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Antiresonant Fabry-Pérot cavity with ultralow finesse
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The exact expressions of finesse and full width at half maximum (FWHM) of the Airy distribution of a Fabry-
Pérot (FP) resonator are derived, which solves the breakdown problem at ultralow reflectivity in traditional
formulas. We demonstrate that, when the cavity-mirror reflectivity R → 0, the FWHM approaches half of the
free spectral range rather than infinity; moreover, the cavity finesse F approaches 2 rather than zero. These
expressions are useful for the development of bad-cavity lasers, such as the four-level active optical clock based
on the strong atomic transition of cesium. Also, the exact expressions of the FWHM and finesse of the reflection
distribution composed of reflected mode profiles are derived, which separately intersect with that of the Airy one
at R = 0. In addition, the characteristics of an antiresonant cavity, the frequency of which is exactly at the center
of two adjacent resonant cavity modes, are analyzed. It is demonstrated that at the resonant and antiresonant
frequencies the enhancement and inhibition of intracavity light intensity caused by the FP cavity are symmetrical
in the logarithmic view. Furthermore, we provide a universal expression of the cavity-enhancement factor rather
than the classical representation of “2F/π ,” which is inadequate for the high-loss cavity because the cavity-
enhancement factor should naturally reach 1 when R → 0. Finally, we extend the application of the antiresonant
cavity to an inhibited laser, the frequency of which has a stronger suppression effect on the cavity-length thermal
noise than the traditional resonant laser.
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I. INTRODUCTION

Laser stabilization, which is used to generate a highly co-
herent and stable light source, is critical for achieving optical
atomic clocks with high quality factor. Utilizing the Pound-
Drever-Hall technique [1,2], the Fabry-Pérot (FP) cavity with
ultrahigh reflectivity is optimal to stabilize the laser frequency.
Owing to the ultranarrow resonant bandwidth, the laser fre-
quency is locked to a small resonant range, which generates
a laser with a narrowest linewidth of sub-10 mHz [3]. Such
frequency stabilization utilizes the cavity-enhancement effect
of a resonant FP cavity.

Except for the application of frequency stabilization, the
cavity-enhancement effect of a resonant cavity is significant
for atom-cavity coupling. The interaction between the intra-
cavity photons and the atom is greatly enhanced when the
atom is coupled to a resonant cavity, which is famous for
the Purcell effect first proposed by Purcell in 1946 [4]. Be-
cause the large Purcell factor requires a high-Q resonator with
a small mode volume, it was not until about 40 years later that
the Purcell effect was experimentally proven in microwave [5]
and optical [6,7] resonant cavities.

Moreover, the feasibility of balancing the damping rate
of the field in a cavity and the spontaneous emission rate
with a high-Q resonant cavity has wide application in both
the weak- and strong-coupling limits. In a weakly coupled
cavity, the cavity-enhancement effect is widely used for
semiconductor microcavity structures to provide the wafers
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for vertical-cavity surface-emitting lasers. In addition, the
high-reflectivity resonant cavities are also commonly used to
generate low-threshold lasers [8–10]. Such a design is a key
ingredient for laser oscillation, and improves the directionality
of radiation. In the strong-coupling limit, the cavity enhance-
ment effect is significant for cavity quantum electrodynamics
(QED). The interaction between the intracavity photons and
the atom is reversible, which is critical in the development of
single-photon phase gates for use in quantum computers [11].

Based on the above-mentioned advantages, the character-
istics of a resonant cavity with high reflectivity are fully
analyzed. Therefore, the basic expressions for the characteris-
tics of an FP cavity, such as the cavity finesse and cavity-mode
linewidth of the Airy distribution, as well as the cavity-
enhancement effect, are limited to the resonant high-Q-factor
condition, resulting in the analysis under low-reflectivity con-
ditions being missed. However, high-reflectivity FP cavities
tend to introduce some complexity along with their great
superiority. For instance, to optimize the fractional stability
of the optical length of the cavity, FP resonators are built
based on well-isolated cryogenically cooled single-crystal
silicon [3,12], and with ultrahigh dielectric coatings, which
will increase the production costs and technical complexity.
In addition, the higher the cavity reflectivity is, the sharper
the cavity profile becomes, and the cavity-mode frequency is
more susceptible to the thermal noise of the cavity length.

