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Mutual amplification of high-order harmonics in an optically dressed
hydrogenlike plasma-based x-ray laser

I. R. Khairulin ,1,2,* V. A. Antonov,1 M. Yu. Ryabikin,1,2 and Olga Kocharovskaya3

1Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod 603950, Russia
2N. I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia

3Department of Physics and Astronomy and Institute for Quantum Studies and Engineering,
Texas A&M University, College Station, Texas 77843, USA

(Received 3 August 2022; accepted 19 January 2023; published 9 February 2023)

In a recent work [V. A. Antonov, K. C. Han, T. R. Akhmedzhanov, M. Scully, and O. Kocharovskaya,
Phys. Rev. Lett. 123, 243903 (2019)] a method of amplifying a train of attosecond pulses, produced via
high-order harmonic generation of an infrared (IR) laser field, in an active medium of a plasma-based x-ray laser
dressed by a replica of the IR field of the fundamental frequency was proposed. The specific case of independent
amplification of each incident harmonic was considered, corresponding to a dense plasma of multiply charged
ions (such as C5+ ions) which is strongly dispersive for the IR field. In the present paper, we consider a general
case when the laser field modulation leads not only to the direct amplification of high harmonics (HHs), but also
to the scattering of the harmonics into each other. The mutual coherent scattering process plays an important role
in a relatively low-density plasma with a lower ion charge, corresponding to a weakly dispersive plasma at the
frequency of the IR field. Constructive interference between the amplified HHs and the coherently scattered field
may result in a significant enhancement of the total output field. We call this effect the mutual amplification of
high-order harmonics. Considering the plasma of hydrogenlike Li2+ ions with an inverted transition wavelength
of 13.5 nm as an example, we analytically and numerically show that synchronization of a coherently scattered
field with the radiation of amplified HHs makes it possible to increase the intensity of attosecond pulses by
several times compared to the case of an independent amplification of HHs.
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I. INTRODUCTION

At the end of the 20th and beginning of the 21st century
a new interdisciplinary field of research, called attosecond
physics, emerged and began to rapidly develop, which is
aimed at investigating and controlling the ultrafast processes
in atoms, molecules, and solids on their intrinsic time scales
[1–7]. This became possible due to the development of the
sources of attosecond extreme ultraviolet (XUV) and x-ray
pulses based on high-order harmonic generation (HHG) of
intense optical and infrared (IR) laser fields in gases in the tun-
nel ionization regime [8–10]. Nowadays, the pulses generated
by such sources can be as short as 40–50 as [11–13]. However,
the corresponding pulse energy in the x-ray range does not
exceed a few nJ at best [14,15], mainly because of significant
limitations on high-order harmonic yield due to the macro-
scopic pulse propagation effects [16]. This limits the practical
applications of HHG sources, in particular, those related to
the single-shot measurements of ultrafast processes in matter,
as well as initiating and studying nonlinear processes in the
XUV and x-ray range [17,18]. Thus, enhancing the energy of
high harmonics (HHs) and attosecond pulses is an important
task from both fundamental and practical points of view.

*Corresponding author: khairulinir@ipfran.ru

One may consider two ways to increase the energy of HHs.
The first one is to optimize the conditions for generating HHs
in order to enhance their yield. The resultant harmonic yield
is determined by (i) a single-atom (microscopic) response,
which characterizes the strength of interaction of each atom
with the driving laser field during the three-step HHG process
(ionization of an atom, acceleration of the free electron, and its
recombination with the parent ion), and (ii) the macroscopic
response associated with the coherent summation of HH emis-
sion from individual atoms. Enhancement of the macroscopic
response can be achieved by creating the favorable phase-
matching conditions, which can be done by adjusting the laser
intensity, its wavelength, and focusing parameters, as well
as the parameters of the gas [16,19–24]. The microscopic
response can be enhanced by optimizing the ionization of the
atom, as well as the electron dynamics in the driving laser
field. It can be accomplished by (i) modifying the sub-laser-
cycle waveform of the driving field via adding the low-order
(second and/or third) harmonics to its fundamental frequency
[25–31] and/or (ii) seeding the interaction medium with the
radiation of a single HH or a set of HHs, forming a train of
attosecond pulses [32–36]. In the latter case, it is possible to
enhance the HH yield by two to four orders of magnitude,
taking into account the macroscopic propagation effects.

The second way to increase the HH energy is to use an
additional amplifier. In [37] it was theoretically proposed to
amplify a train of attosecond pulses, produced via HHG in
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a gas, in an x-ray free-electron laser (XFEL) in the mode
locking regime [38], when a series of spatiotemporal shifts
is introduced between the radiation and the copropagating
electron bunch by delaying the electron bunch using magnetic
chicanes inserted between undulator modules. In this case, the
possibility of amplifying a train of attosecond pulses of widths
≈ 300 as with peak power up to 1 GW was theoretically
shown. However, XFELs are large-scale and very expensive
facilities, and there are very few of them available in the
world. Another way is to use a laboratory-scale plasma-based
x-ray laser for HH amplification. In this case, the energy of
the seeding HH radiation pulse can be amplified up to 1μJ
[39–41]. However, the narrow bandwidth (mÅ) of such ampli-
fier [42,43] leads to accumulating the energy obtained in the
amplification process in the radiation of a single HH resonant
with the inverted transition of the active medium. This fact
does not allow direct amplification of a set of HHs, and hence
attosecond pulses, in such active media.

In the recent work [44], we proposed a method that allows
one to broaden the gain spectrum of a plasma-based x-ray
laser and to use it for the amplification of an attosecond pulse
train formed by a set of HHs of an optical or IR laser field.
For this purpose, an active medium of an x-ray laser should be
irradiated by a replica of the fundamental frequency laser field
(or its second harmonic [45]) used for generating the seeding
HHs. Originally, this method was proposed for a hydrogenlike
active plasma medium [44,45], and then generalized to the
case of a neonlike active medium [46]. Under the action of
the laser field due to the Stark effect (the linear Stark effect in
the case of hydrogenlike ions and the quadratic Stark effect in
the case of neonlike ions), the transition frequencies between
the lasing states of the ions follow the local value of the
electric field of the laser wave in time and space. Thus, the
laser field produces a subcycle modulation of the medium. As
a result, the medium gain, initially localized in the vicinity
of the frequency of the inverted transition, is redistributed
to the combination frequencies separated from the resonance
(taking into account its time-averaged Stark shift) by multiples
of the modulating field frequency in the case of a hydrogen-
like medium or by even multiples of the modulating field
frequency in the case of a neonlike medium. In this case, if
one of the HHs of the modulating field is tuned in resonance
with the time-averaged frequency of the inverted transition,
then the other HHs will be automatically resonant with the
corresponding induced gain lines. If, in addition, the plasma
dispersion at the frequency of the modulating field is strong
enough, then the harmonics of different orders will be am-
plified independently of each other, and their relative phases
will be preserved. Such regime is realized in active media with
high free-electron concentration, in particular, with population
inversion at the transition of highly charged ions, for example,
hydrogenlike C5+ ions [44,45] and neonlike Ti12+ ions [46].
Furthermore, the gain coefficients for harmonics of different
orders can be made approximately equal to each other via
the proper choice of intensity of the modulating field. In
this case, the relative amplitudes of HHs are approximately
preserved during their amplification. Thus, if HHs form a
train of attosecond pulses at the entrance to the medium, then,
during the propagation through the medium, the intensity of
the pulses will grow, while maintaining their duration and

shape. In particular, in [44,45] we showed the possibility of
amplifying the attosecond pulses by two orders of magnitude
in intensity in the hydrogenlike active plasma medium of C5+
ions.

On the other hand, in an active medium with a relatively
weak plasma dispersion at frequency of the modulating field,
a quasimonochromatic seeding XUV radiation, in particular,
a single HH, which is turned into resonance with any of the
induced gain lines, is not only amplified, but also generates
a coherently scattered field at the combination frequencies
separated from the frequency of the seeding radiation by even
multiples of the frequency of the modulating laser. Under the
optimal conditions, the generated sidebands have comparable
amplitudes and are in phase with the amplified seeding radia-
tion, which leads to transformation of a quasimonochromatic
seeding field (a single HH) into a train of subfemtosecond and
attosecond pulses [47–50].

Moreover, as it was in [51], if there is a set of three HHs
at the entrance to an active medium, then the interference of
the amplified HHs with a multifrequency coherently scattered
field opens up the possibility of controlling the power spectral
density of HHs. As a result, the total energy of radiation of a
set of three HHs can increase or decrease due to constructive
or destructive interference with a coherently scattered field,
and the asymmetry of the HH spectrum can be controlled.
However, the optimal conditions under which the harmonic
amplification efficiency is maximized have not been analyzed.

In the present paper, we consider the general case of am-
plification of high harmonics, when the scattering process
needs to be taken into account. We study the possibility of
increasing the efficiency of amplification of attosecond pulses
formed by a set of (three, five, and seven) in-phase HHs in
the modulated active medium of a plasma-based x-ray laser
due to synchronization of the coherently scattered field with
amplified HHs. Hereinafter, for brevity, we will call this ef-
fect mutual amplification of high-order harmonics (MAHH).
Contrary to [51], we focus on the time dependence of the HH
signal and the preservation of the duration and shape of the
amplified pulses (which is nontrivial, since the interference of
the HHs with a coherently scattered field generally changes
the relative harmonic phases). We derive a more general, in
comparison with [51], analytical solution for the field of HHs
in an optically deep active plasma medium, which accounts
for the rescattering of harmonics into each other and is valid
for an arbitrary shape of the HH spectral line. Based on the ob-
tained analytical solution, we find the optimal conditions for
MAHH, under which the maximum increase in the intensity
of the amplified pulses of high harmonics is achieved while
maintaining their shape and duration, and confirm the results
by numerical integration of the Maxwell-Bloch equations. As
an active medium, we consider an active plasma of hydrogen-
like Li2+ ions, as was done in [48,50,51].

