see Sect. IV A). The conduc-
tance, g, was calculated for each instance of the randomly scattering
analyzers, and these conductances were averaged together for each
type.

Slab type Mean conductance g

Lowest scatter 37.357
Low scatter 28.037
Medium scatter 24.426
High scatter 15.669
Highest scatter 11.605

where the Tn are the eigenvalues of TH T, without approx-
imation as N → ∞. Using (B36), the mean conductances
of each of the types of randomly scattering analyzer were
calculated, and the results are shown in Table V. Here, the
normalization discussed in Sec. IV A was applied, not because
a direct comparison to a probability distribution for g is being
made, but to account for the incident power used when calcu-
lating Tn. Notice that these conductance values decrease as the
amount of scatter in the analyzer increases, while the number
of eigenchannels remains constant (N = 141). This indicates
that the transmission eigenvalues (Tn) themselves are becom-
ing smaller, behavior that is analogous to the low-transmission
approximation from electron transport theory that leads to its
version of (B36). This suggests that we are getting closer to
the limit in which the bimodal distribution applies as the level
of scatter increases, though we may not have reached this
regime with these slab types.

4. Transmission matrix and transfer matrix eigenvalues

Mello and Pichard [62] prove that M can be decomposed
in an orthogonal basis as

M = U
[√

I + λ
√

λ√
λ

√
I + λ

]
V, (B37)

with U and V unitary, and λ a diagonal, real, positive matrix.
This form was presented in earlier work [16,63].

It has been stated that [14,15,56] (for a proof, see Ref. [64])

X = 1

4
[MH M + (MH M)

−1 − 2I] (B38)

= VH

[
λ 0
0 λ

]
V, (B39)

where X is defined to have this form and the diagonalization
was shown to result. This indicates that λ in (B39) contains the
unique eigenvalues of X. It has been shown [64] and indicated
[14–16,56] that (B39) leads to

Tr(TH T) =
N∑

n=1

1

1 + λn
, (B40)

where λn are the eigenvalues of the 2N × 2N matrix X in
(B38), and the λn constitute the diagonal entries in the λ ma-
trices in (B37) and (B39). Comparing (B40) with the second

relationship in (B36), we have

Tn = 1

1 + λn
. (B41)

The eigenvalues �n of MH M come in inverse pairs, be-
cause of the symplectic character of M [14]. With a view to a
Lyapunov exponent form [65], we can thus assign exp(±2xn)
to these eigenvalues. Using this perspective motivates a map-
ping

1

1 + λn
= 2

1 + cosh 2xn
, (B42)

so

λn = cosh2 xn − 1. (B43)

As a result, and from (B41),

Tn = 1

cosh2 xn
, (B44)

so the conductance can be written exactly in the limit as [2,21]

g = Tr(TH T) =
N∑

n=1

1

cosh2 xn
. (B45)

Again, these Tn are the eigenvalues of the matrix TH T, which
in this paper are plotted in Fig. 2. Under conditions where xn

is uniformly distributed, we will prove that Tn has a bimodal
density function.

5. Uniform distribution for xn

The asymptotic Lyapunov behavior is established from the
large length limit and this can be represented as the multi-
plication of Mi, where this is the transfer matrix for the ith
thin scattering layer. The multiplicative character of M has
been presented a basis for xn being uniformly distributed [65].
This situation, where the xn are uniformly distributed, has
been called the metallic diffusive regime [2] (see p. 774). We
review the basis of this representation, because it is used along
with (B44) to prove bimodal character in the limit of sufficient
random scatter.

Nieuwenhuizen and van Rossum [21] utilize (B44) and the
assumption that the Lyapunov coefficients xn are uniformly
distributed to study the transmission character of multiply
scattered waves and note that this is the case under very
general conditions. Numerical evidence for the approximately
uniform nature of xn has been found [15]. Starting with the
DMPK equation, Beenakker derives the uniform density result
for the diffusive regime (see Ref. [2], p. 764). Mello and
Pichard [17] explain the resulting uniform density as a result
of associating each eigenchannel of the disordered system
with a localization length that characterizes its exponential de-
cay in transmission. In the limit of many channels, this results
in a uniform density function for xn. They also remark that the
trend for the Lyapunov exponents to be uniform appears to be
rather generic, noting the example of dynamic systems. In our
paper, we find that as the amount of scatter in the analyzer
increases, we approach a uniform density for xn based on
numerical calculations for the random analyzer situation that
we treat.
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6. Bimodal density function

The final step in this derivation is to develop the probabil-
ity density function for Tn, given in (B44), into the bimodal
density function (Eq. (251) in Ref. [2]) that is presented
in (7). This is done by incorporating the assuming that xn

is uniformly distributed, using a simplified random variable
notation. The development here is based on material in Dav-
enport and Root [66] (pp. 33–35) and van Kampen [67] (pp.
17–18). When notation differs between these two sources,
we prefer that of van Kampen, where random variables are
capitalized.