Alternatively, by using a cavity with ultralow finesse, the
above problems will be solved. A typical application is an
active optical clock (AOC) [13–22] based on strong atomic
transition of cesium [20,23]. Working in the bad-cavity limit
[13,15,16,18–20,22], where the atomic decay rate �gain is

2469-9926/2023/107(2)/023517(9) 023517-1 ©2023 American Physical Society

https://orcid.org/0000-0001-9714-0445
https://orcid.org/0000-0001-7246-6713
https://orcid.org/0000-0001-8682-8287
https://orcid.org/0000-0001-9802-4577
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.023517&domain=pdf&date_stamp=2023-02-22
https://doi.org/10.1103/PhysRevA.107.023517


SHI, MIAO, ZHANG, AND CHEN PHYSICAL REVIEW A 107, 023517 (2023)

much smaller than the cavity dissipation rate �c, only weak
cavity-induced feedback occurs on the atomic dipole, result-
ing in the collective atomic dipole being highly coherent, and
the phase information of an AOC laser is primarily stored
in the atomic gain medium. Therefore, compared with the
good-cavity laser using an ultrahigh-finesse optical cavity as
a reference, the sensitivity of an AOC laser to cavity fluctu-
ations is greatly reduced, as characterized by the suppressed
cavity-pulling effect. The analysis of a low-reflectivity cavity
is significant for the research of AOC lasers. It is urgent
to find universal expressions applicable for any reflectivity.
Moreover, the theoretical analysis of a cavity operating at any
frequency, let alone at the antiresonant region—namely the
cavity frequency being at the center of two adjacent resonant
frequencies—is missing.

To solve these problems, in this paper we provide the
exact expressions of finesse and full width at half maximum
(FWHM) of the Airy distribution of a FP resonator both at the
resonant and antiresonant frequencies, and we successfully
solve the breakdown problem [24] at ultralow reflectivity in
traditional formulas. We demonstrate that, when the cavity-
mirror reflectivity R → 0, the FWHM approaches half of the
free spectral range (FSR) rather than infinity, and the finesse
F approaches 2 rather than zero. In addition, a universal
expression of the cavity-enhancement factor rather than the
classical representation of 2F/π is given. Because the cavity-
enhancement factor should naturally reach 1 when R → 0, the
traditional expression is inapplicable for the high-loss cavity.

Moreover, we extend the application of an antiresonant
cavity with ultralow finesse to realize an inhibited laser [25],
the frequency of which has a stronger suppression effect on
the cavity-length thermal noise than a traditional resonant
laser. Working in the antiresonant cavity region, the cavity-
loss term in the laser rate equation of an inhibited laser is
rewritten. We provide the expression of loss term and prove
it in the photon picture. This indicates that, as R → 0, the loss
factor approaches 1 in both resonant and antiresonant regimes.
Regarding R → 1, the loss factor at resonance is 2F/π times
that at the antiresonance case. Therefore, it is easier to realize
laser oscillation in the antiresonant region with a low-finesse
resonator. In addition, we analyze the cavity-pulling coeffi-
cient of a traditional resonant laser and inhibited laser under
arbitrary reflectivity. The influence of cavity-length noise on
the frequency of an inhibited laser can be further suppressed
by a factor of ( 1+R

1−R )2 times.
The application of an inhibited laser is expected to con-

nect multiple research fields, such as atomic optical clocks,
laser physics, quantum metrology, and cavity QED, and it
will greatly facilitate precision measurements for fundamental
science. Our findings represent a vivid example of intuitively
applying an antiresonant inhibited laser with the advantage of
suppressing the cavity-pulling effect, which will broaden the
horizon of quantum metrology and laser physics.

The rest of this paper is organized as follows. In Sec. II,
the characteristics of a FP cavity are introduced. According
to the Airy function and power reflection factor, the exact
expressions of cavity finesse and the FWHM of Airy and
reflection distributions are obtained. Moreover, the FWHM
and finesse of the antiresonant cavity are given, which in-
tersect with the results of the resonant condition at R = 0

respectively. In addition, the cavity-enhancement factor with
the change of cavity frequency at different cavity-mirror re-
flectivities is analyzed. In particular, the cavity-enhancement
effect at the resonant regime and the cavity-inhibition effect
at the antiresonant regime are symmetrical in the logarithmic
view. Section III presents the application of the antiresonant
FP cavity, which is used for the realization of the inhibited
laser with the advantage of enhanced cavity-pulling effect.
Conclusions are drawn in Sec. IV.