The paper is organized as follows. In Sec. II we briefly
present a theoretical model describing the HH amplification in
a modulated hydrogenlike active plasma medium. In Sec. III
we derive a generalized analytical solution, which allows one
to better understand the main features of MAHH, and use it
to find the optimal conditions for the mutual amplification
of three (Sec. IIIA), five (Sec. IIIB), and seven (Sec. IIIC)
in-phase HHs. In Sec. IV the results of the analytical theory
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are compared with the results of the numerical solutions of
the system of equations given in Sec. II. Finally, in Sec. V we
summarize the main results of this paper.

II. BASIC CONCEPT

Below, we consider an amplification of a set of (2N + 1)
linearly polarized high-order harmonics of an IR laser field
in an active medium of a recombination plasma-based x-ray
laser, which consists of hydrogenlike ions and free elec-
trons, with a population inversion at the transition n = 1 ↔
n = 2 of the ions (where n is the principal quantum num-
ber). XUV and x-ray lasing in such an active medium has
been studied in a number of works [52,53]. The active
medium is simultaneously irradiated by the copropagating
IR field of the fundamental frequency with the same linear
polarization:

�EL(x, τ ) = �z0EIR cos (�τ + �Kx + ϑ ), (1)

where τ = t − x
√

εXUV/c is the local time in the refer-
ence frame, which moves along with the wavefront of the
HH field; c is the speed of light in vacuum; εXUV = 1 −
4πe2 Ne/(meω

2
inc) is the nonresonant dielectric permittivity

of the plasma for a set of HHs with the carrier frequency
ωinc; the x axis is the propagation direction; the z axis is the
polarization direction; �z0 is the unit vector along the z axis;
EIR and � are, respectively, the amplitude and the angular
frequency of the IR field; ϑ is its initial phase, which charac-
terizes the sub-laser-cycle delay of HH pulses relative to the
modulating field; �K = �(

√
εXUV − npl )/c is the difference

between the wavenumbers of the IR field in the medium with
the refractive index

√
εXUV and in the plasma with electron

concentration Ne; npl =
√

1 − 4πe2 Ne/(me�2) is the plasma
refractive index for the IR field; e and me are the electron
charge and mass, respectively. Here we assume that (i) the
transverse and longitudinal distributions of the IR field are
much wider than, respectively, the cross section and the length
of the plasma channel and (ii) the IR field pulse duration is
quite large compared to the relaxation times of the medium. It
is also assumed that the amplitude of the laser field is smaller
than the ionization threshold from the excited (upper lasing)
energy level of the ions, so that it does not additionally ionize
the medium. Under the action of the IR field, the energy
level with n = 2 splits into three sublevels. Two of them
correspond to the states |2〉 = (|2s〉 + |2p, m = 0〉)/

√
2 and

|3〉 = (|2s〉 − |2p, m = 0〉)/
√

2, which are the energy eigen-
states of the hydrogenlike ions in parabolic coordinates with
principal z axis. The energies of these states oscillate in space
and time along with oscillation of the IR field strength (1)
due to the linear Stark effect and also acquire a constant shift
due to the quadratic Stark effect. The third sublevel is de-
generate and corresponds to the states |4〉 = |2p, m = 1〉 and
|5〉 = |2p, m = −1〉. These states experience only a quadratic
Stark shift, which can be considered as space-time indepen-
dent [54]. Thus, the frequencies of the transitions from the
excited states of the ions |i〉 (i = 2,3,4,5) to the ground state

|1〉 = |1s〉 take the form

ω21(τ, x) = ωz − �� cos (�τ + �Kx + ϑ ),

ω31(τ, x) = ωz + �� cos (�τ + �Kx + ϑ ),

ω41 = ω51 = ωy, (2)

where ωz = [ 3me e4 Z2

(8h3 ) ](1− 109F 2
0

64 ) and ωy =
[ 3me e4 Z2

(8h3 ) ](1− 101F 2
0

64 ) are the time-averaged frequencies of the
transitions |2〉 → |1〉, |3〉 → |1〉 and |4〉 → |1〉, |5〉 → |1〉,
respectively; �� = 3mee4 Z2 F0/(8h̄3) is the amplitude of
linear Stark shift; F0 = (2/Z )3EIR/EA is the normalized
amplitude of the IR laser field; EA � 5.14 × 109 V

cm is the
atomic unit of the electric field; Z is the charge number of
the ions; h̄ is Planck’s constant. Here the use of indices z
and y is justified by the fact that the dipole moments of
transitions |2〉 → |1〉, |3〉 → |1〉 are oriented along the z
axis, while the dipole moments of transitions |4〉 → |1〉,
|5〉 → |1〉 have components along the x and y axes; however,
the field propagating along the x axis interacts only with their
y components.

In the following, we assume that at the entrance to the
medium there are (2N + 1) high-order harmonics of the fun-
damental frequency �, which are in phase with each other,
have the same amplitudes E0, and are polarized along the
z axis [as the laser field (1)]. Thus, the HHs interact with
the modulated transitions |2〉 → |1〉 and |3〉 → |1〉. In the
time domain, they constitute a train of pulses with duration
T/(2N + 1) and repetition period T/2, where T = 2π/� is
the IR field cycle. The electric field of the pulse train at the
entrance to the medium has the form

�E (x = 0, τ ) = 1

2
�z0Ein(τ ) exp (−iωincτ )

×
N∑

n=−N

exp (−in2�τ ) + c.c., (3)

where Ein(τ ) is its envelope. We assume that Ein(τ ) = E0θ (τ ),
where θ (τ ) is the Heaviside step function. As shown below,
such a choice of the envelope of the pulse train allows obtain-
ing the simple analytical solution to the considered problem.
Further, we suppose that the carrier frequency of the HH
field equals to the time-averaged frequency of the transitions
|2〉 → |1〉 and |3〉 → |1〉, that is, ωinc = ωz, which results in
their strongest amplification.

In turn, the transitions |4〉 → |1〉 and |5〉 → |1〉 lead to
the generation of the y-polarized XUV or x-ray amplified
spontaneous emission (ASE), which (i) reduces the gain for
the z-polarized HH field by increasing the population of the
ground state of the ions and (ii) overlaps in time with the
amplified HH signal. The ASE can be suppressed by using
a sufficiently strong seeding z-polarized HH field.

The amplification of the pulse train (3) can be described by
the system of Maxwell-Bloch equations within the five-level
model of the medium using the slowly varying amplitude
approximation and the rotating wave approximation. This sys-
tem of equations is presented in [44,47,48] and will not be
reproduced here because of its large volume.

In the next section, we derive an analytical solution that
describes the main features of the HH field (3) amplified in a
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hydrogenlike active medium with moderate plasma dispersion
for the modulating IR field.

III. ANALYTICAL THEORY

The analytical solution obtained below is based on the
following approximations. We assume that the incident z-
polarized field (3) is sufficiently strong, so that the HH field
dominates over the ASE of y polarization at all considered
propagation distances. In this case, one may neglect the states
|4〉, |5〉 and describe the active medium within the three-
level model taking into account only the states |1〉, |2〉, and
|3〉. We also assume a constant population difference ntr at
the transitions |2〉 → |1〉 and |3〉 → |1〉 (under the conditions
considered below, the population differences at these transi-
tions are the same), which corresponds to the linear regime of
the HH amplification. Then, within the slowly varying ampli-
tude approximation and the rotating wave approximation, the
system of Maxwell-Bloch equations is reduced to

∂Ẽz

∂x
= i

4πωzNiondtr

c
√

εXUV
(ρ̃21 − ρ̃31),

∂ρ̃21

∂τ
= [−γz + i�� cos (�τ + �Kx + ϑ )]ρ̃21 − i

dtrntr

2h̄
Ẽz,

∂ρ̃31

∂τ
= [−γz − i�� cos (�τ + �Kx + ϑ )]ρ̃31 + i

dtrntr

2h̄
Ẽz,

(4)

where Ẽz and ρ̃i1, i = 2, 3, are the slowly varying amplitudes
of the electric field of HHs and the quantum coherencies
at the transitions |2〉 → |1〉 and |3〉 → |1〉, respectively. The
latter determine the slowly varying amplitude of the res-
onant polarization of the medium, P̃z = Niondtr (ρ̃21 − ρ̃31),
where Nion is the concentration of the resonant ions, dtr =
(27/35)ea0/Z is the dipole moment of the transitions |2〉 →
|1〉 and |3〉 → |1〉, and a0 is Bohr’s radius. γz = γ (0)

z + ion/2
is the relaxation rate of the quantum coherencies at these
transitions; γ (0)

z = γcoll + rad/2 is the decoherence rate in the
absence of the IR field; γcoll and rad/2 are the collisional
and radiative decay rates of the quantum coherences at the
inverted transitions in the absence of the IR field, respectively;

ion = mee4 Z2

16h̄3

√
3F0
π

[ 4
F0

e3 + ( 4
F0

)
3

e−3]e− 2
3F0 is the tunnel ion-

ization rate from the states |2〉 and |3〉 under the action of the
IR field averaged over the period of the modulating field. It is
worth noting that apart from the Stark effect, the modulating
field should lead not only to the tunnel ionization from the
excited states, but also to the plasma heating, thus changing
the value of γcoll. As can be seen from the analytical solution
obtained below, this should only lead to (i) a change in the
medium gain and (ii) a change in the response time of the
resonant polarization of the medium. However, in what fol-
lows, we will neglect this change in γcoll, since a quantitative
description of this effect is beyond the scope of this paper.

