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Tracking nanoscale perturbation in active disordered media
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Disorder-induced feedback makes random lasers very susceptible to any changes in the scattering medium.
The sensitivity of the lasing modes to perturbations in the disordered systems has been utilized to map the
regions of perturbation. A tracking parameter that takes into account the cumulative effect of changes in the
spatial distribution of the lasing modes of the system has been defined to locate the region in which a scatterer is
displaced by a few nanometers. We show numerically that the precision of the method increases with the number
of modes. The proposed method opens up the possibility of application of random lasers as a tool for monitoring
locations of nanoscale displacement, which can be useful for single-particle detection and monitoring.
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I. INTRODUCTION

A random laser (RL) is an optical device that utilizes
the disorder in the system for the optical feedback. Unlike
conventional lasers, no well-defined cavities are present in
RLs. The idea of feedback by multiple scattering was first
proposed by Letokhov [1] and has been extensively used
to realize random lasing in a variety of disordered systems
[2–8]. Two types of RLs have been reported, namely, coherent
RLs and incoherent RLs, depending on whether the scattering
induces feedback in the field or the intensity, respectively [9].
The scattering strength determines the lasing characteristics
such as lasing threshold of the system, spatial confinement
of the modes, etc. Based on the scattering strength, disor-
dered systems can be broadly divided into two categories,
namely, strongly scattering and weakly scattering systems. In
the strongly scattering systems the lasing modes are localized
well within the system and are identical to the quasi-bound
(QB) states of the passive system [10–12], whereas in weakly
scattering systems the lasing modes extend all over the system
[12,13].

Unlike conventional lasers, RL emission is random in
wavelength, omnidirectional [4], and has low spatial and tem-
poral coherence [14–16]. These properties make them suitable
for different applications such as imaging [17], displays and
lighting [18], holography [19], etc., but it limits their use
where specific wavelength or unidirectional emission is re-
quired. Spatial light modulators (SLMs) have been used to
shape the pump intensity profile to control the emission and
directionality of RLs, making them useful for different ap-
plications [20–26]. As the feedback in RLs is provided by
disorder-induced scattering, the lasing modes are very sen-
sitive to any changes in the scattering medium. This makes
RLs a natural candidate for designing sensors for various
applications. The strong dependence of emission character-
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istics of RLs on the scattering properties of the medium have
been utilized to assess nanoscale perturbations [27]. The mon-
itoring of single-nanoparticle perturbation enables to detect a
single virus, bacterium, and biomolecule. Random lasers have
been used as a diagnostic tool for bioimaging and biosensing
in various biological structures infiltrated with dye [5,28,29].
The nanoscale deformation and prefailure damage in bones
can be detected by monitoring the shifts in the random lasing
peaks [30]. In ex vivo dye-infiltrated human tissues, changes
in the emission spectrum have been observed in malignant
tissues as compared to the healthy ones [31]. The cancerous
tissues of different grades of malignancy can be differentiated
as they exhibit different lasing spectra for the same pump
energy [32]. RLs have been proposed as an in vivo tool to dif-
ferentiate between skin, fat, muscle, and nerve tissues during
laser surgery [33].

In this work, RLs have been proposed as a tool to map the
regions of nanoscale perturbation in several random media. A
two-dimensional (2D) active disordered system has been con-
sidered and nanoscale perturbations have been introduced in
the medium. Using the finite difference time domain (FDTD)
method [34], the modes and the corresponding spatial field
distributions for the system before and after the perturbation
have been computed. In the past, RLs have been used to detect
changes in the scattering medium [27]. In this work we go a
step further and show numerically that it is also possible to
identify the position of the perturbation with good precision.
A small perturbation in the system leads to minute changes
in the spectral position of the modes and their corresponding
spatial field distributions, but the individual modes do not
provide any information about the location of the perturbation.
So, a tracking parameter is defined which takes into account
the cumulative effect of changes in the modes, to map the
region of perturbation. We find that its mapping converges to
the defect location when the number of modes increases. This
finding paves the way to single-particle tracking in disordered
systems. The theoretical explorations in this work provide an
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FIG. 1. Emission spectra of the unperturbed system and the sys-
tem with a single particle perturbed by 10 nm at three different
locations in the system. Ten peaks considered are marked with
arrows. The labeled modes are (1) 607.45 nm, (2) 613.20 nm,
(3) 623.01 nm, and (4) 626.13 nm. The inset shows the magnified
image of the region marked with a dashed magenta line. It shows
the spectral shift of the mode as the perturbation is introduced in the
system.

initial framework to utilize RLs in the field of diagnostics to
monitor and track the growth of tumors in disordered biologi-
cal systems.

