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Tilted Dirac cones and asymmetric conical diffraction in photonic Lieb-kagome lattices
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The Lieb lattice and the kagome lattice, which are both well known for their Dirac cones and flat bands,
can be continuously converted into each other by a shearing transformation. During this transformation, the
flat band is destroyed, but the Dirac cones remain and become tilted, with types I, II, and III occurring for
different parameters. In this work, we first study these tilted Dirac cones using a tight-binding model, revealing
how they can be engineered into the different types. We then demonstrate conical diffraction in a photonic
lattice realization of the Lieb-kagome lattice using split-step beam propagation simulations, obtaining evidence
of the presence of Dirac cones tilted in different directions. Finally, we performed experiments with photonic
lattices laser written in fused silica (SiO2) to validate the results of the simulations. These studies advance the
understanding of the Lieb-kagome lattice and tilted Dirac cones in general and provide a basis for further research
into this interesting tunable lattice system.
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I. INTRODUCTION

A Dirac cone is an intersection of (energy) bands in a
single point, the Dirac point, surrounded by linear dispersion,
thus forming cones in the band structure. In particular, since
the discovery of graphene [1], in which Dirac cones exist,
they have been the focus of both theoretical and experimental
research interest [2–5]. Aside from the regular Dirac cones
found, among others, in graphene, there exist also more ex-
otic Dirac cones, such as higher order conical intersections
[6–8] and tilted Dirac cones [9–11]. Tilted Dirac cones can be
classified according to their degree of tilting into weakly tilted
(type I), strongly tilted (type II), and critically tilted (type III)
cones [9]. Type III cones in particular remain challenging to
observe in solid-state physics, although some candidates for
a realization have recently been suggested [12,13]. Since the
origin of Dirac cones lies in lattice symmetries, however, they
are fundamental phenomena, which can occur in any periodic
system. One such system that is of particular interest due to
its versatility is a photonic lattice, which consists of a peri-
odic arrangement of weakly coupled single-mode waveguides
[14]. Using fabrication techniques such as direct laser writing,
arbitrary lattice geometries in different host materials can be
realized [15–17]. By varying the shape of the constituting
waveguides in a photonic lattice, one can simulate the influ-
ence of electrical fields, realizing phenomena such as Floquet
topological insulators [18], Bloch-Zener oscillations [19], and
dynamic localization [20]. Recently, even experimental evi-
dence of type III Dirac cones has been found in a photonic
lattice system [9].

Spatial light evolution in a photonic lattice is described by
the paraxial wave equation, which is mathematically equiv-
alent to a time-dependent Schrödinger equation. Therefore,
photonic lattices can be used as model systems for the time
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evolution of the electron-wave function in two-dimensional
(2D) materials. In photonic lattices, the presence of Dirac
cones leads to a phenomenon known as conical diffraction,
in which a ring of light with constant thickness and linearly
growing diameter is observed. Such conical diffraction has
been shown in experiments for regular Dirac cones [21,22].
Conical diffraction from tilted Dirac cones was recently
demonstrated in simulations [23].

