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Harnessing nonlinear dynamics for quantum state synthesis
of mechanical oscillators in tripartite optomechanics
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Owing to their long lifetimes at cryogenic temperatures, mechanical oscillators have been recognized as an
attractive resource for quantum information science and as a test bed to explore fundamental physics. Key to
many of these applications is the ability to prepare, manipulate, and measure quantum states of mechanical mo-
tion. By capturing the exact nonlinear quantum dynamics, we show how tripartite optomechanical interactions,
involving the mutual coupling between two distinct optical modes and an acoustic resonance, enable quantum
states of mechanical oscillators to be synthesized and interrogated using classical state preparation.
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I. INTRODUCTION

New methods to prepare and interrogate nonclassical
states of mechanical oscillators could enable novel quan-
tum technologies as well as the exploration of fundamental
physics [1–12]. If the astounding lifetimes exhibited by
phonons at cryogenic temperatures [2,13] can be translated
to quantum coherence times, phononic systems could form
the basis for high-dimensional quantum memories [14]. In
addition, the ability to interrogate and manipulate these
acoustic modes using superconducting qubits [15–18], elec-
trical signals [2–4], or telecommunications wavelengths
of light [7,8,13] makes them compelling candidates for
quantum repeaters [14] and high-fidelity quantum state trans-
fer [11,17,19], whereas mechanical oscillators with large
effective mass may shed light on the quantum-to-classical
transition [20,21], the nature of dark matter [12,22], and the
impact of gravity on decoherence [1,23,24].

Generation, control, and measurement of quantum states of
mechanical oscillators has recently been explored in a variety
of electromechanical and optomechanical systems [15–17,25–
31]. Within circuit systems, nonlinearity provided by a su-
perconducting qubit has enabled quantum state preparation
and readout in the mechanical domain [15–17,25,27,30,31].
Canonical cavity optomechanical interactions, which utilize
nonlinear coupling between a single electromagnetic mode
and a single mechanical mode (i.e., bipartite system), permit
an array of state preparation, control, and readout function-
alities [26,29,32–34]. By detuning a strong coherent drive
from resonance, a linearized optomechanical coupling can be
realized, enabling coherent state swaps between the mechani-
cal and optical domains, ground-state cooling, entanglement
generation, two-mode squeezing, and when combined with
photon number measurements, the synthesis of single-phonon
Fock states [26,29,32].

Looking beyond these demonstrations, it is challenging
to access more exotic quantum states using conventional bi-
partite cavity optomechanical systems. While it is possible
to create multicomponent cat states, macroscopically distin-
guishable superpositions, and phonon-photon entanglement if
one can reach the ultrastrong coupling regime, this regime
requires coupling rates on par with the phonon frequency [34].
Moreover, relatively weak optomechanical nonlinearities
make this regime difficult to access with GHz-frequency
phonons, which offer long coherence times at cryogenic
temperatures. Alternatively, high-frequency phonons can be
accessed using a tripartite system consisting of a single
phonon mode that mediates coupling between two optical
modes [7,8]. Moreover, the distinct structure of the tripartite
system offers unique advantages as we consider new strategies
to generate and detect exotic quantum states with me-
chanical systems, including robust entanglement generation,
deterministic state preparation, and single-photon nonlineari-
ties [35–41].

Here, we show that the nonlinear quantum dynamics of
tripartite optomechanical systems can enable the preparation
of highly nonclassical phononic states. Considering a triply
resonant system, we explore the nonlinear dynamics of this
tripartite system using the exact time evolution of the to-
tal system wave function, enabling analytical and numerical
calculations for the quantum state dynamics [42–45]. Prior
work has explored how tripartite coupling permits a variety of
quantum features including sub-Poissonian field statistics, an-
ticorrelations, and squeezing [42,43,46]. Our results show that
experimentally accessible initial states (e.g., prepared using a
coherent classical drive) evolve into wave functions exhibit-
ing entanglement between optical and mechanical degrees of
freedom. Leveraging this entanglement, we show that condi-
tional measurements on the optical modes of the system, such
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as homodyne detection and/or photon counting, can project
the mechanical oscillator into highly nonclassical states that
depend sensitively on the initial system wave function. By
simulating the system evolution including the effects of de-
coherence, we identify regimes where quantum states can be
robustly synthesized. Moreover, in the presence of a classical
coherent drive, we show that the phonon’s reduced density
matrix exhibits nonclassicality even without state-collapsing
conditional measurements. We also illustrate how π/2 and π