II. NUMERICAL METHOD AND COMPUTATIONAL
DETAILS

A 2D disordered system of size L2 = 5 × 5 µm2 has
been considered. It consists of circular particles with radius
r = 60 nm and refractive index n2 = 2.54, randomly dis-
tributed in a background medium of refractive index n1 =
1.53 as shown in Fig. 7 in the Appendix. The values of
the refractive index have been chosen to mimic the pres-
ence of TiO2 particles in 4-(dicyanomethylene)-2-methyl-6-
(4-dimethylaminostyryl)-4H-pyran (DCM)-doped polyvinyl
alcohol (PVA) thin films [35–37]. The background medium
has been chosen as the active part of the system and modeled
as a four-level atomic system. An active medium has been
considered here, because it is quite difficult to excite passive
modes of the system experimentally. The passive modes have
leakage and are short lived due to out-of-plane scattering.
Even on neglecting this out-of-plane scattering numerically,
a few modes, especially at the edge of the sample, may not
be identified. The active medium paves the way to study
all the possible modes of the system through lasing. The
surface-filling fraction of the scatterers is 28%. In this study,
2D FDTD computation has been carried out using transverse
magnetic fields with a grid resolution of �x = �y = 10 nm,
along the x and y directions, respectively. In order to en-
sure the stability of the simulation, the time step chosen
is �t = 2.37 × 10−17 s [38]. The parameters used for the
active medium are mentioned in Ref. [10]. The system is
pumped uniformly with a Gaussian pulse of central wave-
length 532 nm and pulse duration ∼10−15 s at a pump level
above the lasing threshold of the system. Further details on
the computational algorithm and numerical parameters are
provided in the Appendix.

FIG. 2. Spatial field distribution of modes marked as 1–4 in
Fig. 1, (a–d) before and (e–h) after a single particle is displaced by
10 nm. The perturbed particle is marked in blue.

III. RESULTS AND DISCUSSION

The 2D active random system was pumped above the las-
ing threshold. The energy in the system was observed to grow
exponentially, and after some strong relaxation oscillations, it
eventually reached a steady state as shown in Fig. 8 in the Ap-
pendix. The lasing modes of the system are calculated by the
Fourier transform of the time records of the field after the sys-
tem has reached the stationary state. Several distinct peaks are
observed as shown in Fig. 1. The ten modes considered for fur-
ther analysis are marked with arrows. The discrete peaks in the
emission spectrum indicate lasing action with resonant feed-
back. The spatial field distribution of the modes is computed
by taking the Fourier transform of the field recorded at each
grid point. The spatial field distribution of the modes marked
as 1–4 in Fig. 1 is shown in Figs. 2(a)–2(d). It is observed
that the modes are confined well within the system, indicating
that the system is strongly scattering. The numerically com-
puted scattering mean free path for the system using the Mie
scattering theory is ls ≈ 0.3 µm [39]. The localization length
for the system is calculated by considering the field intensity
profiles of modes averaged along the x or y directions. The
averaged intensity profile exhibits strong local fluctuations,
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but its envelope decays exponentially, whose characteristic
length gives the localization length of the modes. The average
localization length calculated for the system is ξ ≈ 2.6 µm.
The scattering mean free path and the localization length also
indicate that the system is strongly scattering and the modes
are confined well within the system, respectively.

Next, in order to introduce a single-nanoscale perturbation
in the system, a randomly chosen scatterer was displaced by
10 nm along an arbitrary direction. The numerical parameters
limit the minimum and the maximum perturbation that can be
introduced in the system. The minimum displacement cannot
be smaller than the grid resolution, and the maximum dis-
placement possible is dependent on the surface filling fraction
of the system. In realistic systems, such limitations do not ex-
ist and hence it is expected that even smaller perturbations can
be detected. The effect of perturbation at different locations in
the system on the RL spectra and spatial field distribution of
modes has been studied. The emission spectra of the system
when a single particle is perturbed at three different locations
in the system are shown in Fig. 1. It is observed that the
perturbation causes a slight shift in the spectral positions of
the random lasing modes, as shown in the inset. Modes 1–4
experience spectral shifts (�λ) of magnitude 0.239, 0.039,
0.004, and 0.004 nm, respectively. Further details on the cor-
respondence between the magnitude of the spectral shifts and
the mode field distributions are presented later.