We seek a solution for Ẽz in the form

Ẽz(x, τ ) =
∫ ∞

−∞

N∑
n=−N

Ãn(x, ω − 2n�)e−iωτ dω, (5)

where Ãn(ω) is the spectral amplitude of the nth harmonic
(for simplicity, we will call the harmonic at the frequency

ωinc + 2n� “nth harmonic”). Equation (5) implies that the
spectral composition of the HH field in the medium is de-
termined by the radiation of the seed (3) (no new sidebands
are generated in the spectrum of HHs). In the following, we
will additionally assume that (i) the spectral contours of the
harmonics of different orders do not overlap with each other
and (ii) the spectral separation between the harmonics is much
larger than the gain bandwidth of the active medium, � 
 γz.
In this case, as shown in Appendix A, the system of Eqs. (4)
for the spectral amplitudes of the HHs, Ãn(ω), can be reduced
to the system of the interrelated equations:

Ãn(x, ω) = Ãn(x = 0, ω)egnnx/(1−iω/γz )

+
N∑

m=−N
m �=n

gnmei2(m−n)ϑ

1 − iω/γz

∫ x

0
Ãm(x′, ω)

× egnn(x−x′ )/(1−iω/γz )+i2(m−n)�Kx′
dx′, (6)

where gnm = g0J2n(P�)J2m(P�) is the coefficient of coherent
scattering of the mth harmonic into the nth harmonic, while
gnn is the effective gain coefficient of the nth harmonic in a
dense plasma medium; g0 = 4πωzd2

tr ntrNion/(h̄c
√

εXUVγz ) is
the amplitude gain factor of resonant radiation in the absence
of modulation; Jm(x) is the Bessel function of the first kind
of order m; P� = ��/� is the modulation index, which is
the amplitude of the linear Stark shift (the normalized am-
plitude of the IR field, EIR) divided by the frequency of the
IR field, �; while Ãn(x = 0, ω) is the spectral amplitude of
the nth HH at the entrance to the medium. In accordance
with (3), all HHs at x = 0 have identical spectral amplitudes:
Ãn(x = 0, ω) = Ã0(ω) = 1

2π

∫ ∞
−∞ Ein(τ )eiωτ dτ . The first term

in (6) describes the amplification of the nth harmonic with the
gain coefficient gnn during its solitary propagation through the
modulated active medium. The second term in (6) describes
the influence of all other harmonics on the amplitude of the
nth harmonic. Both the effective gain coefficients gnn and
the scattering coefficients gnm depend on the amplitude and
the frequency (wavelength) of the modulating field through
the modulation index. Thus, the modulation index determines
both the relative amplitudes of the gain coefficients for the
harmonics of different orders and the efficiency of their mu-
tual scattering. Note that the coefficients gnm determine the
efficiency of harmonic scattering into each other in a nondis-
persive active medium (with zero plasma dispersion for the
modulating IR field), while the role of the plasma dispersion
is taken into account by the integrals on the right-hand side of
(6). The factor (1 − iω/γz )−1 both in the exponent and under
the sum symbol in (6) characterizes the spectral contour of the
gain lines, and it is responsible for modifying the shape of the
spectral contours of HHs.

After normalizing the integration variable, Eqs. (6) can be
represented as

Ãn(x, ω) = Ã0(ω)egnnx/(1−iω/γz )

+
N∑

m=−N
m �=n

gnm

�K

ei2(m−n)ϑ

1 − iω/γz

∫ �Kx

0

× Ãm(�/�K, ω)e
gnn
�K (�Kx−�)/(1−iω/γz )+i2(m−n)�

× d�, (7)
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where � = �Kx′ is the phase accumulated by the modulat-
ing IR field due to the plasma dispersion at the propagation
distance x′. Let us introduce the parameter

α = g0

�K
, (8)

which is the ratio between the amplitude gain coefficient of
the nonmodulated medium, g0, and the addition to the wave
number of the IR field caused by the plasma dispersion, �K .

If the plasma is strongly dispersive for the modulating IR
field, and the parameter α tends to zero, α → 0, then the
second term in (7) becomes negligible. In this case, each
harmonic is amplified independently of the others with a gain
coefficient proportional to J2

2n(P�), while the relative phases
of the harmonics are maintained during the amplification pro-
cess [44]. This can be understood as redistribution of medium
gain to combination frequencies resonant with the HHs. If
additionally the modulation index, P�, is chosen in such a
way that the squares of Bessel functions of different orders,
J2

2n(P�), n = 1, 2, . . . , N , are maximized and have approxi-
mately the same values, then the harmonics resonant with the
corresponding gain lines will be amplified uniformly (equally
efficiently), and the time dependence of the resulting HH field
will not be noticeably modified. In particular, this allows for
the amplification of attosecond pulses with preservation of
their duration and shape.

At the same time, as was shown in [47–50], in an active
medium with low concentration of free electrons and moder-
ate dispersion for the modulating IR field, a single HH, tuned
in resonance with the modulated transition, efficiently gener-
ates a multifrequency XUV or x-ray field at the frequencies of
the sidebands, separated from the resonance by even multiples
of the frequency of the modulating field. This multifrequency
field is generated due to the coherent scattering of the resonant
radiation on the modulation wave, which propagates through
the medium with the phase velocity of the modulating field.
At the optimal depth of the medium, determined by the con-
centration of free electrons in a plasma, and for certain values
of the modulation index, the sidebands acquire the highest
amplitudes and become phase aligned with the amplified field
of the resonant harmonic, which allows for the formation of
subfemtosecond pulses from the quasimonochromatic inci-
dent radiation.

Contrary to [47–50], in the present paper we consider the
propagation of an attosecond pulse train constituted by a set
of (2N + 1) in-phase harmonics, which are tuned in resonance
with the induced gain lines, through the active plasma medium
with low concentration of free electrons. In this case, each
harmonic from the incident field is both amplified and gener-
ates coherently scattered fields at the frequencies of the other
harmonics. A sum of these coherently scattered fields at the
frequency of an individual harmonic forms the second term
in (7). A single term in this sum characterizes the scattering
of the field of the mth harmonic with the amplitude Ẽm to the
field of the nth harmonic with the amplitude Ẽn. The efficiency
of this scattering is proportional to the ratio gnm/�K . Thus,
to increase the efficiency of mutual harmonic scattering, one
needs to increase gnm via increasing the unperturbed gain
coefficient, g0, and maximizing the product J2n(P�)J2m(P�),

and decrease the plasma dispersion at the frequency of the
modulating field, thus decreasing �K .

It is worth noting that the efficiency of harmonic scattering
into each other decreases with increasing harmonic detuning
from the resonance (increasing absolute values of the indices
2n and 2m). Indeed, the peak (with respect to variation of
the modulation index) value of the product J2n(P�)J2m(P�)
decreases with increasing indices n and m. Moreover, with in-
creasing n and m, the maximization of J2n(P�)J2m(P�) implies
a larger value of the modulation index P� � max(2|n|, 2|m|),
where P� ∼ EIR/� ∼ EIR� (� is the wavelength of the mod-
ulating field). However, the value of P� is limited for the
following reasons. An increase in the IR field strength above
the ionization threshold of the active medium would destroy
the gain (thus reducing g0), while an increase in the IR field
wavelength would lead to an increase in the plasma dispersion
for the modulating field (increasing �K).

Furthermore, the amplitude of the coherently scattered
field of the mth harmonic at the frequency of the nth harmonic
depends on the propagation distance through the parameter
�Kx. This is due to the fact that such a field is the sum
of partial waves generated in all the preceding slices of the
medium via the scattering of the mth harmonic field on the
modulation wave propagating with the phase velocity of the
modulating field, which differs from the phase velocity of
harmonics because of the plasma dispersion. As follows from
(7), the amplitude of the mth harmonic also depends on the
initial phase of the modulating field, ϑ . If the relation between
ϑ and �Kx is that the overall coherently scattered field [the
second term in (7)] is in phase with the field of the amplified
harmonic [the first term in (7)], then their constructive inter-
ference will enhance the harmonic amplification efficiency.
This is the effect of MAHH.

Thus, for the most efficient amplification of a set of in-
phase harmonics in a moderately dispersive for the IR field
plasma medium, two conditions should be satisfied. First, one
should equalize and maximize the gain coefficients for the har-
monics of different orders, gnn, and the scattering coefficients
between them, gnm, via a proper choice of the modulation
index, which should be on the order of or higher than the
number of the amplified harmonics, P� � 2N ; see [44,45] for
the details. In such a case

|J−2N (P�)| ≈ |J−2N+2(P�)| ≈ ... ≈ |J2N−2(P�)| ≈ |J2N (P�)|
≡ J (P�), (9)

where J (P�) is the average value of |J2n(P�)| for −N �
n � N at the corresponding value of the modulation index,
J (P�) = ∑N

n=−N |J2n(P�)|/(2N + 1). Equation (9) is just the
optimal condition for independent harmonic amplification in
a strongly dispersive plasma medium [44]. The second con-
dition is the maximization of MAHH via a proper choice of
the medium length and the initial phase of the modulating IR
field.

Let us assume that the condition (9) is satisfied via a
proper choice of the modulation index P�, while the parameter
α is sufficiently small, so that the second term in (7) can
be considered as a small perturbation. In this case, in the
zeroth order of the perturbation theory the following equal-
ity holds: Ãn(x, ω) = Ã0(ω) exp[geffx/(1 − iω/γz )] for any
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−N � n � N , where geff = g0J2(P�) is the effective gain
coefficient. In the first order of the perturbation theory

Ãn(x, ω) = Ã0(ω)egeff x/(1−iω/γz )

×
[

1 + αJ2(P�)

1 − iω/γz

N∑
m=−N
m �=n

sgn[J2nJ2m]

× sin [(m − n)�Kx]

m − n
ei(m−n)(�Kx+2ϑ )

]
, (10)

where J2n ≡ J2n(P�) and sgn(x) = 1 for x � 0, sgn(x) = −1
for x < 0.