Let X be a real-valued random variable that can take on val-
ues X ∈ SX . Let Y [X ] be a real-valued function of X , making
it also a random variable. This Y can be considered a mapping
from the space SX to a new space SY , where Y ∈ SY . Assume
that the probability density function for X exists, denote it as
pX (x), and assume that it is continuous almost everywhere.
It can be shown that, if the probability density function of Y
exists [denoted pY (y)], Y is a differentiable monotonic func-
tion of X , and dY/dX vanishes only at isolated points, then a
direct relation can be written between pX (x) and pY (y). It can
then be shown that if SY (y) is the interval −∞ < Y � y (for
some y), then there exists an x(y) such that SX (y) is the interval
−∞ < X � x(y). The general relationship then becomes

pY (y) = pX (x(y))

∣∣∣∣dx

dy

∣∣∣∣, (B46)

with |dx/dy| the Jacobi determinant. We will use (B46) in the
derivation of the bimodal density function.

Now consider the special case

Y = 1

cosh2 X
(B47)

or, equivalently, with a one-to-one mapping,

X = cosh−1

(
1√
Y

)
, (B48)

for Y > 0 and X > 0. Note that (B48) diverges as Y → 0.
Equations (B47) and (B48) satisfy the aforementioned re-
quirements. Because Y cannot be negative,(

P(Y � y) = 0 for y < 0
) ⇒ (

pY (y) = 0 for y < 0
)
. (B49)

SX (y) is the set of points 0 < X � cosh−1(1/
√

y) for y > 0.
Therefore,

P(Y � y) = P

[
0 < X � cosh−1

(
1√
y

)]

= P

[
X < cosh−1

(
1√
y

)]
− P[X � 0]

= P

[
X < cosh−1

(
1√
y

)]
. (B50)

Writing this probability in terms of pX (x), we have

P(Y � y) =
∫ cosh−1

(
1√
y

)
0

pX (x) dx. (B51)

Taking the derivative of (B51), and use of (B46), leads to

dP(Y � y)

dy
= pY (y) = pX

(
x = cosh−1 1√

y

)∣∣∣∣dx

dy

∣∣∣∣. (B52)

Now consider the special case of a uniform density func-
tion over a continuous interval. Let SX = [0, ŜX ], giving

pX (x) =
{

1/ŜX if x ∈ [0, ŜX ]

0 otherwise
. (B53)

A point X = x is related to Y = y by

x = cosh−1 1√
y
. (B54)

To obtain pY (y), we form

dx

dy
= d

dy

(
cosh−1 1√

y

)
. (B55)

From Abramowitz and Stegun [68], p. 88:

d

dz
(cosh−1 z) = (z2 − 1)

−1/2
. (B56)

With z = 1/
√

y, dz/dy = −y−3/2/2, we thus have, with use
of the chain rule for differentiation,

d

dy

(
cosh−1 1√

y

)
= d

dz
(cosh−1 z)

dz

dy

=
(

1

y
− 1

)−1/2(
−1

2
y−3/2

)

= −1

2

1

y
√

1 − y
. (B57)

With use of (B57) in (B46), we have

pY (y) = Aδ

1

y
√

1 − y
, (B58)

where, to form a density function with a nonintegrable singu-
larity at y = 0, we have

A−1
δ =

∫ ∞

δ

1

y
√

1 − y
dy, (B59)

with δ some small positive value. We have now arrived at the
bimodal eigenvalue density function.

APPENDIX C: QUARTER-CIRCLE DISTRIBUTION
BACKGROUND

This Appendix gives a brief overview of the quarter-circle
distribution, beginning with its origins in random-sign matri-
ces and ending with a more general treatment that allows for
complex-valued matrices. We end by discussing how the form
of the quarter-circle distribution used in (10) relates to this line
of work. The notation used throughout this Appendix differs
from that used in (10), instead having been chosen to agree
with the literature that is being reviewed.
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1. Random-sign matrices

The quarter-circle distribution originated during a deriva-
tion by Wigner of the eigenvalue distribution of random-sign
real symmetric matrices [26]. It deals with real-valued sym-
metric matrices H of dimension 2N + 1, where N is very
large. The diagonal elements are 0, and the nondiagonal el-
ements vi j = v ji = ±v all have the same absolute value v

but random signs. There are 2N (2N+1) such matrices (ways to
arrange the signs, for a given v), and Wigner defines the kth
moment as Mk = 〈Hk〉, where the brackets indicate averaging
over all such matrices. Wigner calculates these moments Mk ,
and then uses them to calculate the probability density func-
tion (referred to in his work as the “strength function”) σ (x),
where x represents the eigenvalues of H . This results in the
quarter-circle distribution shown in Eq. (20a) of [26], which
is

σ (x) =
√

8Nv2 − x2

4πNv2
, (C1)

for −v
√

8N < x < v
√

8N .