II. GENERAL EXPRESSIONS
FOR FP-CAVITY CHARACTERISTICS

An ultrastable optical cavity, which is aimed at generating
a highly phase-coherent and frequency-stable laser source,
has become a powerful tool for laser frequency stabilization
[1,26]. Before studying the interaction between atoms and
a cavity, it is necessary to thoroughly investigate the basic
properties of an optical cavity. In this section, the exact ex-
pressions of finesse and the FWHM of an optical cavity under
any cavity-mirror reflectivity are derived, which are slightly
different from the results under the condition of high reflectiv-
ity expressed in most classical optical texts [27,28]. Moreover,
the general expression of the cavity-enhancement factor at any
reflectivity is demonstrated. We also prove that the intracavity
light intensities enhanced by the resonant cavity and inhibited
by the antiresonant cavity are symmetrical at the condition of
the same cavity-mirror reflectivity.

A. Airy function and power reflection factor

Here, we consider a typical model of an optical cavity [28],
which consists of a simple two-mirror FP interferometer sep-
arated by a distance L, as depicted in Fig. 1(a). The complex
amplitude reflection and transmission coefficients of plane
mirror M1 and plane-parallel mirror M2 are r1, t1 and r2, t2,
respectively. R1 = r1

2, R2 = r2
2 and T1 = t12, T2 = t22 are

the reflectivity and transmittance of M1 and M2, respectively.
Considering that the complex amplitude of the electromag-
netic wave incident at M1 is E0, ET and ER are the respective
amplitudes of the waves that are transmitted and reflected by
the FP cavity.

The ratio of light power transmitting through the cavity to
that of the incident radiation, i.e., the so-called Airy function
[28], is expressed as

T (ω) = ETET
∗

E0
2 = t12t22

1 + r1
2r2

2 − 2r1r2 cos (ω2L/c)
, (1)

where �φ = ω2L/c represents the phase shift, ω is the an-
gular frequency of the incident radiation, and c is the speed
of light. Accordingly, the power reflected by the resonator is
given by

R(ω) = ERER
∗

E0
2 = 2r1r2[1 − cos (ω2L / c)]

1 + r1
2r2

2 − 2r1r2 cos (ω2L / c)
. (2)

According to Eqs. (1) and (2), the transmittance and reflection
both depend on the phase shift �φ. The transmission T (ω)
and reflection R(ω) factors are sketched in Fig. 2, which
satisfies the condition of T (ω)+R(ω) = 1. It should be noted
that the Airy function is also applicable to the condition that
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FIG. 1. Amplitudes of waves transmitted and reflected by the FP cavity. (a) Initial wave incident on one of the mirrors of the FP cavity.
(b) Emitter locating at the center of the FP cavity and radiating the initial electromagnetic wave.

the initial emitter radiates at the location of L/2, as shown in
Fig. 1(b).

Obviously, the transmission of the FP cavity at the an-
tiresonant region, namely that the cavity-mode frequency is
exactly at the center of two adjacent cavity modes, increases
gradually as the cavity reflectivity increases. Moreover, the
FWHM at the resonant regime becomes larger with increasing
reflectivity. The result of power reflection is opposite that of
power transmittance.

B. Exact expressions of cavity finesse and FWHM

For an empty FP cavity, the maximum and minimum trans-
mittances according to Eq. (1) are

Tmax = t12t22

1 + r1
2r2

2 − 2r1r2
(3)

FIG. 2. Ratio of light intensity passed through (reflected from)
the FP cavity to that of the incident radiation vs phase shift, result-
ing in a periodic set of transmitted (reflected) peaks. Transmission
reaches maximum when light frequency coincides with cavity res-
onance, and reaches minimum when light frequency is exactly
between two cavity resonances. Power reflection is opposite that
of transmittance reflection. Upper and lower subfigures represent
transmission and reflection, respectively, and they share a horizon-
tal coordinate. Solid, dotted, and dashed-dotted lines correspond
to cavity-mirror reflectivities of R1 = R2 = 99, 60, and 20%, re-
spectively. Relationships between cavity-mode linewidth �νr and
�νantires are given by �νantires = RFS − �νr .