Let us formulate a sufficient condition for the applicability
of the perturbation theory in this case. First, we estimate
J2(P�). As was shown in [45], the gain spectrum of the
optically dressed hydrogenlike active medium consists of the
gain lines, which are separated from the resonance by both
even and odd multiples of � with the peak gain coefficients
proportional to J2

2n(P�) and J2
2n+1(P�), respectively. As is well

known,
∑∞

n=−∞ J2
n (P�) = 1. Under the condition (9) the total

medium gain is redistributed approximately equally between
the gain lines and one may assume J2

n (P�) ≈ J2
m(P�) for ar-

bitrary n and m. For the most efficient amplification of the
incident field (3), the number of even-order induced gain lines
should be approximately equal to the number of amplified
harmonics [44,45] (while the total number of the gain lines
should be twice as large). Then J2(P�) can be estimated as
1/[2(2N + 1)]. Second, we estimate the sum in the second
term in square brackets of (10). Since the absolute value of a
sum is less than the sum of the absolute values of its terms and
|sin(x)| � 1, we can write∣∣∣∣∣∣∣∣

N∑
m=−N
m �=n

sgn(J2nJ2m)
sin [(m − n)�Kx]

m − n
ei(m−n)[�Kx+2ϑ]

∣∣∣∣∣∣∣∣
�

N∑
m=−N
m �=n

1

|m − n| . (11)

By introducing the substitution k = m−n, we obtain

N−n∑
k=−N−n

k �=0

1

|k| =
N−n∑
k=1

1

k
+

N+n∑
k=1

1

k
� 2

N∑
k=1

1

k
. (12)

The last sum in (12) is the partial sum of the harmonic
series. It can be estimated as

∑N
k=1

1
k � ln(N ) + 1. Finally,

|1 − iω/γz|−1 � 1. Thus, the sufficient condition for the ap-
plicability of perturbation theory takes the form

α(ln N + 1)/(2N + 1) � 1. (13)

The condition (13) implies either (i) a relatively strong
plasma dispersion for the modulating IR field, (ii) a not too
large gain of an active medium for the XUV or x-ray field, or
(iii) a high number of the amplified HHs.

The time dependence of the amplitude of the nth HH is
calculated from (10) using the inverse Fourier transform and

has the form

Ẽn(x, τ ) = Ẽindep(x, τ ) + αJ2(P�)B(x, τ )

×
N∑

m=−N
m �=n

sgn[J2nJ2m]
sin [(m − n)�Kx]

m − n

× ei(m−n)(�Kx+2ϑ ), (14)

where Ẽindep(x, τ )= ∫ ∞
−∞Ã0(ω) exp[geffx/(1−iω/γz )]e−iωτ dω

is the spatial-temporal dependence of the amplitude of the nth
HH in the case of its independent amplification in the modu-
lated active medium, and B(x, τ ) = ∂Ẽindep(x, τ )/∂ (geffx) is a
factor describing the space-time dependence of the coherently
scattered field due to the fact that it is produced with a delay
relative to the field of harmonics. As shown in Appendix B,
for the considered envelope of the incident harmonic signal,
Ein(τ ) = E0θ (τ ), Ẽindep(x, τ ) has the following form:

Ẽindep(x, τ )

= E0θ (τ )

⎡
⎣1 + e−γzτ

∞∑
k=0

(geffx)k+1

(k + 1)!

∞∑
m=k+1

(γzτ )m

m!

⎤
⎦.

(15)

At the initial times, when γzτ < 1, Ẽindep(x, τ )
is approximately described by the following ex-
pression [see (B10) in Appendix B]: Ẽindep(x, τ ) �
E0θ (τ )[1 + e−γzτ (I0(2

√
geffxγzτ ) − 1)], where I0(x) is the

modified zeroth-order Bessel function.
According to (14), the amplitude of the contribution due to

the scattering of the mth harmonic into the nth harmonic [each
term in the sum in (14)] is determined by the phase accumu-
lated by the modulating field, �Kx, as well as the difference
m−n and the derivative of the HH amplitude in the case of its
independent amplification with respect to the effective optical
thickness, geffx, of the modulated active medium, while the
phase of this contribution is the function of the combination
�Kx + 2ϑ , the sign of the product of the Bessel functions
J2n(P�) and J2m(P�), and the sign of sin[(m−n)�Kx]/(m−n).
For a fixed initial phase of the modulating field, ϑ , the total
coherently scattered field at the frequency of the nth harmonic
is a quasiperiodic function of the propagation distance with
the period Lp = π/�K , while for a fixed propagation dis-
tance, x, it is a periodic function of ϑ with the period ϑp = π .
At the propagation distances corresponding to �Kx = kπ ,
where k is an integer, the coherently scattered field becomes
zero and the harmonic amplitudes are the same as in the
dense plasma medium. Although the analytical solution (14)
implies the fulfillment of the condition (13), as shown be-
low in Sec. IV via comparison with the numerical solution
of the general system of equations described in Sec. II, it
remains qualitatively correct even if the condition (13) is not
satisfied.

The MAHH effect is observed if the sum in (14) is positive
for each of the amplified HHs. To study the role of mutual
scattering of in-phase HHs, forming a train of short pulses, in
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their amplification process, we introduce the parameter

Gcoh(x, τ, P�, ϑ ) = Ipulse − I (indep)
pulse

I (indep)
pulse

. (16)

Here Ipulse is the peak intensity of an individual pulse in
the amplified pulse train in the presence of MAHH, Ipulse =
max[ c

8π
|∑N

n=−N Ẽn(x, τ )e−i2n�τ |2], where the maximum is
taken within the half cycle of the IR field in the vicinity of
the time τ , while I (indep)

pulse is the same value in the absence
of the mutual harmonic scattering. Gcoh > 0, if the overall
contribution of the coherently scattered field to the harmonic
intensity is positive, and Gcoh � 0 otherwise. In the case of
Gcoh < 0 the harmonic amplification is suppressed because of
the destructive interference of coherently scattered fields with
the fields of HHs [51].

Under conditions of uniform harmonic amplification (9)
we have I (indep)

pulse = (2N + 1)2 max[cẼ2
indep(x, τ )/(8π )], while

in the case of weak harmonic scattering (13), up to the first-
order values in amplitude of the coherently scattered field, the
parameter Gcoh takes the form

Gcoh(x, τ, P�, ϑ ) = 2α f (x, τ )J2(P�)Finterf (�Kx, ϑ, P�),
(17)

where f (x, τ ) = B(x, τ )/Ẽindep(x, τ ) and

Finterf (�Kx, ϑ, P�)

= 1

2N + 1

N∑
n=−N

N∑
m=−N
m �=n

sgn(J2nJ2m)

× sin [(m − n)�Kx]

m − n
cos [(m − n)(�Kx + 2ϑ )]. (18)

The time dependence of the parameter Gcoh is determined
by the ratio between the electric-field amplitude of an am-
plified HH at the considered propagation distance x in the
case of its independent amplification (in a dense active plasma
medium), Ẽindep(x, τ ), and the factor B(x, τ ) [see Eq. (14) and
the following discussion]. For the considered envelope of the
incident harmonic signal (3) it has the form

f (x, τ ) = e−γzτ
∑∞

k=0
(geff x)k

k!

∑∞
m=k+1

(γzτ )m

m!

1 + e−γzτ
∑∞

k=0
(geff x)k+1

(k+1)!

∑∞
m=k+1

(γzτ )m

m!

. (19)

The time dependences of the factor f given by (19) for
different values of the effective optical thickness, geff x, are
shown in Fig. 1. According to this figure, the value of f
increases monotonically with time and reaches saturation,
f � 1, at γzτ 
 1. In an optically thin medium, if geffx � 1,
the factor f does not depend on the propagation distance
and approximately equals to f (x, τ ) ≈ 1− exp(−γzτ ). In this
case, the saturation time of the dependence f (x, τ ) is given by
the inverse decoherence rate at the resonant transitions, γ −1

z .
However, as the optical thickness increases, the saturation
time increases as well, which leads to a decrease in the value
of f (and, hence, Gcoh) at a fixed time τ (until the population
differences at the transitions |2〉 → |1〉 and |3〉 → |1〉 do not
decrease much, and the obtained analytical solution remains
applicable). Thus, the factor f (x, τ ) leads to (i) monotonic
increase in Gcoh with time and (ii) monotonic decrease in

0 1 2 3 4 5 6 7 8 9 10

z

0

0.1

0.2

0.3

0.4

0.5

0.6
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1

f(
x 

= 
co

ns
t,

) geffx = 10 -1

geffx = 10 0

geffx = 10 1
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FIG. 1. The local time dependence of the factor f for different
values of the effective optical thickness: geff x = 10−1 (blue solid
curve), geff x = 100 (red dashed curve), geff x = 101 (black dotted
curve), and geff x = 102 (green dash-dotted curve).

Gcoh with increasing effective optical thickness of the medium
(increasing propagation distance).

Noteworthy, Gcoh as a function of dimensionless pa-
rameters γzτ , �Kx, ϑ , and P� does not depend on the
characteristics of the active medium, except for the ratio α =
g0/�K .

In the next three subsections, we study the dependence
of Gcoh on the parameters �Kx and ϑ at the values of P�

satisfying the condition (9) and find the optimal conditions,
which maximize the value of Gcoh, for the cases of mutual
amplification of three, five, and seven in-phase HHs. For
this purpose, the parameter Gcoh is normalized to the factor
2α f (geff x, γzτ ). This normalization allows one to obtain the
results valid for arbitrary values of the parameters α, geff x,
and γzτ within the range of applicability of the solution (14).

