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Intensity correlations in the forward four-wave mixing driven by a single pump
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We study the field-intensity fluctuations of two independent four-wave-mixing signals generated in a cold
rubidium sample as well as the transmission signals. We employ an experimental setup using a single cw
laser to induce the nonlinear process in a forward geometry using either parallel and circular or orthogonal
and linear polarizations of the input fields. Even though the spectra of each experimental configuration are
significantly different due to the distinct level structures of each scenario, both cases present intensity-intensity
cross correlations of the four-wave-mixing signals. We also calculate the cross correlation between the input
fields and draft a theoretical model that indicates that resonant phase-noise to amplitude-noise conversion allows
the observation of Rabi oscillations in the cross-correlation curves.
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I. INTRODUCTION

For the past three decades, there has been interest in study-
ing light fluctuations when light interacts with matter. The
pioneering experimental work of Yabuzaki et al. [1] showed
that one may obtain spectroscopic information using the in-
tensity fluctuations of a laser beam interacting with rubidium
vapor. Later, Walser and Zoller [2] provided a theoretical
framework to explain this new type of spectroscopy and espe-
cially how the conversion of phase noise to amplitude noise is
at the root of this phenomenon. Ever since these works, a large
amount of research has been produced from the study of these
fluctuations in the light-matter interaction, with interesting
results such as the study of correlations and anticorrelations
in electromagnetically induced transparency [3–6], the control
of intensity noise correlations and squeezing of four-wave-
mixing processes via polarization [7], and the generation of
correlated and anticorrelated fields via atomic spin coher-
ence [8].

There have been different approaches to the problems re-
lated to these fluctuations, concerning whether the analysis
is in the frequency domain or time domain. In the latter ap-
proach, a set of studies led by the group of Scully [9–11] is of
interest to the problem we present here. Our experiment uses
a similar setup with a single cw laser; however, along with the
correlations between transmitted beams, we also investigate
the correlations between two nonlinear signals generated by
two independent four-wave-mixing (FWM) processes.

In this sense, we present experimental observations of
strong correlations between intensity fluctuations of two
FWM signals generated through the interaction of laser light
with a cold rubidium sample. The correlation between the
input laser fields is also detailed, with observations that agree
with the literature. We compare different polarization config-
urations which access distinct internal energy-level structures.
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Since we use a cold atomic sample, the system has a narrow
Maxwell-Boltzmann distribution, so we can study how the
correlations behave as a function of the laser detuning. This is
an advantage of the cold system compared to an atomic vapor,
in which several velocity groups can respond to the input laser
even if one changes the detuning, as long as it is inside the
Doppler broadening range.

Furthermore, we observe an oscillatory behavior compat-
ible with Rabi oscillations [12] in the correlation functions.
The intriguing feature is that we can detect these oscilla-
tions long after the transient period, retrieving the frequency
information through the correlation function. This idea of ex-
tracting an oscillation frequency using the correlation function
has been used in other contexts such as the observation of
quantum beats in spontaneous emission [13] and the obser-
vation of temporal beats in Raman Stokes fields [14]. The
theoretical model we build supports the idea that the fluctu-
ations are the only reason that we can detect this oscillatory
behavior of the system.

This paper is organized as follows: In Sec. II, we detail
the experiment and all the experimental results. In particular,
we show the time series of all four signals and the corre-
sponding second-order correlation functions. Moreover, we
demonstrate how the correlation changes regarding variations
in the intensity and frequency of the input fields. Section III
is devoted to building a simple theoretical model that can
provide insight into the physical meaning of the results. We
conclude by summarizing the relevant achievements of this
work in Sec. IV.

II. EXPERIMENTAL SETUP AND RESULTS

In the experiment, we use a single cw laser to generate
two input laser beams labeled by their wave vectors �ka and
�kb, as presented in Fig. 1. These two beams interact with
a cold atomic sample of 87Rb atoms in a magneto-optical
trap (MOT), typically with 108–109 atoms cooled to tem-
peratures of hundreds of microkelvins. In the experimental
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FIG. 1. (a) Simplified scheme of the experimental setup.
(b) Wave vectors of the four signals (two FWM and two transmis-
sions). (c) Hyperfine structure of the D2 line of 87Rb.

configuration with linear and orthogonal polarization, the in-
put fields are aligned with the atomic cloud using a polarizing
beam splitter (PBS). In the other case, with circular and paral-
lel polarization, we substitute the two PBSs for beam splitters
and add two quarter-wave plates before and after the atomic
cloud.