and

Tmin = t12t22

1 + r1
2r2

2 + 2r1r2
, (4)

which correspond to the cases that the cavity frequency is
in the vicinity of the qth resonance frequency ωq and that
the cavity frequency is located exactly between two adjacent
cavity resonances, respectively. Because the minimum trans-
mittance Tmin is negligible under high-reflectivity conditions,
the FWHM is usually expressed as the frequency difference
at half of the maximum transmittance of one of the trans-
mission spectra [27,28]. However, as the reflectivity of the
cavity mirror decreases, Tmin increases so that the value of
Tmin cannot be omitted for the calculation of the FWHM. To
obtain a universal expression, we express the FWHM as the
frequency difference at which the transmittance equals half of
the sum of Tmax and Tmin:

T (ω) = 1
2 (Tmax + Tmin). (5)

From Eqs. (1) and (5), we can derive the values of ω. Then,
the FWHM of one of the periodic transmission spectra (cavity
bandwidth) without approximation of a resonant cavity is
given by

�νr = �ωr

2π
= RFS

π
arccos

(
2r1r2

1 + r1
2r2

2

)
, (6)

where the free spectral range RFS = c/2L. Accordingly, the
finesse of the FP interferometer is

Fr = RFS

�νr
= π

arccos
( 2r1r2

1+r1
2r2

2

) . (7)

It should be pointed out that when the mirrors’ reflectivity
is close to 1, Eqs. (6) and (7) are reduced to the traditional
expressions [27,28], as follows:

�νr
′ = RFS

1 − r1r2

π
√

r1r2
(8)

and

Fr
′ = π

√
r1r2

1 − r1r2
. (9)

However, if the reflectivities of the cavity mirrors are ex-
tremely low, or even close to zero, Eq. (7) can be expressed
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FIG. 3. (a) Ratio of the FWHM to the FSR and (b) finesse with the change of cavity-mirror reflectivity R = r1r2 when the FP cavity is
resonant and antiresonant with incident light, respectively. The main plots are presented in logarithmic scales, and the insets are in linear
scales. The solid red line and the dashed green line represent exact solutions, while the dashed-dotted black line and the short-dashed-dotted
blue line depict results with the high-reflectivity approximation. This illustrates that whether the cavity is resonant or antiresonant, the exact and
approximate solutions tend to coincide when R is larger than 0.7 but separate below 0.7. These results are shown clearly in the insets with R in
the range 0–0.5. The insets also confirm that the exact expressions are credible, because there is an intersection of the resonant and antiresonant
results at R = 0, while there are break points in the approximate results. The purple dotted line in the inset represents Eq. (10). Since Eq. (10)
is the approximate result of the cavity finesse when the reflectivity is extremely low, with increasing reflectivity, the results represented by
Eqs. (10) and (9) gradually separate. Black stars and black circles represent experimental values from our previous work [20,25].

through a Taylor formula as

Fr
′′ =

π
π
2 − 2r1r2

1+r1
2r2

2

= 2 + 8r1r2

π
(
1 + r1

2r2
2
) − 4r1r2

. (10)

It is clear that, when R approaches zero, the cavity finesse
reaches the minimum of 2, which is different from the result
obtained from Eq. (9).

Generally, for laser oscillation, the cavity-mode frequency
is tuned to the exact resonant frequency for generating a
highly coherent laser source. The counterintuitive antireso-
nant cavity, the cavity frequency of which is exactly between
two adjacent cavity resonances, is rarely considered. How-
ever, the lasing output from an antiresonance cavity is
achievable, and has many unique properties. To distinguish
the antiresonant cavity from the traditional resonant one, the
cavity bandwidth �νantires and finesse Fantires of the antireso-
nant cavity are described by Eqs. (11) and (12), respectively,
as

�νantires = RFS − �νr = RFS

[
1− 1

π
arccos

(
2r1r2

1 + r1
2r2

2

)]

(11)

and

Fantires = RFS

�νantires
= 1

1 − 1
π

arccos
( 2r1r2

1+r1
2r2

2

) . (12)

Similarly, Eqs. (11) and (12) are reduced to Eqs. (13) and (14)
under a high-reflectivity approximation, as

�νantires
′ = RFS

(
1− 1−r1r2

π
√

r1r2

)
(13)

and

Fantires
′ = 1

1 − 1−r1r2
π

√
r1r2

, (14)

respectively. When the reflectivity is extremely low, Eq. (12)
can be written as

Fantires
′′ = 1

1 − 1
π

(
π
2 − 2r1r2

1+r1
2r2

2

)

= 2 − 8r1r2

π
(
1 + r1

2r2
2
) + 4r1r2

, (15)

which reaches a maximum of 2 and coincides with the value
in the case of the resonance when R = 0.