A. Mutual amplification of three in-phase HHs

We start with the case of a set of three HHs (N = 1).
To find optimal conditions of their mutual amplification, it
is necessary to maximize Gcoh by finding the optimal values
of the modulation index, P�, the normalized propagation dis-
tance, �Kx, and the initial phase of the modulating field, ϑ .
For uniform amplification of all considered harmonics, the
modulation index P� should satisfy the condition (9). In the
case of three HHs it is reduced to the following equation:

|J0(P�)| = |J2(P�)|. (20)

The modulation indices satisfying (20) are

P� = {1.84; 3.83; 5.33; 7.01; . . .}. (21)

In Fig. 2(a) we plot the dependencies |J0(P�)| and |J2(P�)|,
while in Fig. 2(b) we show J2(P�) for modulation indices
given by (21). The modulation indices (21) can be divided
into two groups. The first group corresponds to those P�, for
which J0(P�) = J2(P�), while for modulation indices from
the second group J0(P�) = −J2(P�). Such a difference leads
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FIG. 2. (a) The modulation index dependence of the absolute
value of the ith Bessel function. Blue solid and red dashed curves
correspond to i = 0 and 2, respectively. (b) The square of the
averaged absolute values of Bessel functions of orders i = –2,0,2
[denoted as J2(P�), see (9)] for the modulation indices satisfying
(20). Blue circles correspond to the first group of P�, for which
J0(P�) = J2(P�), and red stars correspond to the second group of
P�, for which J0(P�) = –J2(P�).

to the different dependencies of Finterf on �Kx and ϑ for these
two groups.

Let us consider the first group of modulation indices.
The corresponding dependence F (1)

interf (�Kx, ϑ ) is shown in
Fig. 3(a) (the superscript of the Finterf function indicates that
the modulation index belongs to the first group). This de-
pendence is plotted in the ranges 0 � �Kx � π and 0 �
ϑ � π (due to the periodicity of Finterf , see Eq. (18), this
is sufficient for its complete representation). It is worth not-
ing that a change in ϑ by π does not lead to a physically
different result, but an increase in the parameter �Kx by π

leads to a change in the physical thickness of the medium,

and, hence, to an increase in its effective optical thickness,
as well as to a change in Ipulse and Gcoh. The dependence
F (1)

interf (�Kx, ϑ ) contains several areas where Finterf > 0 (and
thus Gcoh > 0), and the total intensity of a set of HHs is
higher than in the case of their independent amplification at
the same physical length. Such areas contain the absolute
maxima, max{F (1)

interf} � 1.47, which are reached at �Kx �
0.38π + pπ , where p = {0, 1, 2, . . .}, and ϑ � 0.81π . These
maxima correspond to �Kx + 2ϑ = 2π + pπ . In such a case,
all the terms in (18) with m−n = {−2, −1, 0, 1, 2} have the
same (positive) signs. Consequently, the coherently scattered
field (i) is maximized and (ii) is phase matched with the field
of the amplified HHs.

Next, let us consider the second group of the modulation
indices. In Fig. 3(b) we show the corresponding dependence
F (2)

interf (�Kx, ϑ ). It is clearly seen that Figs. 3(a) and 3(b) co-
incide up to a shift of ϑ by π/2. The reason is that such initial
phase shift causes the appearance of a multiplier (−1)m−n in
each term in (18), which is eliminated in the considered case
of N = 1 (a set of three HHs) and J0(P�) = −J2(P�) (the
second group of the modulation indices), since sgn(J2nJ2m) =
(−1)m−n. Thus, for such modulation indices the max-
ima of F (2)

interf (�Kx, ϑ ), max{F (2)
interf} = max{F (1)

interf} � 1.47, are
reached at �Kx � 0.38π + pπ , where p = {0, 1, 2, . . .},
and ϑ � 0.31π (so that �Kx + 2ϑ = π + pπ ).

Now we can formulate the optimal conditions for MAHH
for a set of three HHs, which maximize the parameter
Gcoh by maximizing the values of J2 and Finterf . According
to Figs. 2(b) and 3(b), the maxima are reached at P� ≡
P(3Harm)

� = 3.83, �Kx ≡ (�Kx)3Harm � 0.38π + pπ , where
p = {0, 1, 2, . . .}, and ϑ ≡ ϑ3Harm � 0.31π . The corre-
sponding peak value of Gcoh normalized to the factor
2α f (geff x, γzτ ) is about 0.24.

B. Mutual amplification of five in-phase HHs

Next, similar to the previous subsection, we consider the
amplification of five in-phase HHs (N = 2). In this case,

FIG. 3. The dependence of Finterf on the normalized propagation distance, �Kx, and the initial phase of the modulating field, ϑ , for (a) the
first group [blue circles in Fig. 2(b)] and (b) the second group [red stars in Fig. 2(b)] of the modulation indices, P�.
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FIG. 4. (a) The modulation index dependence of the absolute
value of the ith Bessel function. Blue solid, red dashed, and black
dotted curves correspond to i = 0,2,4, respectively. Dashed black
rectangles show the ranges of P�, where the condition (22) is ap-
proximately satisfied. (b) The square of the averaged absolute values
of Bessel functions of orders i = –4,–2,0,2,4, J2(P�), for the modu-
lation indices satisfying the condition (22). Blue circles correspond
to the first group of P�, for which J0(P�) ≈ –J2(P�) ≈ –J4(P�), and
red stars correspond to the second group of P�, for which J0(P�) ≈
–J2(P�) ≈ J4(P�).

the optimal value of the modulation index should satisfy the
condition

|J0(P�)| � |J2(P�)| � |J4(P�)|. (22)

In Fig. 4(a) we plot the dependences of absolute values of
Bessel functions of the zeroth, second, and fourth orders on
the modulation index. According to this figure, the condition
(22) is approximately satisfied in the vicinity of the following
values of P� [see dashed black rectangles in Fig. 4(a)]:

P� = {4.2; 6.5; 8.1; 9.8; 11.4; 13.1; 14.6; . . .}. (23)

As in the case of three harmonics, the modulation indices
(23) are divided into two groups. The first group includes
P� = {4.2; 8.1; 11.4; 14.6; . . .} [blue circles in Fig. 4(b)],
for which J0(P�) � −J2(P�) � −J4(P�). The corresponding
dependence F (1)

interf (�Kx, ϑ ) is shown in Fig. 5(a). In this case,
the areas of the positive contribution of the coherently scat-
tered field to the total field (5), Finterf > 0 (and thus Gcoh > 0),
are small, while the peak value of F (1)

interf is max{F (1)
interf} � 0.38,

which is smaller than in Fig. 3. The reduction in the peak
value of F (1)

interf is caused by low synchronization between the
different components of the coherently scattered field. Thus,
for the modulation indices from the first group, the effect of
MAHH for five in-phase harmonics is relatively weak and
unstable with respect to variation of �Kx and ϑ .

The second group of the modulation indices includes
P� = {6.5; 9.8; 13.1; . . .} [red stars in Fig. 4(b)], for which
J0(P�) � −J2(P�) � J4(P�). For these modulation indices
the dependence F (2)

interf (�Kx, ϑ ) is shown in Fig. 5(b). In con-
trast with Fig. 5(a), for the modulation indices from the second
group the effect of MAHH is stronger and more stable with
respect to variation of the parameters �Kx and ϑ , since, in
this case, max{F (2)

interf} � 1.92 > max{F (1)
interf}, while the range

of Finterf > 0 is wider. Moreover, qualitatively Fig. 5(b) resem-
bles Fig. 3(b). The peak value of F (2)

interf is reached at �Kx �
0.26π + pπ , where p = {0, 1, 2, . . .}, and ϑ � 0.37π . Un-
der these conditions, as for a set of three HHs, we have �Kx +
2ϑ = π + pπ and sgn(J2nJ2m) = (−1)m−n. Thus, according
to Eq. (14), in this case all components of the coherently
scattered field are in phase with each other and with ampli-
fied harmonics, except for the contribution from the −2th
harmonic to the field of the +2th harmonic, which is approxi-
mately zero.

Now we formulate the optimal conditions for MAHH for a
set of five HHs, which maximize the factors J2(P�) and Finterf .
According to Fig. 4(b), the peak value of J2 is reached at P� =
4.2 from the first group of the modulation indices; in this case,
J2(4.2) � 0.10. However, in this case the peak value of Finterf

is rather small, max{F (1)
interf} � 0.38, and the corresponding

value of Gcoh normalized to the factor 2α f (geff x, γzτ ) is about

FIG. 5. The dependence of Finterf on the normalized propagation distance, �Kx, and the initial phase of the modulating field, ϑ , for (a) the
first group [blue circles in Fig. 4(b)] and (b) the second group [red stars in Fig. 4(b)] of the modulation indices, P�.
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FIG. 6. (a) The modulation index dependence of the absolute
value of the ith Bessel function. Blue solid, red dashed, black dotted,
and green dash-dotted curves correspond to i = 0,2,4,6, respectively.
Dashed black rectangles show the ranges of P�, where the condition
(24) is approximately satisfied. (b) The square of the averaged ab-
solute values of Bessel functions of orders i = –6, –4, –2,0,2,4,6,
J2(P�), for the modulation indices satisfying the condition (24).
Blue circles correspond to the first group of P�, for which J0(P�) ≈
–J2(P�) ≈ J4(P�) ≈ J6(P�), and red stars correspond to the second
group of P�, for which J0(P�) ≈ –J2(P�) ≈ J4(P�) ≈ –J6(P�).

0.04; therefore, the effect of MAHH is relatively weak. On
the other hand, due to the highest normalized effective gain
factors of the harmonics, gnn ∼ J2, the value P� = 4.2 is ideal
for the independent amplification of five in-phase HHs in a
highly dispersive plasma medium [45]. At the same time, for
the second group of the modulation indices the peak value of
J2 is reached at P� = 6.5 and corresponds to J2(6.5) � 0.081,
while max{F (2)

interf} � 1.92. In this case, the normalized value
of Gcoh is about 0.16, which is four times larger than in the
case of P� = 4.2. Thus, the optimal conditions for mutual
amplification of five in-phase HHs are P� ≡ P(5Harm)

� � 6.5,
�Kx ≡ (�Kx)5Harm � 0.26π + pπ , p = {0, 1, 2, . . .}, and
ϑ ≡ ϑ5Harm � 0.37π .