The perturbation also leads to changes in the spatial field
distribution of modes as shown in Figs. 2(e)–2(h), for the per-
turbation at location 1 (Fig. 1), wherein the perturbed particle
is marked in blue. In order to quantify the changes in the
system due to perturbation, the 2D correlation coefficient (CE )
between the spatial field distribution of modes before and after
perturbation is calculated, which is defined as

CE =
∑

x

∑
y[E (x, y) − Ē ][E ′(x, y) − Ē ′]√{∑

x

∑
y[E (x, y) − Ē ]2

} {∑
x

∑
y[E ′(x, y) − Ē ′]2

} ,

(1)
where E (x, y) and E ′(x, y) are the field magnitudes of the
modes at location (x, y) in the system before and after pertur-
bation, respectively. Ē and Ē ′ represent the mean field values
of the corresponding modes. The CE value quantifies the sim-
ilarity between the modes before and after the perturbation,
and for the system shown in Fig. 2, it is found to be 0.92,
0.95, 0.99, and 0.99 for modes 1, 2, 3, and 4, respectively.
The CE values indicate that the perturbation leads to more
changes in modes 1 and 2 as compared to modes 3 and 4.
It is evident from Figs. 2(e)–2(h) that the perturbed scatterer
is present in the region with high field value for modes 1
and 2 as compared to modes 3 and 4. Thus, a perturbation
in the high field region of a mode leads to more changes
in the lasing modes as compared to a perturbation in the
low field region. It is also observed that the shape of the
spatial field profiles of modes does not change drastically after
the perturbation. However, minute changes are observed in
the distribution of the field and its magnitude. Moreover, the
perturbation also leads to changes in the spectral location of
the lasing modes. The spectral shift (�λ) in the modes is
linearly related to CE value as shown in Fig. 3. For modes
exhibiting small changes in their spectral position, the CE

FIG. 3. Variation of CE with the spectral shift (�λ) in the lasing
modes due to perturbation introduced in the system. The solid line
represents the linear fit to the data points. The data points marked in
red squares correspond to modes 1–4 in Fig. 2.

values are found to be ∼1, and as �λ increases, CE de-
creases. Thus, with increasing spectral shift the changes in the
field distribution of the corresponding modes become more
prominent.

The sensitivity of lasing modes to nanoscale displacements
has been utilized to monitor perturbations in the system. It is
observed that the nanoscale alteration in the scatterer position
leads to changes in the lasing modes and their spatial field
distributions, and the amount of change varies for each mode.
The effect of perturbation is prominent for the modes having
a considerable field value around the perturbed particle. But,
these changes in the individual modes do not provide any
information about the position of the perturbed particle. Now,
it is interesting to ask whether one can identify the particle
that has been perturbed, given the modes before and after the
perturbation are known. Here, we show that it is possible to
locate the position of the scatterer that has been perturbed
with the help of the computed modes by defining a tracking
parameter TP as

TP(x, y) =
∏

m

∣∣∣∣ Em(x, y)

max(Em)
− E ′

m(x, y)

max(E ′
m)

∣∣∣∣, (2)

where Em(x, y) and E ′
m(x, y) are the field values of mode

m before and after the perturbation at the (x, y) position in
the system, respectively. max(Em) and max(E ′

m) represent
the maximum values in the electric field distribution of the
mode m before and after the perturbation, respectively. The
tracking parameter is given by the product of change in the
field distribution of the modes considered, due to perturba-
tion. Here, the normalized field values have been considered,
as we are interested in how the field at a point in the sys-
tem changes with respect to its neighboring positions with
perturbation.