The Lieb lattice and the kagome lattice are two types
of artificial lattices, which have long been studied theoreti-
cally, because they feature both Dirac cones and completely
dispersionless flat bands. They can be easily realized as pho-
tonic lattices, and as such have been studied in the context
of localized (flat band) states [24–26], conical diffraction
[22,27,28], and topological insulators [29]. The Lieb and the
kagome lattices are related by a shearing transformation and
can be continuously transformed into each other. Such a Lieb-
kagome model was, to our knowledge, first proposed in 2011
[30], and recently Jiang et al. [31] published a study on this
lattice system focusing on the topological effects caused by
breaking the time-reversal symmetry. Soon after, Lim et al.
[32] released a detailed theoretical study on the splitting of
Dirac cones during the transition from Lieb to the kagome
lattice. So far none of the works on the Lieb-kagome lattice
contain simulations or experiments that could verify the nu-
merical results. Furthermore, the variable tilting of the Dirac
cones of this lattice system has not yet been studied system-
atically. Doing so would reveal ways to engineer not only the
rather common tilted type I Dirac cones, but also the more
rare type II and III cones. Type II Dirac cones can be used
in photonic lattices to study several interesting phenomena,
such as Klein tunneling [33], topological valley Hall states
[34], and more. Type III cones are of interest as a model
system for a black hole event horizon [12,35]. To fill these
gaps, in this work, we first study the Lieb-kagome lattice with
tight-binding calculations, focusing on the variable tilting of
its Dirac cones, showing how it can be tailored to realize
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FIG. 1. The Lieb-kagome lattice: (a) Sketch of the Lattice geometry. (b) Tight-binding band structure of a Lieb-kagome lattice with
θ = 15◦. The inset shows a close-up of four pairs of Dirac cones from different angles. (c) Projection of the band structure from panel (b) on
lines between high-symmetry points. [(d)–(f)] Contour plots of the middle bands of Lieb-kagome lattices with different shearing angles θ . The
first Brillouin zones are indicated as dashed black lines along with some high-symmetry points. Dirac points are indicated in green squares for
regular Dirac cones, blue filled circles for the upper tilted Dirac cones, and red stars for the lower tilted Dirac cones.

type I, II, and III Dirac cones. After that, we demonstrate
asymmetric conical diffraction in photonic Lieb-kagome
lattices, resulting from differently tilted Dirac cones, by per-
forming simulations based on the split-step algorithm [36].
Lastly, we perform experiments in laser-written photonic lat-
tices, testing the results of the previous simulations.

II. THE LIEB-KAGOME LATTICE

A. Tight-binding model

Although the Lieb and the kagome lattice belong to dif-
ferent symmetry groups, they share the structure of their unit
cells, which consist of one corner site and two edge-centered
sites [31], making them interconvertable through a shearing
transformation. Therefore, both lattices can be combined into
a single unified model, which is sketched in Fig. 1(a). In
this Lieb-kagome model, we label the edge-center sites as
A and C and the corner sites as B. The lattice constant a
is the distance between unit cells, making the nearest neigh-
bor distance a/2. The parameter that describes the transition
between the Lieb and kagome lattice is the shearing angle
labeled θ . This angle can be varied between 0◦, at which

point the model is equivalent to the Lieb lattice, and 30◦,
where the model represents the kagome lattice. In our cal-
culations, we consider nearest neighbor interaction, which
occurs between lattice sites labeled A and B and between
B and C, and next-nearest neighbor interaction between A
and C sites. At θ = 0◦ (Lieb lattice), every lattice site A
has four C sites as next-nearest neighbors, all with the same
distance. When θ increases, the distance to two of those
C sites increases, while the distance to the other two de-
creases. At θ = 30◦ (kagome lattice), an A lattice site has
two C sites as nearest neighbors and two as next-nearest
neighbors. To describe the Lieb-kagome lattice, we therefore
need three coupling constants: The nearest neighbor coupling
constant t and the next-nearest neighbor coupling constants
t ′
± for the case of increasing (t ′

+) or decreasing (t ′
−) distances

when θ is increased, as indicated in Fig. 1(a). To describe
the distance dependence of the coupling constants, we adopt
a model from Ref. [31] to describe the relative coupling
strength γ :

t ′

t
≡ γ =

[
exp

(
dNN − dNNN

dNN

)]nexp

. (1)
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Here, dNN and dNNN are the distances of nearest neighbor
and next-nearest neighbor, respectively, while the exponent
nexp is a free parameter that determines how quickly the
coupling decreases with distance. In our later performed sim-
ulations of conical diffraction, we found nexp = 4 to best
describe our realistic photonic lattice system, as at that value
clear ring patterns could be observed for all θ between 0◦
and 30◦. Therefore, we used that value for all subsequent
calculations, with the exception of the contour plots presented
here, where we used nexp = 8, because that value allows the
movement of the Dirac cones to be seen more clearly. How-
ever, this value for nexp is still realistic for photonic lattices,
particularly if the excitation uses a larger wavelength than
we used in our simulations. Furthermore, the directions of
movement of the Dirac cones and the conclusions drawn from
it remain the same regardless of the specific value.