pulses can be used to entangle optical and mechanical modes,
or transfer quantum states between the optical and mechanical
domains.

While closely related, this tripartite system has important
features not present in the canonical cavity optomechanical
interaction that afford unique quantum dynamics. First, ac-
cess to two optical modes greatly expands the number and
complexity of the phonon states that can be heralded, where
projective measurements produce families of phonon states
parametrized by two sets of observables. Second, photon
number measurements can herald highly nonclassical phonon
states, in contrast with standard resonant cavity optomechan-
ical interactions, even in systems with weak coupling [34].
Third, for telecommunications wavelengths of light the rel-
evant phonon frequencies are of the order of ∼10 GHz,
enabling ground state cooling with standard cryogenics. Put
together, these results reveal an unexplored regime of nonlin-
ear quantum dynamics in systems spanning from chip-scale
optomechanical devices [9,10] to bulk crystals [7,8].

II. QUANTUM DYNAMICS

To illustrate how quantum state generation can be ac-
complished using multimode optomechanical coupling, we
explore the dynamics of a system described by the Hamilto-
nian H = H0 + Hint ,

H0 = h̄ωpa†
pap + h̄ωSa†

SaS + h̄�b†b,

Hint = h̄g(apa†
Sb† + a†

paSb). (1)

Here, ap, aS , and b are the annihilation operators of the pump,
Stokes, and phonon modes, with angular frequencies ωp,
ωS , and �, respectively. This interaction Hamiltonian, Hint,
describes phonon-mediated coupling between these two elec-
tromagnetic modes. Throughout, we assume that our system
satisfies the condition ωp = ωS + �, necessary for the phonon
mode to mediate resonant coupling between the photon modes
(i.e., intermodal scattering). Systems that are well described
by this Hamiltonian typically utilize a high-frequency elastic
wave to mediate resonant intermodal scattering (e.g., through
Brillouin interactions [47]), with couplings (g) that can be
produced by electrostriction or radiation pressure [48,49]. In
the analysis that follows, we consider the dynamics of this
system for times that are much shorter than the decoherence
time of our phonon mode [15,31], permitting us to neglect the
effects of phonon decoherence.

Neglecting decoherence, application of the time evolution
operator to the initial wave function gives the quantum
dynamics of this system in terms of the time-dependent wave
function, given by the formal solution to the Schrödinger
equation |ψ (t )〉 = exp{−iH0t/h̄} exp{−iHintt/h̄}|ψ (0)〉.

Because ωp = ωS + �, H0 and Hint commute, permitting the
time-evolution operator to be factorized. While the operator
exp{−iHintt/h̄} is an exponent of noncommuting operators, a
symmetry of the system provides a path to a formal analytical
solution: For a Fock state, the total number of phonons and
pump photons np + nb (as well as np + nS) is conserved,
reducing the Hilbert space to a compact (np + nb + 1)-
dimensional subspace [42,43]. Within this compact Hilbert
space, Hint can be diagonalized, where the Hamiltonian given
by Eq. (1) is formally equivalent to a Jaynes-Cummings
model describing the interaction between a bosonic mode
and a spin-(np + nb)/2 system (see Ref. [42,43] and
Appendix A) [50].