In Fig. 4(a), TP shows the impact of perturbation on a
single mode of the system. This contrasts with Fig. 2, which
shows that modes are rather preserved after perturbation.
Thus, for N = 1, TP quantifies the impact of perturbation
on a single mode and implies that a single mode is indeed
sensitive to any small change in the system, but it fails to
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FIG. 4. The maps generated to locate the position of perturbed
particle with the help of TP. The TP mapped regions when number
of modes (a) N= 1, (b) N= 2, (c) N= 4, (d) N= 6, (e) N= 8, and (f)
N= 10 are considered for the particle perturbed by 10 nm at location
1 (Fig. 1). The perturbed particle is marked in blue.

identify the location of perturbation. Further, when two modes
are considered, a significant reduction in the region mapped
by TP is observed as shown in Fig. 4(b). As the number of
modes considered to evaluate TP is increased further, the TP
mapped region reduces and concentrates around the perturbed
particle as shown in Figs. 4(c)–4(f). Thus, when a cumulative
effect of perturbation is considered for multiple modes of the
system, TP provides a way to locate the perturbed particle.
The accuracy of the localization of the perturbation increases
with the number of modes considered to evaluate TP. Here,
we were limited to ten modes, but by considering more modes
(larger system, larger spectral range) the localization can be
improved further.

Next, to understand the consistency of the proposed ap-
proach to locate perturbation, a single particle was displaced
at different locations in the system along arbitrary directions
by 10 nm. Figures 5(a)–5(d) show how the accuracy of the
localization of the defect fluctuates from place to place in the
system, when ten modes are considered to evaluate TP. It is
observed that the perturbed particle lies within the mapped
region for the perturbation at different locations in the system.

FIG. 5. (a–d) Maps generated with the help of TP to locate the
position of a particle perturbed by 10 nm at different locations in the
system. The perturbed particle is marked in blue. (e) The proximity
parameter P as a function of number of modes (N) for systems in
(a)–(d) and for the system in Fig. 4 [marked as (e)].

In order to quantify the accuracy to which the location of
perturbation has been identified, a proximity parameter has
been calculated as a function of number of modes considered.
The proximity parameter P is defined as the root mean square
of the distance of the perturbed particle from each point in
the tracking parameter mapped region having a TP value of at
least 1

e times the maximum TP value. The value of P is defined
as follows:

P =
√

1

n

∑
i

d2
i , di =

√
(xp − xi )2 + (yp − yi )2. (3)

Here, di is the distance of perturbed particle at (xp, yp) from
the location (xi, yi ) in the region mapped with TP. Figure 5(e)
shows how the value of P changes when different numbers
of modes are considered. The value of P for systems in
Figs. 5(a)–5(d) are marked as (a)–(d) in Fig. 5(e). Plot (e) in
Fig. 5(e) corresponds to the system perturbed at location 1 in
Fig. 1, for which the variation of TP for different numbers of
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FIG. 6. Maps generated with the help of TP to locate the position
of a particle perturbed by (a) 20, (b) 30, (c) 40, and (d) 50 nm at
location 1 in the system. The perturbed particle is marked in blue.
(e) The proximity parameter for different values of displacements in
(a)–(d).

modes considered is shown in Fig. 4. In Fig. 5(e), it is ob-
served that as the number of modes considered increases, the
proximity parameter value decreases, i.e., the region mapped
with TP gives a more accurate estimate of the location of
perturbation.

To investigate the applicability of the proposed method for
larger displacements, the particle perturbed at location 1 in
Fig. 1 is subjected to displacements of 20–50 nm along an ar-
bitrary direction. It is observed that, for larger displacements,
the changes in the mode locations and their corresponding
spatial field distributions become more prominent. The region
mapped with the help of TP and the displaced particle (marked
in blue) are shown in Figs. 6(a)–6(d) when a single particle is
perturbed by (a) 20, (b) 30, (c) 40, and (d) 50 nm. It is ob-
served that as the displacement increases, the mapped regions
becomes wider. This result is supported by the proximity pa-
rameter values in Fig. 6(e). Effectively, the tracking parameter
can be applicable to accurately identify single-step displace-
ments of ∼ 20 nm or smaller. Larger displacements can also

be accurately mapped if they are carried out in multiple steps
of ∼ 20 nm.