For the Lieb-kagome model shown in Fig. 1(a), some sim-
ple geometric considerations lead to

t ′
±
t

≡ γ± = [exp (1 − √
2 ± 2 sin θ )]nexp . (2)

After those deliberations, we can now calculate a
momentum-space tight-binding Hamiltonian for the Lieb-
kagome lattice:

H (k) = 2t

⎛
⎝ 0 AB AC

AB 0 BC
AC BC 0

⎞
⎠, (3)

with the matrix elements

AB = cos

(
akx sin θ + aky cos θ

2

)
, (4a)

AC = γ− cos

(
akx(1 − sin θ ) − aky cos θ

2

)

+ γ+ cos

(
akx(1 + sin θ ) + aky cos θ

2

)
, (4b)

BC = cos

(
akx

2

)
, (4c)

corresponding to the interaction between the respective
lattice sites. Diagonalizing this Hamiltonian yields three
eigenvalues β(kx, ky). In a solid-state system, such eigen-
values represent the energy bands that describe the electron
dynamics of the lattice. In a model system such as a photonic
lattice, which we will consider later, they give us the diffrac-
tion relation kz(kx, ky).

B. Band evolution

Figures 1(b) and 1(c) show the band structure and pro-
jection of it on lines between high-symmetry points of a
Lieb-kagome lattice with θ = 15◦, respectively. It can be seen
that in transition states between Lieb and kagome lattices there
is no longer a flat band, but there are several Dirac cones,
which are clearly tilted. The Dirac points in transition states
can be distinguished into those situated at positive β and those
at negative β, which we will call in the following upper and
lower Dirac points and /cones, respectively.

k k k k(a) (b) (c) (d)

v
0 
/v = 0 0 < v

0 
/v < 1 v

0 
/v > 1 v

0 
/v = 1

Type I

(regular) Type II Type III
tilted

Type I

FIG. 2. Classification of tilted Dirac cones in 1D by projecting
them onto their tilt direction, which results in two intersecting lines
(blue dashed and red). From the slopes of the lines, an effective tilt
parameter v0/v can be calculated and used to classify Dirac cones
into types I, II, and III. Based on Ref. [9].

The movement of Dirac points in dependence on θ can be
seen in Figs. 1(d)–1(f). Starting from the Lieb lattice (θ = 0◦),
there are Dirac points belonging to untilted Dirac cones at the
four corners of the first Brillouin zone, the M points. When
θ is increased, each of those Dirac points splits into four, two
upper Dirac points which move along the M-K/K′ direction
and two lower Dirac points moving along the M-� direc-
tion. This movement of Dirac points along high-symmetry
directions away from the high-symmetry points is known to
cause the Dirac cones to tilt in the respective direction of
movement [4,37]. When θ reaches 30◦ (kagome lattice), the
lower Dirac points merge into a parabolic band touching, and
the remaining six Dirac cones at the corners K/K′ of the first
Brillouin zone are again untilted.

III. TILTED DIRAC CONES

A. Classification of tilted Dirac cones

To classify the Dirac cones of the Lieb-kagome lattice by
their tilting, we adapt a model from Ref. [9] to one dimension,
considering a cut through a Dirac cone along its tilt direction.
In our model, a Dirac cone is described by two intersecting
lines with slopes of s1 = v0 + v and s2 = v0 − v, respectively.
Here the parameter v describes the cones’ opening angle (be-
ing wider for smaller v), while a nonzero v0 introduces a tilt
to the cones. Dirac cones can be classified by their tilt into
four types (see Fig. 2): Regular (untilted) type I cones, weakly
tilted type I cones, strongly tilted type II cones, and critically
tilted type III cones, which form the threshold between types I
and II. In our model, this classification can be performed using
an effective tilt parameter v0/v as shown in Fig. 2.