For the initial state |n, m, 0〉 ≡ |n〉p ⊗ |m〉S ⊗ |0〉ph, where
the pump, Stokes, and phonon modes, respectively, have n,
m, and 0 quanta and using Eq. (1), the time-dependent wave
function |ψnm0(t )〉 in the interaction picture is generally rep-
resented by

|ψnm0(t )〉 =
n∑

k=0

An,m,k (t )|n − k, m + k, k〉. (2)

Truncation of the sum over k at n is a consequence of the com-
pact nature of the Hilbert space for Fock state evolution [42].
Inserting |ψnm0(t )〉 into the Schrödinger equation yields a
linear matrix differential equation for the complex probability
amplitudes An,m,k (t ) given by

�̇An,m = −iMnm · �An,m. (3)

Here, �An,m is a column vector of the probability amplitudes
�An,m = (An,m,n, An,m,n−1, . . . , An,m,0)T , and Mnm is the sym-
metric matrix

Mnm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 �nm
n 0 0 . . .

�nm
n 0 �nm

n−1 0

0 �nm
n−1 0 0

0 0 . . .
...

... 0 �nm
1

. . . �nm
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

with matrix elements given by �nm
k = g

√
n − k + 1√

m + k
√

k. The solution to Eq. (3) can be obtained by
diagonalizing the matrix Mnm, yielding

�An,m(t ) = Vnm · e−i�nmt · V†
nm · �An,m(0), (5)

where Vnm is a unitary matrix diagonalizing Mnm, and the
diagonal matrix of eigenvalues �nm = V†

nm · Mnm · Vnm [51]
(see Appendix B).

Focusing on initial states that can be prepared in the labora-
tory using classical light sources, photon squeezing, or single
photon emitters, we calculate the system wave function. With
the phonon cooled to the ground state, we consider initial
wave functions given by

|ψ (0)〉 =
∞∑

n=0

∞∑
m=0

PnSm|n, m, 0〉, (6)

where Pn (Sm) is the probability amplitude for the pump
(Stokes) mode to be found initially in the nth (mth) Fock state.
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Using Eqs. (5) and (6), the time-dependent wave function is
given by

|ψ (t )〉 =
∞∑

n,m=0

n∑
k=0

PnSmAn,m,k (t )|n − k, m + k, k〉, (7)

with time-dependent coefficients An,m,k (t ) given by

An,m,k (t ) = k̂ · Vnm · e−i�nmt · V†
nm · �An,m(0), (8)

where An,m,k (0) = δk0 and k̂ is a unit vector of dimension
n + 1 given by k̂ = (δn,k, δn−1,k, . . . , δk0) [see Appendix C for
a list of An,m,k (t ) for n = 0 to 2]. For optical states prepared
with lasers Pn = αn

p exp{−|αp|2/2}/√n!, describing a coher-
ent state of amplitude αp, or for single photon emitters with
Pn = δn1—definitions that also apply to the Stokes probability
amplitudes Sm. For example, when the system is prepared
with a single pump photon, the wave function is given
by [46]

|ψ (t )〉 =
∞∑

m=0

Sm[cos(g
√

m + 1t )|1, m, 0〉

− i sin(g
√

m + 1t )|0, m + 1, 1〉]. (9)

In this case, the total system dynamics is analogous
to the Jaynes-Cummings model, exhibiting Rabi oscilla-
tions and coherent energy exchange between the three
modes [42,43,50,52] (see Appendix A).