We are interested in the two FWM signals generated in
directions 2�ka − �kb and 2�kb − �ka, as shown in Fig. 1(b). There-
fore, we investigate processes in which two photons of one of
the beams are absorbed and one photon of the other beam is
emitted, generating new coherent signals. The input beams are
in an almost copropagating configuration, with a small angle
of 10 mrad between them to allow spatial separation of all four
signals. This type of forward geometry is challenging since
scattered light from one beam might arrive at the detection
position of the other beams. We detect the two FWM signals
and the transmissions of the input beams Ea and Eb with
avalanche photodiodes (model APD120A/M from Thorlabs).

The beams that induce the degenerate FWM processes are
tuned near the closed transition |F = 2〉 → |F ′ = 3〉 of the
D2 line of 87Rb [see Fig. 1(c)]. Since this is the same transition
excited by the cooling laser of the MOT, we use a temporal
scheme to generate and acquire the signal of interest. We shut
down all trapping fields, that is, the cooling laser and the anti-
Helmholtz coils, for 2 ms. This time interval is enough that the
atoms cannot gain much speed and therefore move away from
the center of the MOT. After we turn off the trapping fields,
there is a 20-µs delay, allowing the repump laser to properly
prepare the atoms in the ground state |F = 2〉, where they can
interact with the FWM-inducing laser. The repump laser is
always active throughout the measurement to guarantee the
proper state preparation.

FIG. 2. FWM spectra with input laser intensity Ia = Ib =
10 mW/cm2 for (a) linear and orthogonal polarizations and (b) cir-
cular and parallel polarizations.

We lock the frequency of the input laser to a saturation
absorption spectroscopy peak and tune the laser frequency
using an acousto-optical modulator. In the time interval in
which the MOT fields are off, we acquire data from a time
series with typically 100-µs intervals of all four signals. In
these measurements, one must be careful with the detuning
with respect to the resonance because for small detunings or
high laser intensity, the radiation pressure can disperse the
atomic cloud. Therefore, there is a practical limitation in our
experiment since the FWM signal increases when the input
laser is closer to resonance and for higher laser intensities, the
same regime that increases the radiation pressure.

Given this limitation, the experimental configuration with
linear and orthogonal polarization has an advantage. The spec-
tra, shown in Fig. 2(a), are wider than the spectra for the
circular and parallel case [see Fig 2(b)]. Furthermore, it has
a dip around the resonance so that the maximum signal is
slightly off resonance. The fundamental difference between
each case is that the linear and orthogonal polarizations in-
teract with a sum of � systems in the form of the Zeeman
sublevels, while the circular case is modeled by a pure two-
level system. The presence of two degenerate ground levels
together with equally powerful input laser beams that scan
their frequency simultaneously induces a coherent population
trapping that prevents the signal from being generated on
resonance [15–17].

The time series of the intensity fluctuations of all four
signals and for the two polarizations are presented in Fig. 3.
The presented data are part of the 100-µs recorded time
series and have been filtered with a high-pass ideal fast-
Fourier-transform filter with a cutoff frequency of 500 kHz
to eliminate any slow fluctuations of the signals. In Fig. 3(a)
(for circular and parallel polarization) and Fig. 3(b) (for
orthogonal and linear polarization), we show the intensity
fluctuations versus time of the two FWM signals (red and
blue lines) for input laser intensity Ia = Ib = 3.3 mW/cm2

and detuning from the excited state δ/2π = 70 MHz. It is
noticeable that fluctuations behave similarly, even though they
are not identical. Due to the experimental difficulties in regard
to the radiation pressure, one can achieve a signal with a
good signal-to-noise ratio only far from resonance and with
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FIG. 3. Time series of the intensity fluctuations for the FWM
signal with input laser intensity Ia = Ib = 3.3 mW/cm2, detuning
from the excited state δ/2π = 70 MHz, and (a) circular and parallel
polarizations and (b) linear and orthogonal polarizations. Time series
of the intensity fluctuations for the transmittance of the input lasers
with Ia = Ib = 0.15 mW/cm2, δ/2π = 15 MHz, and (c) circular and
parallel polarizations and (d) linear and orthogonal polarizations.

input lasers with intensities close to or above the saturation
intensity.