Parameters v and v0 can be calculated from a 1D band
structure such as Fig. 1(c) by fitting its data with two lines in
the vicinity of the Dirac point. With this the degree of tilting
and classification of Dirac cones can be tracked while varying
different parameters in the band structure calculations.

B. Evolution of tilted Dirac cones in the Lieb-kagome lattice

Figure 3(a) shows v0, corresponding to the degree of tilt-
ing, and v0/v, the parameter used for classification, over the
shearing angle θ for the upper and lower Dirac cones of the
Lieb-kagome lattice. The edge cases of θ = 0◦ and θ = 30◦,
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FIG. 3. Degree of tilting v0 and effective tilt parameter v0/v of
the upper (blue empty circles) and lower Dirac (red filled circles)
cones of the Lieb-kagome lattice: (a) as a function of θ and (b) as a
function of nexp. Error bars were calculated from the uncertainty of
the fits performed to calculate these values.

as well as values of θ very close to them, were excluded. For
both edge cases, there is only one type of Dirac cone with
v0 = v0/v = 0 (i.e., no tilt), and for θ very close to those
limits, there are not enough data points to perform reliable
fits because the Dirac points are too close together.

The degree of tilting (v0) of both types of Dirac cones is the
highest and almost identical, for small θ . When θ increases,
the tilt of the upper Dirac cones decreases almost linearly,
while that of the lower Dirac cones resembles a curve of the
form y(x) = a − b exp (cx), staying almost constant for low
θ and rapidly decreasing for high θ , until the tilt of both types
of Dirac cones vanishes as θ approaches 30◦. For θ , aside from
the edge cases, the lower Dirac cones are therefore always
tilted more strongly than the upper cones.

The effective tilt parameter v0/v approaches 1 for both
upper and lower Dirac cones for low θ , meaning that they
both approach the border case of critically tilted (type III)
Dirac cones. For the upper Dirac cones, v0/v decreases with
rising θ , making them weakly tilted (type I) cones, while it
increases for the lower Dirac cones, meaning they become
strongly tilted (type II) cones.

Another parameter that can be used to influence the Dirac
cones’ tilt is nexp, the parameter describing how quickly next-
nearest neighbor coupling decays with the distance between
lattice sites (a higher nexp means that coupling decreases more

quickly). This could be influenced in experiments by tailor-
ing the coupling between lattice elements, for example, in
photonic lattices through the choice of parameters for writing
waveguides or the excitation wavelength [38]. We therefore
also calculated v0 and v0/v in dependence on nexp with a fixed
θ of 15◦, the results of which are shown in Fig. 3(b).

Starting again with the degree of tilting, the lower Dirac
cones show a stronger tilt for all values of nexp. The difference
between the two types of cone is the largest for small nexp.
With rising nexp, v0 initially increases for the upper Dirac
cones and decreases for the lower Dirac cones, until both
reach mostly constant values, which happens at a lower value
of nexp for the lower cones.

The difference in the effective tilt parameter of the upper
and lower Dirac cones is also most pronounced for low nexp,
where again the upper Dirac cones are type I and the lower
Dirac cones are type II. When nexp increases, both the upper
and lower Dirac cones approach type III cones, which again
happens at a lower nexp for the lower Dirac cones.

C. Discussion

We have shown how the shearing angle θ and the parameter
nexp can be used to influence the tilt of Dirac cones in the
Lieb-kagome lattice, making it possible to tailor them to type
I, II, or III Dirac cones. For most parameters, the upper Dirac
cones are type I, the lower Dirac cones are type II cones, but
both approach critically tilted type III cones for low θ or high
nexp. In both cases, however, the Dirac cones are very close to-
gether in k space, making it difficult to excite and study them
individually. Based on our studies, the best way to realize
type III Dirac cones in the Lieb-kagome lattice is to increase
nexp, e.g., by decreasing the refractive index increment of the
waveguides or increasing the excitation wavelength, until the
lower Dirac cones approach type III, which happens at a lower
nexp than for the upper Dirac cones, so the Dirac cones are still
well separated.