IV. CONCLUSION

In summary, a numerical study on the detection and local-
ization of nanoscale perturbation in a 2D strongly scattering
active disordered system has been presented. The modes and
the corresponding spatial field distributions have been cal-
culated by solving Maxwell’s equation combined with rate
equations for a four-level atomic system. A tracking param-
eter has been proposed to identify the region of nanoscale
perturbation. It is shown that the tracking parameter can map
the regions of perturbation very well for single-nanoscale
perturbations. The results presented in this paper demonstrate
that nanoscale perturbations in a system can be tracked if
the spatial field distribution of the modes before and after
the perturbation is known. Thus, RLs have been proposed as
a tool to track minute changes taking place in a disordered
system. As of now, the tracking parameter can be evaluated
with the help of tailored pump intensity profiles used for
selective excitation of modes. It was demonstrated recently
that localized modes of a one-dimensional random laser can
be selected and mapped individually [40]. Our method can
be easily tested in this system. It can prove to be useful in
biomedical applications to track the minute growth of tumors
in cells. Imaging methods such as x-ray, CT scan, etc., can
be used to locate the region of diagnosis, and then detailed
monitoring of tumors can be carried out with the proposed
method. The formulated TP works well for strongly scattering
systems, due to the localized nature of the lasing modes. In
weakly scattering diffusive systems, the modes are extended
all over the system, and any perturbation in the system leads to
changes in a wide area around the perturbed particle. Hence,
TP maps a wide region and the perturbed particle cannot be
located accurately. The proposed TP is to be modified for
weakly scattering diffusive systems. At present, the TP takes
into account the change in the spatial field distribution of
the modes, but the contribution of the spectral shifts in the
lasing modes also need to be considered for the case of weakly
scattering systems.
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FIG. 7. The 2D disordered system considered for simulation.
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APPENDIX: FDTD COMPUTATION ALGORITHM AND
NUMERICAL DETAILS

A 2D system of size L2 = 5 × 5 μm2 has been considered.
The system consists of circular scatterers of radius r = 60 nm
and refractive index n2 = 2.54, randomly distributed in an
active background medium of refractive index n1 = 1.53 as
shown in Fig. 7. The active medium is modeled as a four-level
atomic system. The surface filling fraction of the scatterers is
28%. This system is similar to a random distribution of circu-
lar cylinders extending infinitely along the z direction. In order
to look at the interplay of gain and disorder, the Maxwell’s
equations are coupled with the rate equations for the active
system [41]. The perfectly matched layer (PML) boundary
conditions have been used to simulate an open system. These
are absorbing boundary conditions and prevent any spurious
reflections at the boundary which otherwise would alter the
lasing action in the system [42,43]. A 2D FDTD computa-
tion can be carried out using the transverse electric (TE) or
transverse magnetic (TM) fields with respect to the z axis. For
further computations, a TM field has been considered. Here, a
TM field corresponds to the electric field normal to the plane
of the modeled structure (EZ ) and magnetic field in the plane
of the system (Hx, Hy) as shown in Fig. 7. The Maxwell’s
equations for a TM field are as follows:

μ0
∂Hx

∂t
= −∂Ez

∂y
(A1)

μ0
∂Hy

∂t
= ∂Ez

∂x
(A2)

εiε0
∂Ez

∂t
= ∂Hy

∂x
− ∂Hx

∂y
, (A3)

where ε0 and μ0 are the electric permittivity and the magnetic
permeability of the vacuum, respectively, and εi = n2

i (i =
1, 2), where ni is the refractive index of the medium consid-
ered.

FIG. 8. Semilogarithmic representation of energy of RL system
as a function of time, recorded during the growth of laser emission
above the lasing threshold.

The active background medium is modeled as a four-level
atomic system. This introduces a polarization term in the
Maxwell’s equations,

μ0
∂Hx

∂t
= −∂Ez

∂y
(A4)

μ0
∂Hy

∂t
= ∂Ez

∂x
(A5)

εiε0
∂Ez

∂t
+ ∂P

∂t
= ∂Hy

∂x
− ∂Hx

∂y
, (A6)

where P is the polarization density.
The time evolution of populations Ni in the four-level

atomic system is described by the following rate equa-
tions [44]:

dN1

dt
= N2

τ21
− WpN1 (A7)

dN2

dt
= N3

τ32
− N2

τ21
− Ez

h̄ωl

dP
dt

(A8)

dN3

dt
= N4

τ43
− N3

τ32
+ Ez

h̄ωl

dP
dt

(A9)

dN4

dt
= − N4

τ43
+ WpN1, (A10)