On the other hand, the intensity fluctuations of the input
lasers can be obtained a lot closer to resonance as long as the
intensity is small. In Figs. 3(c) and 3(d) we show the time
series of the input lasers (orange and green lines) for input
laser intensity Ia = Ib = 0.15 mW/cm2 and detuning from the
excited state δ/2π = 15 MHz. It is clear that these results
are remarkably synchronized and should present near-perfect
correlations, a known result [11].

These correlations can be quantified with the second-order
correlation function G(2)

i j (τ ) [8–11] for intensity fluctuations
of two optical beams with time delay τ . It is given by

G(2)
i j (τ ) = 〈δIi(t )δI j (t + τ )〉√〈δIi(t )2〉〈δI j (t + τ )2〉 , (1)

where δIi, j (t ) = Ii, j (t ) − 〈Ii, j (t )〉 are the time-dependent in-
tensity fluctuations, with 〈Ii, j (t )〉 being the average intensities
of the laser fields and i, j = a, b, s1, s2 being labels des-
ignating the two input fields and the two FWM signals,
respectively.

FIG. 4. Second-order correlation function G(2)
i j (τ ) between the

FWM signals with input laser intensity Ia = Ib = 3.3 mW/cm2, de-
tuning from the excited state δ/2π = 70 MHz, and (a) circular and
parallel polarizations and (b) linear and orthogonal polarizations.
Second-order correlation function G(2)

i j (τ ) for the transmittance of
the input lasers (brown line) and autocorrelation (orange line) with
Ia = Ib = 0.15 mW/cm2, δ/2π = 15 MHz, and (c) circular and par-
allel polarizations and (d) linear and orthogonal polarizations.

We present the intensity-fluctuation correlation functions
G(2)

i j (τ ) for the pairs of time series in Fig. 3 in Fig. 4. These
correlation functions have peaks at zero time delay with am-
plitudes (Pearson’s coefficient) of ≈ 0.6 for the FWM signals
and over 0.95 for the transmission signals. This confirms
the expectation from Fig. 3 that there is a strong temporal
positive correlation in the intensity fluctuations of the output
signals. Moreover, in Figs. 4(c) and 4(d) we also present the
autocorrelation (orange curve) for the intensity fluctuations of
the a laser beam. These curves are remarkably similar to the
cross correlation (dark brown curves) of the two transmission
signals, especially concerning the oscillations near zero delay.

The cross correlation we observe in the transmission beams
arises due to the resonant phase-noise to amplitude-noise con-
version [2,18–21]. The resonant interaction with atoms plays a
critical role in this result. If there were no atoms or if the input
laser was not near resonance, there would be no correlation.
The point we raise here is that this conversion also happens to
the FWM signals, creating correlated fields, even though they
come from processes that cannot occur simultaneously for the
same atom. Ultimately, the fields are correlated because they
all come from the same laser with the same phase fluctuations.
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FIG. 5. Normalized second-order correlation function G(2)
i j (τ )

between intensity fluctuations of FWM signals with linear and or-
thogonal polarization while (a) varying input laser intensity with
δ/2π = 85 MHz and (b) varying input laser detuning. Transmission
signals with linear and orthogonal polarization while (c) varying
input laser intensity with δ/2π = 25 MHz and (d) varying input laser
detuning.

In the next section, we build a simple model that provides in-
sight on how the phase fluctuations of the input laser manifest
themselves in the detected signals.

Given this argument, it would be interesting to look at the
correlations between one of the input laser fields and one of
the FWM signals. However, the experiment limits this situa-
tion as there is not a suitable choice of parameters to obtain
both signals simultaneously. To achieve the maximum FWM
signal, one must increase the intensity of the input laser as
much as the radiation pressure on the atomic sample allows.
On the other hand, to measure the intensity fluctuations of
the input laser, it cannot have a high intensity; otherwise, the
medium will saturate, and most of the detected photons will
not interact with the atomic cloud.