Even when the input optical fields are classical, quantum
states can be generated. To illustrate, consider weak coher-
ent states in the pump and Stokes modes, i.e., |αp|, |αS| 	
1, where the initial photonic states are well approximated
by a superposition of the vacuum and first excited states
(|αp〉 ≈ |0〉 + αp|1〉). In this limit the wave function is
given by

|ψ (t )〉 ≈ |0, 0, 0〉 + αSe−iωSt |0, 1, 0〉+
+ αpe−iωpt [cos(gt )|1, 0, 0〉 − i sin(gt )|0, 1, 1〉]

(10)

to first order in αp and αS , exhibiting quantum entanglement.
For larger amplitudes, one must include more terms in the
series representation of the wave function given in Eq. (7).
However, for a classical initial state Fig. 1 shows a degra-
dation of phonon-photon entanglement as the coherent state
amplitude becomes large, consistent with the dynamics of this
tripartite system in the limit that the pump and Stokes mode
amplitudes can be treated as undepleted constants. Neverthe-
less, this example clearly illustrates how classical coherent
states can be used to generate quantum states with resonant
three-mode coupling (or with resonant coupling in this tripar-
tite system).

These results show that resonant intermodal coupling cou-
pling can produce entanglement between the mechanical
oscillator and the optical modes, even for classically prepared
initial states [e.g., Eq. (10)]. Looking beyond this analytical
example of Eq. (10), we can use the linear entropy SL(t ) ≡
1 − Tr{ρ̂2

ph(t )}, where ρ̂ph(t ) = Trp,S{|ψ (t )〉〈ψ (t )|} is the re-
duced density matrix for the phonon mode, to analyze the
degree of entanglement produced by more complex quan-
tum states, evaluated through the numerical evaluation of

FIG. 1. Phonon linear entropy for experimentally accessible ini-
tial states. Coherent state amplitudes αp = 1.0 and αS = 4.6. For the
single-pump photon initial states, the linear entropy is scaled by a
factor 2 so that SL varies between 0 and 1. SL = 1 indicates maximal
phonon-photon entanglement.

Eq. (7). Figure 1 quantifies the entanglement between the
phonon mode and the optical fields for a selection of initial
states, exhibiting temporal oscillations determined by the cou-
pling rate g, the initial state, and the eigenvalues �nm. Using
Eq. (7) summed to >99% convergence, Fig. 1 shows that
phonon-photon entanglement persists for larger coherent state
amplitudes.

III. PREPARING AND MEASURING QUANTUM STATES
OF A MECHANICAL MODE

Leveraging phonon-photon entanglement shown by Eq. (7)
and Fig. 1, the phonon mode can be projected into a large
variety of highly nonclassical states through conditional mea-
surements of the optical fields. By applying the projective
operator P̂ = |ϕp, ϕS〉〈ϕp, ϕS| to |ψ (t )〉, we obtain the phonon
wave function |ψph[ϕp, ϕS, t )〉 ≡ 〈ϕp, ϕS|ψ (t )〉 resulting from
the conditional measurement of the optical fields, with mea-
surement outcomes given by ϕp and ϕS for the pump and
Stokes modes, respectively. For example, for homodyne de-
tection ϕp represents the measured complex coherent state
amplitude of the pump mode, or a photon number resolving
measurement ϕp indicates the measured number of pump pho-
tons.

Using homodyne detection, a projective measurement of
the amplitude and phase of the optical modes in the interaction
picture collapses the phonon wave function into the superposi-
tion of Fock states given by |ψph[ᾱp, ᾱS, t )〉 = ∑∞

k=0 ck (t )|k〉.
Here, the unnormalized probability amplitudes ck (t ) are given
by

ck (t ) =
∞∑

n=k

∞∑
m=0

αn
p(ᾱ∗

p)n−kαm
S (ᾱ∗

S )m+k

√
n!

√
(n − k)!

√
m!

√
(m + k)!