IV. ASYMMETRIC CONICAL DIFFRACTION

A. Photonic lattices and conical diffraction

Recently, both the Lieb and the kagome lattice have been
realized as superlattices in electronic systems [39,40], but for
a general freely tunable Lieb-kagome lattice such an approach
would be unsuitable. A common way to study lattices with un-
conventional geometry is to use model systems. In particular,
photonic lattices, which are periodic arrangements of weakly
coupled waveguides, have been used to demonstrate a variety
of phenomena known from solid-state physics. The evolution
of light in such a photonic lattice can be described by the
paraxial wave equation

λ̄
∂

∂z
ψ (x, y, z) −

(
λ̄2

2n0
∇2

⊥ + 	n(x, y, z)

)
ψ (x, y, z) = 0,

(5)

where ψ (x, y, z) is the wave function, λ̄ = λ/2π is the re-
duced wavelength of light in the medium, n0 is the refractive
index of the medium, and 	n(x, y, z) = n(x, y, z) − n0 is the
refractive index increment between the waveguides and the

023509-4



TILTED DIRAC CONES AND ASYMMETRIC CONICAL … PHYSICAL REVIEW A 107, 023509 (2023)

TABLE I. Summary of the parameters of the beam propagation
simulations.

Waveguide diameter (FWHM) 3 µm
Maximal refractive index increment of waveguides 1.3×10−3

Waveguide distance 20 µm
Excitation wavelength 700 nm
Diameter of excitation beam (FWHM) 100 µm
Propagation distance 60 mm

medium. This equation is mathematically equivalent to a time-
dependent two-dimensional Schrödinger equation, with the
most striking difference being that time is replaced by the
propagation distance z. This means that spatial light evolution
in a photonic lattice is equivalent to time evolution of the
electron-wave function in a crystal lattice. In consequence,
the dispersion relation β(kx, ky ) of a photonic Lieb-kagome
lattice can be described by the same tight-binding model we
introduced in Sec. II, which was originally developed for the
Schrödinger equation. This justifies the usage of photonic
lattices as a model system in experiments and simulations.

The presence of Dirac cones leads to a phenomenon called
conical diffraction, where the lattice diffracts light into a ring
with constant thickness and a radius which increases linearly
with propagation distance. This was first demonstrated in
simulations and experiments in 2007 by Peleg et al. [21]
using a honeycomb lattice. Asymmetric conical diffraction
arising from tilted Dirac cones was demonstrated in simu-
lations by Zhong et al. in 2019 [23], who observed rings
moving transversally in the tilt direction of the cones during
propagation.

B. Beam propagation simulations of conical diffraction
in the Lieb-kagome lattice

In order to verify the existence of tilted Dirac cones in the
Lieb-kagome lattice, we studied conical diffraction in pho-
tonic lattices using a split-step beam propagation simulation.
We chose the parameters of the simulation to be typical for
photonic lattices produced by direct laser writing in fused sil-
ica. A summary of the most important parameters is provided
in Table I.

In order to excite the Dirac cones of the lattice, the po-
sitions of the Dirac points in k space were calculated and
they were targeted with a superposition of plane waves with
the corresponding phases. The resulting light field was then
superimposed with a Gaussian beam in order to excite a finite
region in k space around the Dirac points and furthermore to
leave enough space for the light to spread into the character-
istic ring pattern. To observe full, unbroken, and symmetric
conical diffraction, it is typically necessary to excite several
Dirac cones at once [41]. For the Lieb and kagome lattices,
we therefore excited all Dirac points at the corners of the
first Brillouin zone, four for the Lieb lattice and six for the
kagome lattice [see Figs. 1(d) and 1(f)]; for transition lattices
with different θ , we excited the six upper Dirac cones closest
to the corners of the first Brillouin zone (see Fig. 6). As an
example, the excitation light field for the kagome lattice is
shown in Fig. 4 in real and Fourier space.