An intriguing feature of these correlation curves is that the
width of the FWM correlation peak seems different from the
transmission correlation peak, which is to be expected since
they have different intensities and detunings. In Ref. [9], a
fairly similar experiment that used an atomic vapor and a mag-
netic field to break the degeneracy of the Zeeman sublevels,
the authors comment that the widths of the correlation peaks
are associated with a power broadening of the single-photon
resonance in the Rb vapor. Therefore, we repeated the time
series for each pair at different intensities for fixed detuning.
These results are presented in Fig. 5(a) for the FWM signals
and Fig. 5(c) for the transmission beams, both with linear or-
thogonal polarization, with normalized correlation functions
to achieve a proper comparison of the widths.

In most cases, we increased the input laser intensity by
a maximum factor of 3, and the width of the correlation
peak did not change significantly. We believe the reason is
that the atomic medium is not truly saturated in any of the
measurements when we compare either transmission or FWM
signals. In the case of the FWM signals, the input laser fields
are above saturation intensity, but the nonlinear signal itself is
weak.

FIG. 6. Second-order correlation function G(2)
i j (τ ) as a function

of the detuning δ/2π between transmission signals with linear
and orthogonal polarizations. The input laser intensity is Ia = Ib =
0.15 mW/cm2.

These results indicate that the second-order correlation
function behaves differently in regard to changes in the de-
tuning. The ability to investigate this is an advantage of using
a cold sample instead of an atomic vapor. In hot systems, the
Doppler broadening is significant, meaning that variations of
the detuning inside the Maxwell-Boltzmann curve will always
find a resonant velocity group.

In Figs. 5(b) and 5(d), we present the correlations be-
tween transmission signals and between FWM signals in the
experimental configuration with linear polarization for three
different detunings. The results are similar for circular po-
larization. The most noticeable feature of these results is
that correlation curves do get wider as the frequency of the
input laser approaches the resonance. Moreover, far from reso-
nance, an oscillation of the correlation curves becomes clearer
and has higher frequency. There are regions of correlation,
G(2)

i j (τ ) > 0, and regions of anticorrelation, G(2)
i j (τ ) < 0. This

behavior was already apparent in the previous correlation
curves for the FWM signals [see Figs. 4(a) and 4(b)], as
they were all far from resonance. It is important to remark
that the results in Fig. 5(d) are for a fixed input intensity of
0.15 mW/cm2, while the results for the FWM signals, in
Fig. 5(b), are for different intensities in each case. However, if
one looks at the generalized Rabi frequency �̃ = √

�2 + δ2,
it is approximately equal to the detuning since the Rabi fre-
quency of the input beams is close to the natural linewidth of
the transition. We must vary the intensity in these measure-
ments to maximize the FWM signal in each measurement;
otherwise, the signal-to-noise ratio would not allow proper
visualization of the correlation.

Since we can work with very low intensities to obtain the
correlation between the intensity fluctuations of the transmis-
sion signals, it is easy to tune the laser frequency without
pushing away the atoms, making it possible to achieve a
detailed map of the correlation as a function of detuning. We
present such a map in Fig. 6. In this graph the broadening of
the central peak near resonance becomes clearer. Furthermore,
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FIG. 7. Frequency of the oscillation in the correlation function
for FWM signals with (a) linear and orthogonal polarizations and
(b) circular and parallel polarizations. Transmission signals with
(c) linear and orthogonal polarizations and (d) circular and parallel
polarizations. The solid lines show the absolute value of the detuning.

the presence of oscillations near the central peak is noticeable.
It seems that the frequency of this oscillation gets smaller near
resonance. A Fourier analysis of the curves in Fig. 6 shows
(see Fig. 7) that they have a spectral component compatible
with �̃.

Therefore, these oscillations in the second-order correla-
tion function are connected to the generalized Rabi frequency
of the input laser. This indicates that in the conversion process
from phase fluctuations of the laser into intensity fluctuations
through the interaction with the atomic medium, the intensity
fluctuations oscillate with approximately the generalized Rabi
frequency [12].

One could expect to see this oscillation in the raw data, that
is, in the time series in Fig. 3. However, it is not noticeable in
this case as these measurements are taken long after the tran-
sient period when this oscillation should be more noticeable.
Furthermore, the signal we acquire is the average signal of
the light emitted by the atomic ensemble and not by a single
atom. In fact, a Fourier analysis of that data does not reveal
any spectral component in particular.