The rationality of the FWHM of the antiresonance cavity,
�νantires, can be verified using the power reflection factor.
The average of Rmax and Rmin is obtained through Eq. (2).
Analogously, the FWHM of one of the reflection spectra is
consistent with the result of Eq. (11).

The ratio between cavity bandwidth and FSR, and the
finesse as a function of cavity reflectivity R = r1r2, are shown
in Figs. 3(a) and 3(b), respectively. The dash-dotted black
line (approximate value) and solid red line (exact value)
represent the calculations of the resonant cavity, and the short-
dashed-dotted blue line (approximate value) and dashed green
line (exact value) are the results for the antiresonant cavity.
The insets correspond to the results with R being in the range
0–0.5. The black stars and black circles correspond to the
experimental value obtained in our previous work [20,25].
This illustrates that the exact and approximate solutions of the
cavity bandwidth (finesse) tend to be consistent with increas-
ing R. Figure 3(a) [Fig. 3(b)] shows that the FWHM [finesse]
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at resonance and antiresonance separately obtained by Eqs. (6)
and (11) [Eqs. (7) and (12)] intersect at R = 0, which is a
smooth transition. In contrast, the results obtained by approx-
imate formulas are separated. In this paper, we put forward
the exact expressions of the FWHM and finesse, which can
successfully avoid the singularity problem in conventional
expressions [24].

Moreover, using Eqs. (6) and (11), the cavity bandwidths
of the resonant and antiresonant cavities both approach RFS/2
rather than infinity when R → 0. In addition, the cavity band-
widths of the resonant and antiresonant cavities approach zero
and FSR, respectively, with R → 1. Similarly, the cavity fi-
nesse is equal to 2 rather than zero when the reflectivity R = 0.
These results are important for the applications of an ultralow
finesse cavity.

C. Symmetry characteristics of cavity-enhancement and
cavity-inhibited factors

In this paper, the cavity-enhancement factor is analyzed
by the above results. Owing to the Purcell effect [4], the
spontaneous emission rate of the two-level atoms in a resonant
cavity can be enhanced by ηc = 3Qcλ

3/4π2V times compared
with that in free space. Qc = ν0/�νc is the cavity quality
factor, which is defined as the ratio of the atomic transition
frequency to the cavity-mode linewidth of the resonant cavity.
λ is the atomic transition wavelength and V represents the
equivalent cavity mode volume. Therefore, the Purcell factor
is proportional to the cavity quality factor, i.e., proportional
to the cavity finesse. The resonant cavity enhances the spon-
taneous emission rate; conversely, the spontaneous emission
rate is inhibited in an antiresonant cavity, which was first
proven by Kleppner [29]. This shows that the inhibition factor
is inversely proportional to the cavity finesse.

It is assumed that there is an atomic dipole in a concentric
FP resonator, for which the radii of curvature of M1 and M2

are equal and their reflectivities R1 = R2 = R. In order to
calculate the total power radiated by the dipole, we assume
that the power is radiated in a spherical surface, which is
divided into three parts: S1, the part lying outside cavity mirror
M1; S2, the part lying outside cavity mirror M2; and Sside,
the remainder of the sphere. S1, S2, and Sside subtend solid
angles �
1, �
2, and �
side, respectively, where �
1 +
�
2 + �
side = 4π , and the solid angle of the cavity can be
expressed as �
c = �
1 + �
2.

According to Ref. [30], the power passing through Sside

is simply the total free space power Pfree minus the power
emitted into �
c, and it can be expressed as

Pside =
(

1 − 3

8π
�
c

)
Pfree. (16)

By calculating the power transmitted through S1 and S2, we
find finally that

Pc = 1 − R2

1 + R2 − 2R cos (ω2L / c)
Pfree, (17)

where R = r1r2 is the cavity reflectivity. This shows that the
power radiated by the dipole to the cavity follows the Airy
function line shape of the cavity.

Consequently, the total power emitted by the dipole can be
simply written as the sum of the power radiated from the side
and the power emitted from the cavity mirrors, and it is given
by

Ptotal =
[
1 +

(
1 − R2

1 + R2 − 2R cos (ω2L / c)
− 1

)
3

8π
�
c

]
Pfree.