× e− 1
2 (|αp|2+|ᾱp|2+|αS |2+|ᾱS |2 )An,m,k (t ), (11)

and ᾱp and ᾱS are the measured complex amplitudes for
the pump and Stokes modes. For a given experimental con-
figuration (i.e., input laser amplitudes and measured final
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FIG. 2. Conditional quantum state preparation through homodyne measurements of the optical field. The initial state is |αp, αS, 0〉 and
the optical fields are measured in state |ᾱp, ᾱS〉 at a later time. For αp = 0.74, αS = 5.6, ᾱp = 0.01, ᾱS = 5.65 exp{i0.3π}. (a) Phonon Fock
state probabilities calculated from Eq. (11) (solid and dashed lines) and using a numerical master equation solver with damping for both
pump and Stokes modes of γ = 0.25g (open circles). (b–e) Wigner functions for targeted phonon states with and without optical losses. States
approximating |ψph〉 ≈ (|2〉 + |3〉 exp{iφ})/

√
2) shown in (b) gt = 3.37, denoted by 1© (lossless) and (c) gt = 2.63, denoted by 2© (optical

losses). States approximating |ψph〉 ≈ |2〉 shown in (d) gt = 4.5, denoted by 3© (lossless), and (e) gt = 3.63, denoted by 4© (optical losses).
Fidelities for state preparation with losses are 72% for (c) and 67% for (e). The solid vertical lines correspond with the times where the Wigner
function is computed for lossless dynamics, and dashed vertical lines correspond with times where the Wigner function is computed for the
system with optical losses.

states), examination of the phonon Fock state probabilities
as a function of time identify how certain states can be pre-
pared [e.g., see Fig. 2(a)]. Such conditional measurements
can collapse the phonon into a highly nonclassical state as
shown in Figs. 2(b)–2(e). For example, in Fig. 2(b) the sys-
tem occupies a nearly perfect superposition |ψph〉 ≈ (|2〉 +
|3〉 exp{iφ})/

√
2. Accounting for decoherence caused by op-

tical losses, a master equation simulation [53] shows that
this state can be achieved with 72% fidelity when the opti-
cal decay rates γ = 0.25g (see Appendix E). With the large
optomechanical coupling rates achievable in optomechanical
crystals [54] (∼9 MHz), it is conceivable that future devices
reach regimes where γ 	 g. However, even with larger opti-
cal losses, interesting states can still be accessed. By adjusting
the initial optical state, entanglement generation can be ac-
celerated so that targeted quantum states can be prepared
at times t < 1/γ (example below). Beyond this example, a
tremendous range of nonclassical states become accessible by
varying the amplitude and phases of initial and final photonic
states as well as the measurement time.

It is important to note that the complex dynamics shown in
Fig. 2 are a direct consequence of the nonlinearity intrinsic to
Eqs. (1) and (7). For example, in the αS � 1 limit where αS

can be treated as a constant, the phonon excited state proba-
bilities would exhibit periodic Rabi-like oscillations where the
phonon state is given by a classical coherent state at each time
(see Sec. IV).

We can also use Eq. (7) to identify opportunities for
quantum state synthesis using conditional photon num-
ber resolving measurements. For example, when |ψ (0)〉 =
|αp, αS, 0〉 and when a single photon is measured in the
pump and Stokes modes at time t , the phonon wave function

collapses into the superposition of ground and excited states,
expressed in unnormalized form as

|ψph[1p, 1s, t )〉 = N
[
αS cos(

√
2gt )|0〉− iαp√

6
sin(

√
6gt )|1〉

]
,

(12)

where N = αpP0S0. Although nondeterministic, manipula-
tion of the initial state affords some control over the phonon
wave function, e.g., by setting the amplitude αS to zero the
mechanical mode is guaranteed to be in a single phonon state.

Using single photon detection, we can illustrate how quan-
tum state synthesis can be achieved with optical losses.
Figure 3 shows the phonon Fock state probabilities, computed
using Eq. (7) (solid lines) and a master equation solver (open
circles), along with the phonon Wigner functions for the sim-
ulation with optical losses at selected times when a single
Stokes photon is measured and the pump is measured using
homodyne detection. This figure shows that even with optical
decay rates of 50g, a coherent superposition between ground
and excited states and a single phonon state can be prepared
with respective fidelities of 97% and 92%.