On the other hand, a higher-order measurement should be
able to retrieve the spectral information of the system [13,14].
This is possible with the intensity-fluctuation correlation
function G(2)

i j (τ ), which does present a noticeable spectral
component, as we already mentioned. The Fourier analysis of
these curves (Figs. 4, 5, and 6) shows that there is a spectral
component compatible with the generalized Rabi frequency
or, since the laser intensity is usually small, compatible with
the detuning. It is expected that this is an approximate result
because even for a simple two-level system, the presence of
spontaneous emission decay modifies how the temporal solu-
tion of the optical Bloch equations oscillates, but the values
should be close to �̃.

To verify this claim, we plot in Fig. 7 the spectral com-
ponent present in each correlation curve (red dots) compared
with the absolute value of the detuning (solid line). There is a

reasonable agreement between the two results, supporting our
argument. One can see in the transmission case [see Figs. 7(c)
and 7(d)] that near resonance, the spectral component of the
correlation curves moves away from the detuning as the Rabi
frequency becomes more relevant to the generalized Rabi
frequency.

One final comment on the result of the correlation between
FWM signals is related to why we observe a positive cor-
relation and not a competition between signals, that is, an
anticorrelation. Yang et al. [8] observed an anticorrelation
between FWM signals in an atomic vapor using a � sytem.
This situation can be compared to our results using linear
and perpendicular configurations. Our case differs from theirs
because the ground states are degenerate, rendering a sym-
metrical system that forbids competition between the fields.
The results in Ref. [11] show how this degeneracy controls the
correlation by introducing an external magnetic field that can
break the degeneracy and change it from perfect correlation to
anticorrelation.

III. THEORETICAL MODEL

We employ the model in Ref. [11] to explain the main
observed features in the correlation results between the trans-
mission signals. We extend the results of this previous work by
exploring the dependence of the correlation on the detuning,
with special attention to the presence of the Rabi oscillations.
Our system allows this analysis since the Doppler broaden-
ing can be neglected in cold atomic systems. Therefore, we
begin modeling the experimental results with the linear and
perpendicular polarization configuration, which is connected
to a three-level system. To model the features of the circular
and parallel polarization scenario, we will use the same set of
equations but eliminate one of the ground states.

The treatment of the problem begins by considering an
electric dipole coupling as the interaction Hamiltonian

Ĥint = −h̄
3∑

j 	=k

(�l + c.c.)| j〉〈k|, (2)

where �l = μ jkEl

2h̄ (l = a or b) is the Rabi frequency, with μ jk

being the transition dipole moment and El being the electric
fields. In the linear and perpendicular case these fields are
represented by

�Ea = 1

2
[εa(t )e−i[ωat+φ(t )−kaz] + c.c.]

(σ̂+ + σ̂−)√
2

,

�Eb = 1

2
[εb(t )e−i[ωbt+φ(t )−kbz] + c.c.]

(iσ̂+ − iσ̂−)√
2

, (3)

where εl is the amplitude of the electric field, ωl is the optical
frequency, φ(t ) is the fluctuating phase, and �kl is the associ-
ated wave vector. The polarization vector is represented in the
circular basis as it highlights how these fields interact with the
� system.

We consider that the electric fields have a fluctuating
phase φ(t ), described by a Wiener-Levy diffusion pro-
cess [22]. For these processes, the average of the stochastic
variable is zero, and the average of the two-time correla-
tion is given by 〈φ̇(t )φ̇(t ′)〉 = 2Dδ(t − t ′), where D is the
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FIG. 8. Simplified level scheme for the configuration with linear
and perpendicular polarization.

diffusion coefficient. Often in the literature, the stochastic pro-
cess chosen to represent this phase is the Ornstein-Uhlenbeck
process [23,24], which includes an extra term in the Wiener
process with an exponential function of the time delay.

Moreover, we introduce an extra simplification to the
model: We consider that field a is in one of the transitions
while field b is in the other, as Fig. 8 shows. That is, we take
only one circular component of each field. We do so to allow
each one-photon coherence to oscillate with the frequency of
one of the input fields. Hence, the number of coupled stochas-
tic differential equations (SDEs) decreases significantly. A
complete treatment of this system, including even wave-
mixing processes of superior orders, was performed by the
authors of Ref. [25]. In this model, they performed a Floquet
expansion of the density-matrix elements in the frequency of
the input fields and their combinations. One could include
a stochastic phase in this last model, but it would take the
system from nine coupled SDEs as we write in this work
to a few tens of equations. In this case, we observe that the
numerical solution is too demanding in terms of computation
time and becomes unstable after ≈500 points (0.5 µs) of the
simulation, still within the transient period.