where Wp is the pump rate at which the electrons are excited
from level 1 to level 4. The electrons in level 4 relax quickly to
level 3 via a nonradiative process with a characteristic time τ43

and the population in level 3 builds up. Level 3 and level 2 are
the upper and the lower lasing levels, respectively. The lasing
transition occurs at the frequency ωl = E3−E2

h̄ .The electrons
in level 3 can decay to level 2 through spontaneous emission
with the decay rate τ32 or through stimulated emission with
the rate Ez

h̄ωl

dP
dt . Then, the electrons in level 2 relax quickly to

level 1 with a time constant τ21. Here, Ez, P, and Ni (i = 1– 4)
are the functions of r and t . The polarization is given as per
the following equation [44]:

d2P
dt2

+ �ωl
dP
dt

+ ω2
l P = κ�NEz, (A11)
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FIG. 9. Flowchart of the FDTD algorithm.

where �N = N2 − N3 is the population density difference
between the two lasing levels. The amplification takesplace
when the population inversion (�N < 0) is achieved. �ωl is
the linewidth of the atomic transition, �ωl = 1

τ32
+ 2

T2
, where

T2 is the collision time. It is usually much smaller than the
lifetime τ32. The constant κ is given by κ = 3c3

2ω2
l τ32

[44]. The

parameters used for numerical simulations are as follows:
(1) Total atomic density, NT = 3.3 × 1024 m−3

(2) Frequency of the atomic transition, νl = ωl
2π

= 4.85 ×
1014 Hz

(3) Lifetime of level 4, τ43 = 1 × 10−13 s
(4) Lifetime of level 3, τ32 = 1 × 10−10 s
(5) Lifetime of level 2, τ21 = 5 × 10−12 s
(6) Collision time, T2 = 2 × 10−14 s
The numerical parameters chosen are close to the dye

molecules such as DCM. The values have been chosen a little
bit shorter in order to reduce the computation time needed
to achieve a stationary state. However, care has been taken
to maintain a good separation of the time scales associated

with the different relaxation processes. In general, the final
equations which need to be solved are

∂H
∂t

= −c∇ × E (A12)

ε(r)
∂E
∂t

= c∇ × H − 4π
∂P
∂t

. (A13)

In order to solve Eqs. (A4)–(A6) by the FDTD method, they
are discretized in space and time by Yee’s algorithm [38,45].
The whole computation domain is divided into grids. The
permittivity and permeability parameters are assigned at each
grid point. The chosen grid size should be sufficient to resolve
the smallest dimension of the system. Here, a grid size of
10 nm has been considered along the x and y directions (�x =
�y = 10 nm). The time step has been chosen in accordance
with Courant stability criterion to ensure the stability of the
FDTD algorithm, �t = �x

c
√

2
= 2.37 × 10−17 s, where c is the

speed of light [38]. In order to simulate an open system, PML
boundary conditions have been applied as stated earlier. The
PML layer is chosen to be 10 cells thick (10 × �x) in order
to minimize the reflection losses at the outer boundary of the
PML [38]. In principle, the laser action initiates from noise;
however, in the semiclassical description used here, the noise
is not modeled and a seed is needed to start the laser action.
So, the system is pumped uniformly with a Gaussian pulse
of central wavelength 532 nm and pulse duration ∼10−15 s
with a pump rate Wp = 7.8 × 108 m−3, well above the lasing
threshold of the system. The Gaussian source is given as

A(t ) = A0e− (t − t0)2

2dt2
sin[2π fs(t − t0)], (A14)

where A0 is the initial amplitude of the source, f0 is the carrier
frequency, and dt is the pulse half-width.

As the system is pumped above the lasing threshold, the
energy in the system is observed to grow exponentially, and
after some strong relaxation oscillations, it eventually reaches
a steady state as shown in the Fig. 8.

So, the simulation needs to be run for a sufficient time
for the system to become stable. The field is calculated at
each grid point for each time step using the discretized up-
date equations mentioned in Ref. [34]. After the system has
reached the steady state, the emission spectrum of the sys-
tem can be obtained by taking the Fourier transforms of the
time records of the field. The spatial field distribution for
each mode can be computed by Fourier transform of the
field recorded at each grid point for the corresponding mode
frequency. The flowchart for the FDTD algorithm is shown in
Fig. 9.
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