Even in the absence of conditional measurements, the
mechanical oscillator can evolve into nonclassical states, lead-
ing to a form of deterministic state synthesis. In this case,
the phonon mode is described by a reduced density matrix
ρ̂red(t ) = ∑∞

k,k′=0 ρkk′ (t )|k〉〈k′| with matrix element given by

ρkk′ (t ) =
∞∑

n=0

∞∑
m=κ

Pn+kP∗
n+k′Sm−kS∗

m−k′

× An+k,m−k,k (t )A∗
n+k′,m−k′,k′ (t ), (13)
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FIG. 3. Conditional quantum state preparation through single
photon measurement of the Stokes mode and homodyne measure-
ments of the pump. (a) Phonon Fock state probabilities capture the
phonon wave function up to a phase, showing evolution into super-
position and single phonon states. Fock state probabilities computed
using Eq. (7) (lines) and a master equation solver including optical
losses of decay rate γ = 50g (open circles). (b and c) Plotted Wigner
functions include the effects of optical losses, showing access to
quantum states in the presence of optical losses. The initial state is
|αp, αS, 0〉 with αp = 4.41 and αS = 0.1, and the measured complex
amplitude of the pump is ᾱp = 3.7.

where κ = max(k, k′). For a specific initial state, Fig. 4(a)
illustrates how the Fock state probabilities for the phonon
evolve in time, showing how a variety of nonclassical states
can be prepared (Fig. 4). We emphasize that this behavior is a
consequence of the quantum nonlinearity. Importantly, with-
out the effects backreaction on the pump and the Stokes modes
(e.g., pump depletion) provided by the nonlinear dynamics
produced by Eq. (1), the phonon would evolve into a thermal
or coherent state [55], and negativity of the Wigner function
would not be possible.

IV. QUANTUM STATE READOUT

In addition to providing a means to prepare quantum states
of mechanical motion, Hint also enables state manipulation,
transfer, and readout. When the Stokes mode is a large-
amplitude coherent state (i.e., |αS| � 1), the exp{−iHintt/h̄} is
well approximated by the beam splitter transformation, trans-
ferring and entangling quantum states between the phononic
and photonic domains [32]. Consider a phonon wave function
given by a superposition of ground and excited states |ψph〉 =
c0|0〉 + c1|1〉. Equation (12) shows how this state can be pre-
pared by conditional photon number resolving measurements.
For the pump mode in the vacuum state and Stokes mode in a

FIG. 4. Quantum states preparation in the absence of conditional
optical measurements, i.e., when optical fields are traced out. The
dynamics of the phonon occupation number probabilities (denoted
by ρnn for the nth Fock state) show times where the phonon wave
function deviates from a classical state (e.g., gt = 1.5 where the
Fock state probabilities do not follow the Poisson distribution).
The initial state is |αp, αS, 0〉, with αp = 2.4 and αS = 0.25. Inset:
Phonon Wigner function at gt = 1.5, showing a sharp deviation from
a coherent state.

coherent state, the system wave function at time t is

|ψ (t )〉 =
∞∑

m=0

Sm[c0|0, m, 0〉 + c1 cos(
√

mgt )|0, m, 1〉

− ic1 sin(
√

mgt )|1, m − 1, 0〉]. (14)

Under these assumptions, Sm is peaked at m ∼ |αS|2 with a
standard deviation �m = |αS|, allowing the arguments of the
cosine and sine terms to be approximated by