Using this Hamiltonian and considering the approxima-
tions we described, it is possible to write Liouville’s equation

∂ρ jk

∂t
= −(iω jk + γ jk )ρ jk − i

h̄
〈 j|[Ĥint, ρ̂]|k〉, (4)

where γ jk is the decay rate of the density-matrix element ρ jk

and ω jk is the frequency of the | j〉 → |k〉 transition. The
Bloch equations in the rotating-wave approximation can be
written as

ρ̇11 =−iσ12�a + iσ21�
∗
a + �21ρ22,

ρ̇22 = iσ12�a − iσ21�
∗
a − iσ23�

∗
b + iσ32�b−(�21+�23)ρ22,

ρ̇33 = iσ23�
∗
b − iσ32�b + �23ρ22,

σ̇12 = −σ12[iδa + γ12 − φ̇(t )] − i(ρ11 − ρ22)�∗
a − iσ13�

∗
b,

σ̇13 = −σ13(iδa − iδb + γ13) − iσ12�b + iσ23�
∗
a,

σ̇32 = −σ32[iδb + γ23 − φ̇(t )] − i(ρ33 − ρ22)�∗
b − iσ31�

∗
a.

(5)
The σ jk terms are the coherence from Eq. (4) in the rotating
frame, whereas � jk are the decay rates of the populations. The
missing coherence equations are the complex conjugate of the
ones presented.

Since the set of equations (5) contains stochastic terms,
we must solve them numerically using Itô’s calculus.
As previously mentioned, we use a typical stationary

stochastic process, the Ornstein-Uhlenbeck process, to de-
scribe the phase fluctuations. This process satisfies the SDE:

dXt = α(γ − Xt )dt + βdWt , (6)

where Itô’s diffusive process dXt has a deterministic part and
a stochastic one. The deterministic term, the first one, has a
magnitude of the mean drift α, while the asymptotic mean is
γ . If Xt > γ , the drift will be negative, and the process will go
towards the mean. If Xt < γ , then the opposite happens; the
drift is positive, and the process moves away from the mean.
As for the stochastic part, it is a Brownian motion Wt with a
magnitude constant β.

We solve the system of SDEs using a stochastic Runge-
Kutta method for the scalar noise algorithm. This algorithm
possesses good accuracy for our problem, with a thin distribu-
tion of residuals. We also use the same Brownian increment
dWt for both one-photon coherences, as the original fluctu-
ation comes from a single laser. Finally, we probed several
choices of parameters for the Ornstein-Uhlenbeck process,
but the outcomes are not drastically different as long as the
variance of the process, given by β2/2α, is small.

Once the numerical simulation is complete, we have access
to a theoretical time series of all elements of the density
matrix. Therefore, for each of these terms, we can calculate
the second-order correlation function for the intensity fluc-
tuations. However, we must establish the link between the
density-matrix elements and the actual detected signal. To
do so, we solve the wave equation derived from Maxwell’s
equations, neglecting the transverse derivatives of the electric
field. With a few algebraic manipulations and using the adi-
abatic approximation, we can obtain the simple differential

equation ∂�l
∂z = iκ2 jσ2 j , where κ2 j = ωl Nμ2

2 j

2h̄ε0c , with N being the
number of atoms.

Solving this equation leads to the fields we detect in the
experiment after they propagate in the sample. To do so, we
use the fact that MOT diameter L is much smaller than the
Rayleigh length of the fields in play. Therefore, it is adequate
to consider the thin-medium regime, which implies that we
can make use of the equations in Ref. [11] and rewrite the
second-order correlation function of the intensity fluctuations
in Eq. (1) as

G(2)(τ ) = 〈Im[δσ21(t )]Im[δσ23(t + τ )]〉√
〈{Im[δσ21(t )]}2〉〈{Im[δσ23(t )]}2〉 . (7)

To obtain the above result, we neglected second-order terms
when calculating the field intensity.