FIG. 4. Excitation light field for the kagome lattice in real and
Fourier space, targeting six Dirac cones.

Figure 5 shows the resulting diffraction patterns on the
output facets of Lieb-kagome lattices with selected shearing
angles θ after a propagation of 60 mm, where the character-
istic ring pattern of conical diffraction can be observed for
all θ . In the case of the kagome lattice (θ = 30◦) and the
Lieb lattice (θ = 0◦), when the Dirac cones are untilted, the
patterns are the most symmetric. In transition states (30◦ >

θ > 0◦), the diffraction patterns become elliptic with varying
eccentricities. The patterns are twofold mirror symmetric with
one symmetry axis in the tilt direction of the upper Dirac

FIG. 5. Diffraction patterns after a propagation of 60 mm
through Lieb-kagome lattices with different shearing angles θ , show-
ing asymmetric conical diffraction for 0◦ < θ < 30◦. For these
patterns, selected Dirac points were excited by a superposition of
plane waves. For the cases of regular Dirac cones, the six (θ = 30◦),
respectively four (θ = 0◦), Dirac points at the K/K′ points were
excited. For all other cases, the six Dirac points closest to the K/K′

points were excited.
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FIG. 6. k space positions of the upper Dirac points (blue filled
circles) of Lieb-kagome lattices in transition states excited to gener-
ate conical diffraction. The blue arrows mark the tilt directions of the
corresponding Dirac cones.

cones and the other in the tilt direction of the lower Dirac
cones, which are perpendicular to each other. In all cases,
some light remains in the middle of the ring, which is common
with conical diffraction, and is usually attributed to the influ-
ence of bands other than those forming the Dirac cones [21].
For very small angles, in Fig. 5 for θ = 2◦, the ring pattern
is broken: There first appear two separate half-circles moving
apart in the tilt direction of the upper Dirac cones, followed
by the same in the tilt direction of the lower Dirac cones. We
attribute this to the fact that in this case the upper and lower
Dirac cones are so close in k space that our light field excites
both at the same time.

When, starting from the Lieb lattice at θ = 0◦, θ is in-
creased, each Dirac point of the lattice splits into four, two
upper Dirac points and two lower Dirac points, as seen in
Figs. 1(d)–1(f). In such a group of four Dirac points, the upper
Dirac cones are tilted toward each other, while the lower Dirac
cones are tilted away from each other. Of the six Dirac cones
excited for the simulations in Fig. 5, three are therefore tilted
in one direction and the other three in the opposite direction,
as shown in Fig. 6. To show evidence of tilted Dirac cones in
the Lieb-kagome lattice, we need to specifically excite only
Dirac cones tilted in one direction. The result of this approach
is presented in Fig. 7 for lattices with θ = 30◦, 25◦, and 22◦.
In the left column, all six Dirac cones shown in Fig. 6 were
excited, in the middle column only those tilted diagonally
upward, and in the right column only those tilted diagonally
downward. The blue (gray) circles in Fig. 7 mark the position
and extent of the excitation light fields. When only three Dirac
cones are excited, the symmetry of the diffraction patterns
is reduced regardless of the shearing angle θ . Nevertheless,
in the case of the kagome lattice (θ = 30◦), the patterns re-
main centered on the point where the lattice was excited, as
is expected for regular conical diffraction. For θ = 25◦ and
θ = 22◦, in contrast, we observe a clear shift of the diffraction
patterns in the tilt direction of the Dirac cones when only

FIG. 7. Diffraction patterns after a propagation of 60 mm
through Lieb-kagome lattices with different shearing angles θ , when
different selections of Dirac cones are excited. The blue (gray) circles
indicate the position and size of the excitation light fields.

cones tilted in one direction are excited. This behavior proves
that the Dirac cones in question are indeed tilted [23].