C. Mutual amplification of seven in-phase HHs

In the case of amplification of a set of seven in-phase HHs,
the condition of uniform harmonic amplification has the form

|J0(P�)| � |J2(P�)| � |J4(P�)| � |J6(P�)|. (24)

The modulation index intervals, within which the condi-
tion (24) is approximately satisfied, are shown in Fig. 6(a)
by dashed black rectangles. They are centered around the
following values of P�:

P� = {6.5; 9.2; 10.7; 12.6; 14.2; . . .}. (25)

The corresponding square of the averaged absolute value
of Bessel functions of even orders from −6th to 6th, J2(P�),
is shown in Fig. 6(b). As in the previous cases, the modulation
indices (25) can be divided into two groups.

The first group includes the modulation indices P� =
{6.5; 10.7; 14.2; ...} [blue circles in Fig. 6(b)]. For these val-

ues of the modulation index J0(P�) � −J2(P�) � J4(P�) �
J6(P�). The first two of these equalities are the same as in
the optimal case for mutual amplification of a set of five
HHs. Moreover, the modulation indices from the first group
are close to the optimal ones for the amplification of five
HHs, while the dependence F (1)

interf (�Kx, ϑ ) shown in Fig. 7(a)
resembles Fig. 5(b). However, adding the two harmonics
to the incident field [with the gain coefficients proportional
to J2

6 (P�)] makes the dependence F (1)
interf (�Kx, ϑ ) somewhat

spotty and reduces the peak value of the parameter Finterf in
comparison with the case of five harmonics from 1.923 to
0.787. This is due to the fact that for the considered modula-
tion indices the sign of J6(P�) is the same as that of J0(P�)
and J4(P�). As a result, the total coherently scattered field
includes the components [the terms in the sum in (14) or (18)]
which are in antiphase with the incident HH field. In partic-
ular, for �Kx � 0.36π + pπ , where p = {0, 1, 2, . . .}, and
ϑ � 0.32π , at which F (1)

interf (�Kx, ϑ ) reaches its maximum
value, 10 out of 36 components of the coherently scattered
field are out of phase [ten terms in (18) are negative], while
under the optimal conditions of mutual amplification of five
HHs, all components of the coherently scattered field are in
phase with the incident harmonics. Thus, the first group of
the modulation indices is not optimal for MAHH. On the
other hand, the modulation index P� = 6.5 corresponds to the
largest normalized gain factor, J2, and thus is optimal for the
independent amplification of seven HHs [44,45].

The second group of the modulation indices includes
the values P� = {9.2; 12.6; ...} [red stars in Fig. 6(b)], for
which J0(P�) � −J2(P�) � J4(P�) � −J6(P�). In contrast to
the modulation indices from the first group, in this case
the sign of J6(P�) is opposite to the sign of J0(P�). Thus,
sgn(J2nJ2m) = (−1)m−n as in the optimal cases for mutual
amplification of three and five HHs. This causes the similarity
of the dependence F (2)

interf (�Kx, ϑ ) shown in Fig. 7(b) to the
dependencies plotted in Figs. 3(b) and 5(b). In the consid-
ered case, the peak value max{F (2)

interf} � 2.15 is reached at
�Kx � 0.2π + pπ , where p = {0, 1, 2, . . .}, and ϑ � 0.4π .
For these values of the parameters �Kx and ϑ all components
of the coherently scattered field, except for two, which are
generated due to scattering from the −3rd to the +3rd HH
and vice versa, are in phase with the field of harmonics. For
the modulation indices from the second group, the maximum
value of J2 � 0.039 is reached at P� = 9.2, see Fig. 6(b),
and corresponds to the value of Gcoh/2α f (geff x, γzτ ) of about
0.08. Thus, the optimal conditions for mutual amplification of
the set of seven in-phase harmonics are P� ≡ P(7Harm)

� � 9.2,
�Kx ≡ (�Kx)7Harm � 0.2π + pπ , where p = {0, 1, 2, . . .},
and ϑ ≡ ϑ7Harm � 0.4π .

In the next section, for the found optimal values of the
parameters, we numerically study the MAHH effect using the
active medium of an x-ray laser based on a Li2+ hydrogenlike
plasma as an example. The obtained results are compared with
the case of independent harmonic amplification in a plasma
medium with high free-electron concentration.

IV. NUMERICAL RESULTS

Below we present numerical calculations, which are based
on the integration of the set of Maxwell-Bloch equations, for
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FIG. 7. The dependence of Finterf on the normalized propagation distance, �Kx, and the initial phase of the modulating field, ϑ , for (a) the
first group [blue circles in Fig. 6(b)] and (b) the second group [red stars in Fig. 6(b)] of the modulation indices, P�.

detailed consideration of the possibilities of mutual amplifi-
cation of HHs (3) in a moderately dispersive active medium
of an x-ray laser based on a hydrogenlike Li2+ plasma. In
contrast to the analytical solution presented above, this ap-
proach does not rely on the perturbation theory when taking
into account mutual harmonic scattering, and also takes into
account (i) the change in the population differences at the
inverted transitions, as well as (ii) amplified spontaneous
emission generated at the transitions |4〉 ↔ |1〉 and |5〉 ↔ |1〉;
this emission can overlap in time and space with amplified
harmonic radiation and lead to a decrease in the harmonic
amplification efficiency due to an increase in the population
of the ground state of the ions. Both factors are taken into ac-
count in a five-level model of the active medium described in
detail in [44,47,48]. This model takes into account all dipole-
allowed transitions between the considered bound states. In
the general case, it would also be necessary to take into ac-
count a decrease in the population of the excited states due
to their single-photon ionization by the high-harmonic radi-
ation (3) resonant to the transition n = 1 ↔ n = 2, resulting
in a decrease in harmonic amplification efficiency. However,
the probability of the corresponding bound-free transitions is
much lower than that of the considered bound-bound transi-
tions, since the squares of the moduli of the dipole moments
of bound-free transitions are several tens of times smaller
than those of the bound-bound transitions. In particular, the
square of the modulus of the dipole moment of single-photon
transitions from the excited states |2〉 and |3〉 to the continuum
states is about 50 times smaller than the square of the modulus
of the dipole moment of the transitions from the same states
to the ground state |1〉, which makes it possible to neglect
the influence of single-photon ionization in the process of HH
amplification.

In the following, we consider the hydrogenlike active
medium of a Li2+ plasma-based x-ray laser with the inverted
transition wavelength in the vicinity of 13.5 nm. We assume
the Li2+ ion density Nion = 1.5 × 1017 cm−3 and the ion tem-
perature 1 eV, as well as the concentration of free electrons
Ne = 3 × 1017 cm−3 with the electron temperature of 2 eV.

These parameters are the same as in [47,48] and close to those
in the experiment [52]. The collisional and radiative decay
rates of the quantum coherences at the inverted transitions
in such a plasma medium are γ −1

coll ≈ 0.425 ps and −1
rad ≈

19.7 ps, respectively. Here, the collisional decay rate is esti-
mated according to [55] in the quasistatic approximation and
is determined by ion-ion collisions (the effect of electron-ion
collisions for the considered parameter values is negligible).
Similarly to the previous works [44,47,48], we assume that
initially (before the arrival of resonant radiation at a given
point of the medium) all Li2+ ions are excited with equal
probability to one of the states |2〉, |3〉, |4〉, and |5〉, while
the ground state |1〉 is not populated. Thus, the initial value
of the population inversion between each of the excited states
and the ground state is 1/4, ntr = 0.25. Below we consider
an active plasma medium of a cylindrical shape with a cross-
sectional radius of 2.5 μm and a length of up to 3 mm.

For comparison with analytical results, in numerical cal-
culations we assume a rectangular envelope of the field of
each harmonic from the incident set of (2N + 1) HHs (3) with
smoothed turn-on and turn-off:

Ein(t ) = E0×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin2

(
π

2

t

�tsw

)
, 0 � t < �tsw,

1, �tsw � t < �tflat + �tsw,

cos2
( π

2

t − (�tflat + �tsw )

�tsw

)
, �tflat + �tsw � t < �tflat +2�tsw,

0, t � �tflat +2�tsw,

(26)

where �tsw = 10 fs and �tflat = 2980 fs. The incident field is
nonzero within the time interval �tflat + 2�tsw = 3 ps, has a
constant amplitude E0 within �tflat = 2980 fs, and is turned
on and off within �tsw = 10 fs. The amplitude E0 is chosen
so that the peak intensity of HHs was 109 W/cm2 regardless
of the number of harmonics (for an arbitrary N). In turn, the
intensity of the modulating field is IL = 4 × 1014 W/cm2,
which is close to its maximum allowable value determined
by the ionization threshold from the upper lasing states of
the ions. Since P� ∼ EL�, for a fixed value of the mod-
ulation index, maximization of intensity of the modulating
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FIG. 8. The results of calculations for a set of three in-phase high-order harmonics. The parameter values are as follows: P(3Harm)
� = 3.83,

IL = 4 × 1014 W/cm2, � = 1.63μm, ϑ3harm = 0.31π , Nion = 1.5 × 1017 cm−3, and the electron concentration is either Ne = 3 × 1017 cm−3

or 3 × 1018 cm−3. For all the figures gray and brown (dash-dotted) curves correspond to the numerical simulations for Ne = 3 × 1017 cm−3,
black curves correspond to the numerical simulations for Ne = 3 × 1018 cm−3, and green dotted curves correspond to the analytical solution
(17)–(19) for Ne = 3 × 1017 cm−3. (a) The time dependences of Gcoh (gray solid and green dotted curves, left vertical axis) and of the (common)
population difference at the transitions |2〉 → |1〉 and |3〉 → |1〉, ntr (gray and black dashed curves, right vertical axis), at the medium length
x = 0.87 mm. (b) The spatial dependences of the peak intensity of an individual z-polarized subfemtosecond pulse produced in the closest
vicinity of τ = 100 fs, normalized to the peak intensity of the incident pulses, I0 = 109 W/cm2 (gray and black dashed curves, left vertical axis),
and of the parameter Gcoh (gray solid and green dotted curves, right vertical axis) at the time instant τ = 100 fs. (c) The spatial dependences
of the peak intensities (the global maxima throughout the envelope) of the z-polarized pulse train (gray and black solid curves) and of the
y-polarized ASE (brown dash-dotted curve), normalized to I0. In this panel, each point of each curve corresponds to the different time instant
τ , when the maximum of XUV intensity at the corresponding propagation distance is reached. (d) The time dependences of the z-polarized
subfemtosecond pulse train (gray and black solid curves) and of the y-polarized ASE (brown dash-dotted curve) at the medium length x =
1.4 mm [the corresponding point is marked in (c) by a short dotted gray line]. The inset in (d) shows the pulse shapes at the maxima of the
envelope of the corresponding pulse trains.

field (and, thus, its amplitude, EL) minimizes the modulating
wavelength, �. A decrease in � results in a weaker plasma
dispersion for the modulating field (smaller �K) and, as
a consequence, a larger parameter α = g0/�K (8), which
maximizes the efficiency of mutual harmonic scattering. For
the considered intensity of the modulating field, the rate of
tunnel ionization from the states |2〉 and |3〉 is −1

ion = 3.3 ps.
Taking into account all relaxation processes, the character-
istic lifetime of coherences at the transitions |2〉 → |1〉 and
|3〉 → |1〉 is γ −1

z ≈ 395 fs. For numerical simulation of the
process of independent amplification of high harmonics in a
strongly dispersive plasma medium, we increase the electron
concentration tenfold, to Ne = 3 × 1018 cm−3, assuming the
presence of a nonresonant impurity in the plasma. As shown
below, this concentration is sufficient to suppress the effect of
MAHH.