Notably, in the model, as it is, only the transmission results
can be directly explored. However, as our numerical solution
renders the elements of the density matrix in all orders, the
nonlinear effects of wave mixing are also built into the one-
photon coherence. Naturally, the stronger term should be the
lower-order one, which is, indeed, connected to the transmis-
sion.

IV. THEORETICAL RESULTS

After solving the system of coupled SDEs, we have a
numerical simulation of the time series for the transmission
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FIG. 9. (a) Numerical simulation of a time series of the intensity
fluctuations for the transmission signals with input Rabi frequency
�a = �b = 0.1�, detuning from the excited state δ/2π = 30 MHz,
and linear and orthogonal polarizations. (b) Second-order correlation
function G(2)

i j (τ ) between the time series in (a).

signals. An example of a single realization of this series is
presented in Fig. 9(a) for detuning δ/2π = 30 MHz and Rabi
frequency �a = �b = 0.1�. We simulate the signal for 20 µs
but neglect the first half of the series to ensure that the tran-
sient period is not present. Employing Eq. (7), we calculate
the second-order correlation function for the series of Fig. 9(a)
and present the results in Fig. 9(b).

Since we use the same Brownian increment dWt for both
signals, they must be perfectly correlated as in Fig. 9(b).
It is easy to introduce different increments for each input
field and control how large their correlation is by stating that
dW (1)

t = dW (2)
t +

√
1 − ρ2dW (3)

t , where ρ ranges from 0 to
1; that is, one increment is equal to the other with the addition
of a third increment. However, we use a single cw laser, so the
stochastic phase each input field carries should be the same.

We presented the case of cross correlation between input
field-intensity fluctuations for the scenario with linear and
perpendicular polarization. If we eliminate one of the ground
states and therefore all the equations and terms connected to
it in Eqs. (5), then we will have a two-level system. This is the
scenario with circular and parallel polarization. However, as
the results are remarkably similar to those in Fig. 9, we do not
present them here.

A theoretical map such as the one presented in Fig. 6
can be achieved, and it is presented in Fig. 10(a). It shows
a broadening of the correlation peak compatible with the
behavior of the experimental result. Moreover, the theoretical
results highlight the oscillation of the correlation curve in the
generalized Rabi frequency.

A graph similar to the one shown in Fig. 7 is presented
in Fig. 10(b) for the transmission signals in the linear and
perpendicular polarization case. This graph agrees with the
experimental results and therefore supports the idea that the
frequency of the oscillation we see in the correlation curves
is, indeed, well described by the generalized Rabi frequency.

FIG. 10. (a) Second-order correlation function G(2)
i j (τ ) as a func-

tion of the detuning δ/2π between theoretical transmission signals
with linear and orthogonal polarizations. The input laser Rabi fre-
quency is �a = �b = 0.1�. (b) Frequency of the oscillation in the
correlation function in (a). The solid line is the absolute value of the
detuning.

We must emphasize that our results were able to reveal
this oscillating behavior because the experiments were per-
formed in a cold-atom cloud. In a vapor cell, for example, this
signature would have been washed away due to the atomic
movement. The Doppler integration should change the ob-
servation of these oscillations, as the correlation curve would
contain the response of several velocity groups.

V. CONCLUSIONS

We have successfully demonstrated that there are temporal
correlations between the intensity fluctuations of two distinct
degenerate FWM signals in a cold rubidium sample. It is
noteworthy that these correlations in degenerate FWM pro-
cesses do not present competitive signals and therefore have a
positive correlation. In a scenario complementary to ours, the
results of Ref. [8] present an anticorrelation between FWM
signals due to the nondegeneracy of the ground states.

Furthermore, since our cold atomic system allows a proper
definition of detuning, namely, there is not significant Doppler
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broadening, we could study how the correlations between
FWM signals and between transmission signals behave as a
function of detuning. The results show that the system exhibits
Rabi oscillations that can be revealed by the second-order
correlation function long after the transient. The theoretical
model from Ref. [11] was used to provide numerical results
for the transmission signals that support the experimental find-
ings. Even though the model deals with only the transmission
signals, it provides the important insight that the mechanism
behind the correlations, and the Rabi oscillations we see in
them, is the conversion of phase noise to amplitude noise
due to the interaction of the laser with the atoms. The FWM
signals should follow a very similar behavior, so we believe

that the results for the cross correlation between transmission
signals can be extrapolated to the nonlinear case.
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