(18)

According to Eq. (18), the power emitted into �
side is
fixed. As the phase of the reflected field is tuned, only the
power emitted into �
c is changed. Therefore, the total
power also follows the absorptive line shape of the cav-
ity. In order to facilitate the analysis, we only study the
change of the power radiated into the cavity with the phase
shift.

Here, we define the ratio between the power radiated into
the intracavity and into free space as α = Pc/Pfree, which is a
function of the phase shift. The maximum and the minimum
values of α are αmax = 1+R

1−R and αmin = 1−R
1+R , respectively,

when the cavity is resonant and antiresonant.
Taking the resonant case as an example, the relationship

between the cavity-enhancement factor and the cavity finesse
under the limit of R → 1 and 0 is analyzed separately.

(i) For R → 1, αmax = 1+R
1−R � 2

1−R , and Fr
′ = π

√
R

1−R � π
1−R .

Therefore, αmax = 2Fr
′

π
.

(ii) For R → 0, using the Taylor formula, 1
1−R = 1 + R +

R2 + · · ·. Then, αmax = 1+R
1−R = 2

1−R − 1 � 1 + 2R. Accord-
ing to Eq. (10), Fr

′′ � 2 + 8R
π−4R . Consequently, αmax = 1 +

π
2Fr

′′ (Fr
′′ − 2). Moreover, Fr

′′ → 2 when R → 0, which in-
dicates that the cavity-enhancement factor approaches 1.

In summary, for a resonant cavity with R → 1, the ratio
can be reduced to 2Fr

′/π . For an antiresonant cavity, the
ratio is 1/ 2Fr

′
π

. This intuitively illustrates that the cavity-
enhancement effect is obvious for a high-finesse cavity. In
contrast, as for the ultralow-finesse cavity (R → 0, close to
mirrorless), α is close to 1 in both resonant and antires-
onant cavities. This is reasonable because light can pass
through the cavity almost unobstructed in an ultralow re-
flectivity cavity. Here, we give a general expression of the
cavity-enhancement factor rather than one only confined to
the condition of a high-finesse cavity. Pc/Pfree as a function
of phase shift is depicted in Fig. 4(a). To make the descrip-
tion more intuitive, Fig. 4(b) shows the change of ratio with
phase shift in logarithmic scale. It is clear that, with de-
creasing reflectivity, the ratio gradually approaches 1, which
means that the cavity-enhancement factor is 1 at R = 0. This
is different from the classical expression of 2Fr

′/π , which
satisfies the condition of a high-reflectivity cavity and is inad-
equate for the high-loss case, since the cavity-enhancement
factor should naturally reach 1 when the cavity-mirror re-
flectivity approaches zero. In addition, the enhancement
factor of the resonant cavity and the inhibition factor of
the antiresonant cavity are equal, i.e., the enhancement and
the inhibition of intracavity light intensity by the resonant
and antiresonant cavities are symmetrical, as depicted in
Fig. 4(b).
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FIG. 4. Ratio of power emitted into a cavity to that into free space vs the phase shift in (a) linear and (b) logarithmic coordinates. The
symmetry characteristics of the cavity-enhancement factor in the resonant cavity and cavity-inhibited factor in the antiresonant cavity are
depicted. The solid black line, dashed red line, dashed-dotted blue line, and dashed-dotted purple line represent the results of R1 = R2 = 99,
60, 20, and 1%, respectively. As the reflectivity decreases, the ratio of Pc/Pfree gradually approaches 1.

III. APPLICATION OF antiRESONANT ultraLOW-FINESSE
FP CAVITY FOR REALIZATION OF the INHIBITED LASER

A. Inhibited laser

Although the enhancement factor is smaller than 1 for
an antiresonant cavity, the stimulated emission can also be
realized in an antiresonant, ultralow-finesse cavity [25]. As
shown in Figs. 4(a) and 4(b), with decreasing reflectivity,
the cavity-enhancement effect is gradually weakened at the
resonant regime. Meanwhile, the cavity-inhibited effect in
the antiresonant region is also gradually weakened. This is
the key to realizing stimulated radiation in an antiresonant
cavity.