V. EXPERIMENTS IN FUSED SILICA

In order to verify our results experimentally, we fabricated
photonic lattices in fused silica (SiO2) using the direct laser
writing technique [26,42]. Table II shows the main differences
in parameters compared to the simulations presented so far.
Figure 8 shows microscope images of the back facets of two
of the lattices we fabricated, one with θ = 30◦ (kagome lat-
tice), consisting of 2415 waveguides, and one with θ = 25◦,
consisting of 1536 waveguides. Our direct laser writing setup
uses a pulsed laser with a wavelength of 1030 nm and a pulse
length of approximately 250 fs. Waveguides are written by
translating the sample in a direction perpendicular to the laser
beam (transversally) on a motion-controlled stage. A spa-
tial light modulator (SLM) is used to counteract aberrations
and compensate dependencies of the waveguide properties on
the depth in the sample. Our setup for probing the resulting
photonic lattices uses a continuous wave laser with a central
wavelength of 532 nm. An SLM is used to replicate the

TABLE II. Summary of the parameters of experiments and cor-
responding simulations.

Waveguide dimensions (FWHM) 3 µm×6 µm
Waveguide distance 18 µm
Excitation wavelength 532 nm
Propagation distance 40 mm
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FIG. 8. Back facet of SiO2 sample with laser-written waveg-
uides, forming two photonic lattices. The inset is a close-up of some
waveguides, showing their elliptical cross sections.

light fields used for excitation in the simulations, which were
shown in Fig. 4. A more detailed description of both setups,
including sketches, can be found in Ref. [42].

A known drawback of using a transversal writing scheme
is that the waveguides fabricated this way exhibit elliptical
instead of circular cross-sections, which can be seen in the
inset of Fig. 8. This effect can currently only be partially
compensated for, and known mitigation methods did not prove
effective in our case. The elliptical waveguides introduce a
small anisotropy in the coupling constants, which slightly
deform the band structure of the resulting photonic lattices.
Simulations with elliptical waveguides (Fig. 9) show that this
causes conical diffraction to degenerate into a line pattern.
In order to make patterns comparable for different values of
the shearing angle θ , we rotated the lattices by a θ -dependent
angle of ϕrot = (90◦ − θ )/2 + 90◦, which places the tilt direc-
tion of the upper Dirac cones in the y direction and orients the
line patterns along the same direction.

FIG. 9. Simulations demonstrating the deterioration of conical
diffraction when the cross section of waveguides changes from cir-
cular to elliptical.

FIG. 10. Diffraction patterns after propagating 40 mm through
the lattices shown in Fig. 8, along with simulations for comparison.
The same selections of Dirac cones as in Fig. 7 were excited.

Figure 10 shows the diffraction patterns after propagation
of 40 mm through the lattices described above, along with
simulations using the parameters from Table II for compari-
son. To show the effect of tilting, the same selections of Dirac
cones as in Fig. 7 were excited, which is again shown in
the different columns. As discussed above, due to the ellip-
tical cross sections of the waveguides, the patterns are line
shaped with one or two bright spots rather than the circular
patterns expected for conical diffraction. Nevertheless, in the
simulations presented in Fig. 10, the shift of the diffraction
patterns’ centers in the direction in which the Dirac cones are
tilted can still be observed. This is the characteristic for tilted
Dirac cones. The images obtained from experiments generally
match the simulations, but exhibit more light remaining in the
center of the pattern, i.e., not diffracting. We attribute this to
distortions of the band structure caused by the waveguides’
elliptical cross sections and other experimental inaccuracies.

VI. CONCLUSION

In this work, we have studied the tilted Dirac cones of the
Lieb-kagome lattice in depth using the tight-binding method.
We have shown how their tilting depends on the shearing
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angle θ , which describes the transition between Lieb and
kagome lattices and on the relative strength of next-nearest
neighbor interaction, and how these parameters can be used
to tune the Dirac cones of the lattice to type I, II, or III.
This provides future researchers with a way to deliberately
engineer these different Dirac cones and use them to study
novel phenomena. After that, we studied realizations of Lieb-
kagome lattices as photonic lattices using split-step beam
propagation simulations. We have shown conical diffraction in
transition states between Lieb and kagome lattice, where we
found evidence of Dirac cones tilted in different directions.