√
mgt ≈ |αS|gt

when gt 	 1. Assuming the phase of αS is π/2, these approx-
imations give

|ψ (t )〉 ≈ c0|0, αS, 0〉 + c1[cos(|αS|gt )|0, αS, 1〉
+ sin(|αS|gt )|1, αS, 0〉], (15)

providing a “state swap” when t = tπ ≡ π/(2|αS|g). For
this generalized tripartite optomechanical π pulse, |ψ (tπ )〉 ≈
(c0|0〉 + c1|1〉) ⊗ |αS, 0〉, showing how a quantum state in the
mechanical domain can be transferred to the optical domain,
where quantum state tomography can be performed. This re-
sult also shows how an optomechanical π/2 pulse (|α|gtπ/2 =
π/4) can be used to prepare an entangled superposition of the
pump and phonon. For c0 = 0 and c1 = 1, a phonon-photon
Bell state is produced,

|ψ (tπ/2)〉≈ 1√
2

[|0, αS, 1〉−ieiϕ |1, αS, 0〉], (16)

where ϕ is the phase of the Stokes mode. By sequencing
these pulses, multimode optomechanical analogs of Ramsey
interference and spin echo can be performed. While these
results focus on the |αS| � 1 limit, Eq. (16) can be used to
describe general state-swap dynamics.
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V. CONCLUSION

We have shown how the nonlinear dynamics produced
by three-mode optomechanical coupling can be used to pre-
pare and measure quantum states of a mechanical oscillator.
Even with classically prepared initial states, these dynamics
produce highly entangled photon-phonon states where con-
ditional measurements on the optical fields can generate a
wide variety of quantum states of the mechanical oscillator.
Like conventional optomechanical interactions, this tripartite
coupling permits the optomechanical equivalent of π/2 and
π pulses that can be used to entangle optical and mechanical
states as well as transfer quantum information between the
electromagnetic and mechanical domains. With long lifetimes
at cryogenic temperatures, natural interface with telecommu-
nications and radio frequency wavelengths, and large effective
masses of phonon modes, our results may enable ways to ma-
nipulate quantum information stored in mechanical oscillators
as well as tests of the foundations of quantum physics.
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APPENDIX A: FORMAL EQUIVALENCE BETWEEN
THE MULTIMODE OPTOMECHANICAL HAMILTONIAN

AND THE JAYNES-CUMMINGS MODEL

Leveraging the conservation of the number of pump pho-
tons and phonons and the Schwinger oscillator model of
angular momentum [56], a formal analogy between the multi-
mode optomechanical Hamiltonian and the Jaynes-Cummings
(JC) model [50] can be derived. To reveal this relationship, we
define the following pseudospin operators:

N̂ = (n̂p + n̂b)/2 (A1)

Sz = (n̂p − n̂b)/2 (A2)

S− = apb† (A3)

S+ = a†
pb, (A4)

where n̂p and n̂b are the number operators for the pump and
phonon modes, respectively. The commutation relations of ap

and b show that the pseudospin operators obey the relations

[N̂, Sz] = 0 (A5)

[Sz, S±] = ±S± (A6)

[S+, S−] = 2Sz. (A7)

Furthermore, one can show that N , the eigenvalue for N̂ , plays
the role for the total spin, that these operators have all of the
expected effects on Fock states |np, nb〉 where the eigenval-
ues of Sz, m ≡ (np − nb)/2, correspond with the azimuthal
component of the pseudospin along the z axis. For example,
using N and m, a generic Fock state |np, nb〉 can be formally
expressed as |N, m〉 (np = N + m and nb = N − m), where

the operators above have acted in a manner analogous to a
spin system:

Sz|N, m〉 = m|N, m〉 (A8)

S±|N, m〉 = √
N ± m + 1

√
N ∓ m|N, m ± 1〉 (A9)

S2|N, m〉 = (S2
z − Sz + S+S−)|N, m〉 (A10)

= N (N + 1)|N, m, j〉. (A11)

Using these operators and the phase-matching conditions, one
can show that

H → h̄(ωp + �)N + h̄ωSSz + h̄ωSa†
SaS + h̄g(S−a†

S + S+aS ),

(A12)

demonstrating the equivalence between the multimode Hamil-
tonian and the JC model when N is fixed. In general, initial
states that can be prepared in the laboratory will contain a
superposition of different N states, such as coherent states.
Therefore, the multimode optomechanical dynamics of real-
istic systems is complex, involving several pseudospins, with
distinct spin N , interacting with a bosonic mode.