According to Ref. [31], assuming that the cavity detuning
is zero, the laser rate equation is expressed as

dn

dt
= G − L′ = N

tint
sin2(

√
n + 1gtint ) − �cn. (19)

n is the intracavity photon number, and G and L′ represent
the gain and the loss, respectively. Gain greater than loss is a
prerequisite for lasing. Here, we assume a cloud of atoms as
the gain medium. N is the effective atomic number, tint the
interaction time between light and atom, g the atom-cavity
coupling coefficient, and �c the cavity dissipation rate.

If the cavity detuning is large enough that it is not negligi-
ble, the loss term should be rewritten as

L′ = �cn
Pcmax

Pc
= �cn

[
1 + 2R[1 − cos (ω2L / c)]

(1 − R)2

]
. (20)

Here, we utilize Eq. (17), which reflects the change of in-
tracavity loss with phase shift in the rate equation. The
expression in square brackets is defined as the loss factor
β = Pcmax

Pc
= 1 + 2R[1−cos(ω2L/c)]

(1−R)2 . β as a function of phase shift
is depicted in Fig. 5(a). Figure 5(b) shows the result under
logarithmic coordinates. For a resonant cavity, the loss factor
reaches a minimum βmin = 1, and the laser rate equation can
be expressed by Eq. (19). However, regarding the antiresonant

cavity, the loss factor is enhanced and reaches a maximum
βmax = 1 + 4R

(1−R)2 . According to Fig. 5(b), as R → 0, the loss
factor approaches 1 in both resonant and antiresonant regimes.
Regarding R → 1, the loss factor at resonance is ( 2Fr

′
π

)2 times
that at antiresonance. This also proves that the low-finesse res-
onator more easily realizes laser oscillation at the antiresonant
region.

Moreover, the loss term can also be explained by the pho-
ton picture. τc is the average time of photons being stored
in an optical resonator before they eventually escape through
the output mirror. The loss term of Eq. (19) can be written
as n/τc. If R → 0, τc = L/c, and then the loss term is nc/L.
Regarding R → 1, the average time is enhanced by 2Fr

′
π

times

to τc = 2Fr
′

π
L
c , and the loss term becomes n�c

2 utilizing Fr
′ =

2π RFS
�c

. In an antiresonant cavity, the average time is inhib-

ited by 2Fr
′

π
times; similarly, the loss term can be expressed

as n�c
2 ( 2Fr

′
π

)2. Hence, the ratio of the loss term at antireso-

nance to that at resonance is ( 2Fr
′

π
)2, which verifies the above

discussion.
In addition, this can be explained by examining Table I.

|Ein|2, Pc, and |Et|2 represent the light intensities incident on
the first mirror, inside the cavity, and transmitted through the
cavity, respectively. The initial light intensity is |E0|2. Table I
shows the light intensity inside (or through) the FP cavity in
resonant and antiresonant cavities separately.

Although most of the traditional lasers work in the reso-
nant cavity, the use conditions of the photon-number equation

TABLE I. Light intensity inside or through the FP cavity. |Et|2 =
(1−R)2

1+R2−2R cos(ω2L/c)
|E0|2; Pc= 1−R2

1+R2−2R cos(ω2L/c)
|E0|2.

|Ein|2 Pc |Et|2

Resonant |E0|2 1+R
1−R |E0|2 |E0|2

Antiresonant |E0|2 1−R
1+R |E0|2 ( 1−R

1+R )2|E0|2
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FIG. 5. Ratio of the maximal power emitted into the cavity to that into the cavity vs the phase shift in (a) linear and (b) logarithmic
coordinates. The solid black line, red dots, dashed-dotted blue line, and dashed-dotted purple line represent the results of R1 = R2 = 99, 60,
20, and 1%, respectively. As the reflectivity decreases, the ratio of Pcmax/Pc gradually approaches 1.

describing this resonant laser are limited. Therefore, we give
a universal expression that can derive the intracavity photon
number at any cavity frequency. We demonstrate that the laser
can also be realized in an antiresonant cavity.

B. Cavity-pulling coefficient

The cavity-pulling coefficients in the cases of spontaneous
and stimulated radiations are analyzed, as shown in Table II.
The results at R taking arbitrary values at resonant and antires-
onant regimes are given separately. According to Heinzen and
Feld [30], the level shift of an atom inside the optical resonator
can be modified by the cavity. Furthermore, the shift in atomic
radiation frequency is suppressed to zero with the spectral
linewidth narrowed at the antiresonance regime, which is of
great significance for precision measurement.