2. Gaussian matrices

The above random-sign constraint was relaxed in a later
work by Wigner [27], allowing the distribution to be applied to
real symmetric Gaussian matrices. The revised requirements
are then as follows.

(i) The matrix dimension is simply N , thereby allowing
for matrices of either even or odd dimensionality.

(ii) These matrices must still be real and symmetric, and
there must be no statistical correlations between matrix ele-
ments, except for the condition of symmetry.

(iii) Instead of requiring random-sign matrix elements,
now the probability distributions of vi j and v ji just have to
be the same.

(iv) All of these probability distributions also must have
an upper bound that is independent of i and j. This condition,
when combined with the previous one, means that all the odd
moments vanish to zero.

(v) The second moment of all vi j must be the same, de-
noted by m2.

Wigner notes that this last condition can be relaxed so that
it holds for only a large majority for matrix elements, and
that this relaxation allows use of the random-sign matrices
considered in Ref. [26]. Using these conditions, Wigner ar-
rives at the same quarter-circle distribution as in the earlier
random-sign-matrix analysis. That eigenvalue distribution is
[27]

σ (x) =
√

4Nm2 − x2

2πNm2
, (C2)

for x2 < 4Nm2. Note the similarity between (C1) and (C2)
despite the different types of random matrices involved.

3. Complex matrices

This line of work was further extended by Marčenko and
Pastur [28] in several ways, notably allowing for complex-
valued matrices. They begin by defining an operator BN (n)
that acts in an N-dimensional unitary space HN , which

includes randomly distributed real random variables τi and
complex vectors qi (n of each), and is given by

BN (n) = AN +
n∑

i=1

τiq
(i)(·, q(i) ), (C3)

where n is a nonrandom number, AN is a nonrandom self-
adjoint operator, and (x, q(i) ) is the scalar product in HN

between q(i) and some other vector x. They also denote as
v(λ, BN (n)) the probabilistic cumulative density function of
the operator BN (n)’s eigenvalues (proportion of eigenvalues
less than λ). They then consider the case N → ∞, and assume
that four conditions are satisfied.

(i) The limit c = limN→∞(n/N ) exists.
(ii) The sequence of normalized spectral functions for AN

converges as N → ∞.
(iii) The random vectors qi have absolute moments to

fourth order, and the even moments can be put into a form
specified in Eqs. (1.4) through (1.6) of their paper [28].

(iv) The random variables τi are independent and identi-
cally distributed.

The authors [28] go on to prove properties based on these
assumptions. Then, as an example, they specify a certain
BN (n) so the operator becomes a projection onto the n-
dimensional space spanned by the n complex random vectors
qi. Therefore, the corresponding cumulative distribution func-
tion v(λ; BN (n), c) becomes that of the eigenvalues for some
complex random matrix, which is what we seek to calculate in
this paper. After showing that this form of BN (n) satisfies the
four constraints listed above, they derive an expression for the
cumulative density function v(λ; BN (n), c), as well as its first
derivative with respect to λ, which is the corresponding prob-
ability density function. As N → ∞, this eigenvalue density
function converges to

dv(λ; BN (n), c)

dλ
= 4cτ 2 − λ2

2πcτ 2

(
1 + λ + τ

τc

)−1

(C4)

for λ2 � 4cτ 2, where τ is any of the independent and identi-
cally distributed τi. The authors note that, in the limit c → ∞,
this becomes the same quarter-circle probability distribution
that was arrived at by Wigner [26,27]. This result is significant
to us, because our random matrices are complex-valued.

4. In this paper

The quarter-circle density function that we use in (10), with
σ ∈ [0, 1] a random variable corresponding to the singular
values of the appropriate random matrices (the real-valued
Re(T) and Im(T)), can be considered a simplified version
(C2), where the distribution no longer has the range [0, 4Nm2)
and explicit dependence on N and m has been dropped through
the normalization procedure in Sec. IV A.

The required conditions for this distribution are met by
independent and identically distributed Gaussian entries. Note
that two Gaussian random variables being uncorrelated does
not imply that they are independent, and that this indepen-
dence is necessary for the quarter-circle distribution. Also,
the matrices do not satisfy the symmetry requirement. An
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alternative approach would have been to use Marčenko and
Pastur’s work [28] instead of Wigner’s [26,27], thereby allow-

ing the complex-valued matrix T to be investigated directly,
rather than the real-valued Re(T) and Im(T).
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