Let us start with the MAHH for a set of three in-phase
HHs. In this case, the optimal value of the modulation in-
dex is P(3Harm)

� = 3.83. For the modulating intensity IL =
4 × 1014 W/cm2 it corresponds to the modulating field wave-
length � = 1.63 μm. First of all, let us consider the results of
analytical (17)–(19) and numerical solutions for the time de-
pendences of Gcoh shown in Fig. 8(a) by green dotted and gray

solid curves, respectively (left vertical axis). The calculations
were carried out for the analytically obtained optimum values
of the medium length, x = 0.87 mm [which corresponds to
(�Kx)3Harm � 0.38π + pπ at p = 0], and the initial phase of
the modulating field, ϑ3Harm � 0.31π . At the initial moments
of time, a good agreement is observed between these curves.
However, for the considered parameter values, the sufficient
condition (13) for the applicability of the analytical solution
(17)–(19) is not satisfied, since α(ln N + 1)/(2N + 1) ≈ 3.6.
The agreement between the analytical and numerical results
at the initial instants of time is due to the finite response
time of the resonant medium. At the very beginning of the
amplification process, the amplitude of each harmonic due to
its self-amplification grows with time faster than the ampli-
tudes of the coherently scattered fields from other harmonics.
This, in particular, is reflected in the presence of the factor
(1 − iω/γz )−1 under the sum symbol in the analytical expres-
sions (6) and (7) for the spectral amplitude of the harmonic
field. For this reason, at the initial moments of time, the inde-
pendent amplification of high harmonics is stronger than the
mutual harmonic scattering, which is a necessary condition
for the applicability of the analytical solution. In the case of
amplification of three HHs, agreement is observed up to the
time values τ = 120 fs. At longer times, up to 470 fs, Gcoh

023507-12



MUTUAL AMPLIFICATION OF HIGH-ORDER HARMONICS … PHYSICAL REVIEW A 107, 023507 (2023)

grows faster than the analytical solution (17)–(19) predicts.
This is due to the fact that the mutual harmonic scattering
becomes comparable to or even stronger than the harmonic
self-scattering, so that MAHH starts to dominate in the ampli-
fication process, and the analytical solution (17)–(19) based
on the perturbation theory becomes incorrect. It can be shown
that in the limit of zero plasma dispersion for the modulating
field, that is, for �K → 0 and α → ∞, under the optimal con-
ditions of MAHHs the harmonics form a “strongly amplified
mode,” which grows as a whole with the gain factor given
by the sum of the effective gain coefficients for all harmonics
from the seeding field (3). This strongly amplified mode is
just the same as the “strongly absorbing mode” found for the
IR-field-dressed hydrogenlike resonantly absorbing medium
in the limit �K → 0 [56], except for the opposite sign of the
population differences at the resonant atomic transitions. The
case shown in Fig. 8 is intermediate between the formation
of the strongly amplified mode and the predictions of the
analytical solution (17)–(19) due to the weak but not van-
ishing plasma dispersion at the frequency of the modulating
field. As a result, at the corresponding moments of time,
120 � τ � 470 fs, the peak intensity of the pulses produced
by the total harmonic field, taking into account the mutual
harmonic scattering, is higher than predicted by the analytical
solution (17)–(19). At the considered radiation intensity of the
seed (3), the amplified HH pulse train becomes so intense that
its leading edge takes all the energy stored in the population
inversion of the active medium, which leads to a shortening of
the amplified signal envelope. At even longer times, a decline
in Gcoh is observed, which corresponds to a decrease in the dif-
ference Ipulse − I (indep)

pulse . This is because, in the case of MAHH,
the population difference ntr becomes negative at these times
[Fig. 8(a), right vertical axis, gray dashed curve], and the HH
radiation is absorbed. At the same time, in the case of inde-
pendent amplification of harmonics, the population difference
is positive [Fig. 8(a), right vertical axis, black dashed curve],
and thus the HH radiation is amplified. At a certain instant in
time, the pulses in the case of mutual amplification become
less intense than in the case of independent amplification, and
Gcoh becomes negative.

Next, we consider the spatial dependence of Gcoh shown in
Fig. 8(b) (right vertical axis) for a time instant of 100 fs. It can
be seen that the analytical solution (green dotted curve) agrees
well with the results of numerical calculation (gray solid
curve). Both the spatial period of Gcoh and the positions of
its maxima are well reproduced and, for the considered values
of the modulating field wavelength, � = 1.63 μm, and free-
electron concentration, Ne = 3 × 1017 cm−3, correspond to
Lp = π/�K ≈ 2.3 mm and x3Harm ≈ 0.87 mm + pLp [which
follows from (�Kx)3Harm � 0.38π + pπ ], respectively. In
Fig. 8(b) (left vertical axis) we also show the spatial depen-
dences of the peak intensity of the single pulse from the pulse
train, whose moment of formation is closest to 100 fs, in the
case of MAHH, Ipulse (gray dashed curve), and the indepen-
dent harmonic amplification, I (indep)

pulse (black dashed curve). It is
interesting to note that the maxima of the spatial dependence
of Gcoh(x) are reached at those thicknesses of the medium
where the spatial dependence of the peak pulse intensity in the
case of MAHH, Ipulse(x), reaches saturation. In addition, at the
considered time τ = 100 fs, Ipulse � I (indep)

pulse at any depth of the

active medium, which confirms the optimal choice of the ini-
tial phase of the modulating field, ϑ3Harm, since otherwise, in
accordance with Fig. 3, for certain thicknesses of the medium,
the inverse inequality Ipulse < I (indep)

pulse would hold. It is also
worth noting the small-scale periodic structure, observed in
the numerically calculated spatial dependence of Gcoh [see
Fig. 8(b), right vertical axis, gray solid curve]. This is primar-
ily due to residual (strongly suppressed but nonzero) mutual
harmonic scattering in a plasma with high free-electron con-
centration (in the case of Ne = 3 × 1018 cm−3), which leads
to small-scale oscillations in spatial dependencies of both
I (indep)
pulse (x) and Gcoh(x), with the period L(dense)

p ≈ 0.23 mm.
With an increase in the free-electron concentration, the am-
plitude and period of these oscillations are reduced, and the
numerically calculated dependence Gcoh(x) becomes closer to
its analytical counterpart.

Of greater practical importance is the spatial dependence
of the peak intensity of a pulse train formed by a set of
in-phase HHs. It characterizes the ultimate capabilities of
harmonic amplification in the considered medium, which,
apart from the finite amplification bandwidth, are limited by
the nonlinearity of the medium and, in general, ASE. The
corresponding dependence in the case of mutual amplification
of a set of three in-phase harmonics is shown in Fig. 8(c)
by the gray solid curve. It consists of two regions. In the
first one, due to MAHH, the peak intensity of the pulse
train grows faster than in the case of independent harmonic
amplification [black solid curve in Fig. 8(c)]. The medium
length, at which the greatest difference in the peak intensities
is observed, is about 1 mm, which is close to the analytically
obtained value, 0.87 mm. In the second region, the growth of
the peak intensity of the pulse train in the case of MAHHs
reaches saturation and proceeds slowly compared to the in-
dependent harmonic amplification. The gain slowdown in an
active medium with low free-electron concentration is caused
by a decrease in the amplitude of the coherently scattered
field [as in the gray dashed curve in Fig. 8(b)] and depletion
of the population inversion at resonant transitions |2〉 → |1〉
and |3〉 → |1〉 by the HH radiation, whose intensity in this
case exceeds the saturation threshold. From a practical point
of view, it is reasonable to use an active medium with a
thickness corresponding to the transition between these two
regions (where the saturation intensity is reached by the HH
field). According to Fig. 8(c), for the considered values of the
parameters, such a transition occurs near 1.4 mm [it is marked
in Fig. 8(c) with a short dotted gray line]. It is also worth
noting that at all considered thicknesses of the active medium,
ASE of y polarization [Fig. 8(c), brown dash-dotted curve] is
significantly less intensive compared to the radiation of the
amplified HHs.