Here, we extend the results of frequency shift of radiation
in Ref. [30] to the cavity-pulling coefficient, which is ex-
pressed as C = dω

dωc
, where ω and ωc represent the radiation

frequency and cavity-mode frequency, respectively. Letting
R take an arbitrary value, the cavity-pulling coefficients of
spontaneous radiation at resonant and antiresonant regimes
are 2L

c �0
2R

(1−R)2 and − 2L
c �0

2R
(1+R)2 , respectively. �0 is the de-

cay rate of the atomic dipole. Compared with the result in
the resonant regime, the influence of the cavity-pulling ef-
fect on the radiation frequency in the antiresonant regime is
suppressed ( 1+R

1−R )2 times, and is approximately 1 + ( 2Fr′
π

)2

when R → 1.

Moreover, the cavity-pulling coefficients of stimulated ra-
diation at resonant and antiresonant regimes are given. In a
circumstance of stimulated radiation, the focus is always on
the cavity-pulling coefficient at the resonant cavity, where
lasing is traditionally achieved. However, the cavity-pulling
coefficient of an inhibited laser is also critical. The cavity-
pulling coefficient of a laser working in the resonant cavity
is �0

�0+�c
. If the laser works in the good-cavity limit, where

�0 � �c, C ≈ 1. In contrast, C 	 1 for AOC lasers [13–22]
working in the bad-cavity limit. Therefore, the sensitivity of
AOC lasers to cavity-length thermal noise is greatly reduced,
and it is characterized by the suppressed cavity-pulling ef-
fect. Analogous to the spontaneous result, compared with a
resonant AOC laser, the influence of cavity-length noise on
the frequency of an inhibited laser is further suppressed by a
factor of ( 1+R

1−R )2 times, as shown in Table II.
This indicates that the influence of cavity-length ther-

mal noise on the frequency of an inhibited laser is smaller
compared to a traditional resonant laser. However, it should
be noted that, for the inhibited laser, if we keep the cav-
ity dissipation rate constant, the higher the cavity finesse
(or cavity-mirror reflectivity), the stronger the suppression
of cavity-length noise, and the lower output power. Hence,
to balance the output power and suppression of the cavity-
pulling effect of an inhibited laser, we must set the cavity
finesse to an appropriate value. Nevertheless, the development
of an inhibited laser is of great significance for the field of
precision measurement.

TABLE II. Cavity-pulling coefficients in the optical domain. 2L
c = 2π

Fr

1
�c

; R → 1, Fr = Fr′ = π
√

R
1−R [Eq. (9)].

Spontaneous Stimulated

R (arbitrary) R → 1 R (arbitrary) R → 1

Resonant 2L
c �0

2R
(1−R)2

2Fr′
π

�0
�c

�0
�c

Antiresonant − 2L
c �0

2R
(1+R)2 − 2Fr′

π

1
1+(2Fr′ /π )2

�0
�c

( 1−R
1+R )2 �0

�c
− 1

1+(2Fr′ /π )2
�0
�c
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IV. CONCLUSIONS

Because the Airy function of a low-finesse FP cavity is flat
compared with the high-finesse cavity, the effect of cavity-
length thermal noise on the laser frequency can be greatly
suppressed. The low-finesse cavity is preferred for the real-
ization of AOCs and inhibited lasers, which is significant for
quantum metrology and may lead to new research in the laser
physics and cavity quantum electrodynamics fields. There-
fore, it is highly necessary to derive the exact expressions
describing the cavity characteristics.

In this paper, we present the exact expressions describing
characteristics of a FP cavity, such as the cavity finesse and
FWHM, as well as the cavity-enhancement and -inhibited
factors. In particular, the exact expressions of finesse and
FWHM expand the result at the traditional high-reflectivity
approximation to the arbitrary reflectivity case, and solve the
singularity problem in traditional expressions. This proves
that the cavity finesse is equal to 2 rather than zero at

R = 0. Moreover, the symmetry characteristics of cavity-
enhancement and -inhibited factors are analyzed, which
clearly show the impact of the cavity on light power. Further-
more, the characteristics of the antiresonant cavity, where the
cavity frequency is between two adjacent cavity modes, are
also demonstrated. The antiresonant cavity proposed in this
paper is of great significance for realizing an inhibited laser,
which would be relevant for quantum precision metrology and
have new applications in fundamental and applied science,
such as in the study of fundamental constant variations and
relativistic geodesy.
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