APPENDIX B: DIAGONALIZATION OF Mnm

The formal solution to Eq. (3) can be obtained by diagonal-
izing Mnm. By solving the eigenvalue equation Mnm · �Enm,k =
�nm,k �Enm,k , where �E∗

nm,k · �Enm,k′ = δk,k′ , the eigenvalues can
be obtained as well as the unitary matrix Vnm. Comprising a
matrix of the normalized eigenvectors of Mnm, the definition
of Vnm is

Vnm = ( �Enm,n, �Enm,n−1, . . . , �Enm,0). (B1)

For example, for np + nb = 1, the normalized eigenvectors are

�E1m,1 = 1√
2

(
1
1

)
, �E1m,0 = 1√

2

(−1
1

)
, (B2)

giving V1m

V1m = 1√
2

(
1 −1
1 1

)
. (B3)

Using V1m to diagonalize M1m, we obtain the diagonal matrix
of eigenvalues �1m,

V†
1m · M1m · V1m ≡ �1m = g

√
m + 1

(
1 0
0 −1

)
. (B4)

APPENDIX C: PROBABILITY AMPLITUDE
TIME DYNAMICS

Here we list the first few terms An,m,k (t ). By solving
Eq. (3), assuming the phonon is initially in the ground state,
we find

A0,m,0(t ) = 1 (C1)

A1,m,0(t ) = cos(
√

m + 1gt ) (C2)

A1,m,1(t ) = −i sin(
√

m + 1gt )1 (C3)

A2,m,0(t ) = 2 + m + (1 + m) cos(
√

4m + 6gt )

3 + 2m
(C4)
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A2,m,1(t ) = −i

√
1 + m

3 + 2m
sin(

√
4m + 6gt ) (C5)

A2,m,2(t ) = −2

√
(1 + m)(2 + m)

3 + 2m
sin2(

√
m + 3/2gt ). (C6)

APPENDIX D: GENERAL EXPRESSION
FOR THE WIGNER FUNCTION

The phonon Wigner function is given by

W (α) = 1

2π2

∫
d2ξ eαξ∗−α∗ξ Tr[ρ̂D(ξ )], (D1)

where α ≡ (x + iy)/
√

2, x and y are dimensionless position
and momentum quadratures, and D(ξ ) is the phonon displace-
ment operator [55]. Here, ρ̂ is either the reduced phonon
density matrix or the density matrix obtained after conditional
measurement of the optical fields.

For a general state expressed in the Fock basis (i.e., ρkk′ ),
the Wigner function is given by

W (α) = 1

π

∞∑
k,k′=0

(−1)k2k′−k

√
k!

√
k′!

(∂α−2α∗)kαk′
e−2αα∗

ρkk′ , (D2)

where ρkk′ = ckc∗
k′ for a pure state and ck is the phonon prob-

ability amplitude for the kth Fock state.
For the case where the optical fields are conditionally mea-

sured, the general expression for the phonon Wigner function
can be computed by making the following replacement in
Eq. (D1):

Tr[ρ̂D(ξ )] → 〈ψph[ϕp, ϕS, t )|D(ξ )|ψph[ϕp, ϕS, t )〉. (D3)

APPENDIX E: EFFECTS OF OPTICAL LOSSES
FROM MASTER EQUATION SIMULATIONS

For the assessment of decoherence caused by optical
losses, we simulate the quantum dynamics of this tripartite
optomechanical system [53]. We solve the Linblad form of the
master equation, capturing the decay of both optical modes at
a rate γ given by

ρ̇ = − i

h̄
[H, ρ] + γ

2

∑
j=p,S

[2a jρa†
j − a†

j a jρ − ρa†
j a j]. (E1)

Given the high frequency of the photon modes, Eq. (E1)
assumes a bath temperature of zero.
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