In a final step, we fabricated on a fused silica chip large-
scale photonic lattices consisting of thousands of single-mode
waveguides. Although experimental challenges exist in the
form of elliptical waveguides instead of circular waveguides,
we were able to prove the signature of tilted Dirac cones.
We expect that the presented experiments can be further im-
proved by switching to a longitudinal writing scheme or an
alternative fabrication technique. Our studies further the un-
derstanding of the Lieb-kagome lattice and tilted Dirac cones
in general and provide a basis for further research into these
subjects.
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[9] M. Milićević, G. Montambaux, T. Ozawa, O. Jamadi, B. Real,
I. Sagnes, A. Lemaître, L. Le Gratiet, A. Harouri, J. Bloch, and
A. Amo, Type-III and Tilted Dirac Cones Emerging from Flat
Bands in Photonic Orbital Graphene, Phys. Rev. X 9, 031010
(2019).

[10] T. Kawarabayashi, Y. Hatsugai, T. Morimoto, and H. Aoki,
Generalized chiral symmetry and stability of zero modes for
tilted Dirac cones, Phys. Rev. B 83, 153414 (2011).

[11] T. Cheng, H. Lang, Z. Li, Z. Liu, and Z. Liu, Anisotropic carrier
mobility in two-dimensional materials with tilted Dirac cones:
Theory and application, Phys. Chem. Chem. Phys. 19, 23942
(2017).

[12] H. Huang, K.-H. Jin, and F. Liu, Black-hole horizon in the Dirac
semimetal Zn2In2S5, Phys. Rev. B 98, 121110(R) (2018).

[13] C. Sims, Topologically protected wormholes in type-III Weyl
semimetal Co3In2X2 (X = S, Se), Conden. Matter 6, 18 (2021).

[14] A. Szameit and S. Nolte, Discrete optics in femtosecond-laser-
written photonic structures, J. Phys. B: At. Mol. Opt. Phys. 43,
163001 (2010).

[15] J. Imbrock, H. Hanafi, M. Ayoub, and C. Denz, Local domain
inversion in MgO-doped lithium niobate by pyroelectric field-
assisted femtosecond laser lithography, Appl. Phys. Lett. 113,
252901 (2018).

[16] H. Hanafi, S. Kroesen, G. Lewes-Malandrakis, C. Nebel, W. H.
Pernice, and C. Denz, Polycrystalline diamond photonic waveg-

uides realized by femtosecond laser lithography, Opt. Mater.
Express 9, 3109 (2019).

[17] J. Imbrock, D. Szalek, S. Laubrock, H. Hanafi, and C. Denz,
Thermally assisted fabrication of nonlinear photonic structures
in lithium niobate with femtosecond laser pulses, Opt. Express
30, 39340 (2022).

[18] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.
Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Photonic Floquet topological insulators, Nature (London) 496,
196 (2013).

[19] F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte,
A. Tünnermann, and S. Longhi, Bloch-Zener Oscillations in
Binary Superlattices, Phys. Rev. Lett. 102, 076802 (2009).

[20] S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta,
E. Cianci, and V. Foglietti, Observation of Dynamic Localiza-
tion in Periodically Curved Waveguide Arrays, Phys. Rev. Lett.
96, 243901 (2006).

[21] O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and
D. N. Christodoulides, Conical Diffraction and Gap Solitons
in Honeycomb Photonic Lattices, Phys. Rev. Lett. 98, 103901
(2007).

[22] F. Diebel, D. Leykam, S. Kroesen, C. Denz, and A. S.
Desyatnikov, Conical Diffraction and Composite Lieb Bosons
in Photonic Lattices, Phys. Rev. Lett. 116, 183902 (2016).

[23] H. Zhong, R. Wang, M. R. Belić, Y. Zhang, and Y. Zhang,
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