In Fig. 8(d) we also show the time dependences of the
intensity of a set of three in-phase HHs in the cases of their
mutual and independent amplification (Ne = 3 × 1017 cm−3,
gray curve, and Ne = 3 × 1018 cm−3, black curve, respec-
tively) at the medium thickness of 1.4 mm [marked in Fig. 8(c)
with a short dotted gray line]. As can be seen, due to the pres-
ence of a coherently scattered field and its synchronization
with the HH radiation, in the case of MAHHs the intensity
of the amplified pulses is considerably higher (except for the
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FIG. 9. Same as in Fig. 8, but for a set of five in-phase high-order harmonics. The parameter values are as follows: P(5Harm)
� = 6.5, IL =

4 × 1014 W/cm2, � = 2.77μm, Nion = 1.5 × 1017 cm−3, ϑ5harm = 0.37π , and the electron concentration is either Ne = 3 × 1017 cm−3 or 3 ×
1018 cm−3. Panel (a) corresponds to the medium thickness x = 0.35 mm, panel (b) is plotted for τ = 100 fs, while panel (d) is plotted for
x = 1.72 mm [the latter value is marked in panel (c) by a short dotted gray line].

trailing edge of the pulse sequence, for which the medium
becomes absorbing). In particular, the peak intensity of the
pulse train reaches 1.8 × 1011 W/cm2, which is about 4.4
times greater than in the case of independent harmonic am-
plification. As shown in the inset in Fig. 8(d), the shape of
individual pulses in both cases remains nearly the same, while
their full width at half maximum (FWHM) is slightly (1.18
times) larger in a plasma with low free-electron concentration.

Next, we similarly consider the mutual amplification of
five in-phase HHs. In this case, the optimal value of the mod-
ulation index is P(5Harm)

� = 6.5. At the modulating intensity
IL = 4 × 1014 W/cm2 the corresponding wavelength of the
modulating field is � = 2.77 μm. In Fig. 9 we show the
dependences similar to those shown in Fig. 8. The regularities
described above for a set of three in-phase high-order harmon-
ics are also valid for the case of five HHs. Therefore, consider
the differences between Figs. 9 and 8. First, because of longer
wavelength of the modulating field and, as a consequence,
stronger plasma dispersion at its frequency, the coherently
scattered field in the case of five HHs is weaker than for a set
of three harmonics. As a result, analytical solution (17)–(19)
is valid over a longer time interval, at least up to about 450 fs
[see Fig. 9(a)]. However, at the initial moments of time, the
analytical solution slightly overestimates the value of Gcoh

[see Fig. 9(b) plotted for τ = 100 fs]. This is due to the fact
that, in contrast to the case of three HHs, where the gain coef-
ficients of all harmonics under optimal conditions are exactly
the same [see (20)], for the case of five HHs there is a small
spread in both the gain coefficients and the cross products of
the Bessel functions of different orders, which characterize the
amplitudes of the mutually scattered fields [see Fig. 4(a) for
P� = 6.5]. In addition, due to larger value of the modulation
index, the effective gain for a set of five HHs is approximately

two times lower than for three harmonics, which leads to a
lower intensity of the amplified signal at the same propagation
distance. As a result, the saturation intensity is not reached,
and the decay of the population difference at the resonant
transitions |2〉 → |1〉 and |3〉 → |1〉 in Fig. 9(a) both for plas-
mas with low and high free-electron concentrations (see gray
and black dashed curves, respectively) occurs mainly due to
spontaneous transitions. Hereupon, the spatial dependence of
the peak intensity of the pulse train [the global maximum over
the local time τ , gray solid curve in Fig. 9(c)] qualitatively
reproduces the spatial dependence of the peak intensity of a
single pulse in the immediate vicinity of τ = 100 fs [which
corresponds to the initial stage of the amplification process
and is shown by the gray dashed curve in Fig. 9(b)]. The
lower gain of HHs also enhances the role of y-polarized ASE
[see Fig. 9(c)]. Thus, according to Fig. 9(c), the amplified
harmonic radiation dominates over the y-polarized ASE only
up to a medium thickness of 1.9 mm. In Fig. 9(d) we plot
the time dependence of the intensity of a set of five HHs in
the case of their mutual amplification (gray solid curve) for
a slightly thinner medium 1.72 mm thick [which corresponds
to a short dotted gray line in Fig. 9(c)], where the transition
occurs between the regions of the fastest and slowest rise
in the peak intensity of the pulse train. For comparison, the
same time dependence is shown in the case of independent
harmonic amplification (black solid curve), as well as the time
dependence of the intensity of the y-polarized ASE (brown
dash-dotted curve). As can be seen, due to the synchronized
coherently scattered field, the peak intensity of the pulse train
increases by about 2.3 times, while the shape of the pulses
is maintained with a slight (by about 1.19 times) increase in
the duration of each of the pulses compared to the case of
independent harmonic amplification.

023507-14



MUTUAL AMPLIFICATION OF HIGH-ORDER HARMONICS … PHYSICAL REVIEW A 107, 023507 (2023)

0 500 1000 1500 2000 2500 3000
 (fs)

0

0.5

1
G

co
h(x

 =
 c

on
st

,
)

-0.1

0

0.1

0.2

0.3

Po
pu

la
tio

n 
di

ff
er

en
ce

0 0.5 1 1.5 2 2.5
x (mm)

1

1.5

2

N
or

m
al

iz
ed

 p
ea

k 
in

te
ns

ity

0

0.05

0.1

0.15

G
co

h(x
,

 =
 c

on
st

)

0 0.5 1 1.5 2 2.5
x (mm)

100

101

102

N
or

m
al

iz
ed

 p
ea

k 
in

te
ns

ity

0 500 1000 1500 2000 2500 3000
 (fs)

0

1

2

3

4

In
te

ns
ity

 (W
/c

m
2 )

109

-2 0 2
0

0.5

1

(a) (b)

(d)(c)

FIG. 10. Same as in Figs. 8 and 9, but for a set of seven in-phase high-order harmonics. The parameter values are as follows:
P(7Harm)

� = 9.2, IL = 4 × 1014 W/cm2, � = 3.92μm, Nion = 1.5 × 1017 cm−3, ϑ7harm = 0.4π , and the electron concentration is either Ne =
3 × 1017 cm−3 or 3 × 1018 cm−3. Panel (a) corresponds to the medium thickness x = 0.19 mm, panel (b) corresponds to τ = 100 fs, while
panel (d) corresponds to x = 1.14 mm [which is marked in panel (c) with the short dotted gray line].

Finally, we consider the case of mutual amplification of
seven in-phase HHs. In this case, at the intensity of the mod-
ulating field IL = 4 × 1014 W/cm2, the optimal value of the
modulation index P(7Harm)

� = 9.2 is reached for the modulating
field with a wavelength � = 3.92 μm. The main features of
the mutual amplification of a set of seven in-phase HHs are
illustrated in Fig. 10 and are similar to the cases of three
(Fig. 8) and five (Fig. 9) HHs. However, due to the even
longer wavelength of the modulating field, which results in
a higher modulation index and lower effective gain for each
of the harmonics, the effect of MAHH and the overall ampli-
fication of the harmonics are even weaker than in the case
of amplification of five HHs. Moreover, due to the greater
spread in the harmonic gain values, the analytical solution
overestimates Gcoh even more compared to the results of
numerical calculations [Figs. 10(a) and 10(b)]. The range of
medium lengths, at which the y-polarized ASE is less intense
than the HH radiation, also decreases [Fig. 10(c)]. We chose
1.14 mm [marked by a short dotted gray line in Fig. 10(c)] as
the medium length, where the MAHH effect is comparably
strong, while the peak intensity of HH pulses is high and
the y-polarized ASE is negligible. According to Fig. 10(d),
synchronization of the coherently scattered field with a set of
seven in-phase HHs makes it possible to increase the peak
intensity of the pulse train by a factor of 1.4 without changing
the shape of the corresponding pulses compared to the case of
independent harmonic amplification.

So far, we have considered the case when the harmon-
ics of different orders, forming a train of subfemtosecond
pulses, have the same amplitudes. However, in reality, even
in the plateau region the amplitudes of neighboring harmon-
ics produced via the HHG in a gas can differ significantly,
for example, due to the interference of the contributions of
different trajectories of the recombining electron [57,58]. The
difference in the amplitudes of the seed HHs leads both (i) to

a change in the shape of the pulses incident to the medium and
(ii) to a change in the amplitudes of the spectral components
of the multifrequency coherently scattered field (caused by the
dependence of the efficiency of HH scattering into each other
on the amplitudes of the scattered harmonics). This can result
in a change in the shape and duration of the pulses at the exit
from the modulated active medium.

As an example, we consider the case of mutual ampli-
fication of a set of five HHs. In order not to specify the
dependence of harmonic amplitudes on their orders, we con-
sider a random equiprobable distribution of the amplitude
of an individual harmonic with a 40% spread both up and
down around the average value. In this case, the average
value of the harmonic amplitude is the same as in the case
of equal amplitudes of the five HHs and the pulse intensity
of 109 W/cm2 (as in Fig. 9). Figure 11(a) shows the am-
plitude spectrum of one of the random realizations of the
amplitude distribution of HHs, while the corresponding pulse
shape is shown in Fig. 11(b) by the black dotted curve. For
comparison, Figs. 11(c) and 11(d) show similar dependences
for the case of equal harmonic amplitudes. Despite the spread
in the amplitudes of the harmonics, the pulse shape and du-
ration at the entrance to the medium change insignificantly
except for the more pronounced pulse pedestal in Fig. 11(b) in
comparison with Fig. 11(d). It is noteworthy that the found
optimal conditions for mutual amplification of five HHs with
equal amplitudes, i.e., the intensity, wavelength, and initial
phase of the modulating field, as well as the thickness of the
medium, remain optimal for the case of nonuniform distribu-
tion of HH amplitudes as long as the seed HHs are in phase
with each other. In Figs. 11(b) and 11(d) we also show the cor-
responding pulse shapes at the exit from the modulated active
medium under the optimal conditions (blue solid curves). In
both cases, the shape of the pulses is practically unchanged;
moreover, the pulse FWHM increases by approximately the
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FIG. 11. Amplitude spectra for a set of five in-phase HHs at the entrance to the medium (a), (c), as well as the pulse shapes near the maxima
of the envelopes of the corresponding pulse trains (b), (d) at the entrance to (black dashed curves) and exit from (blue solid curves) the medium.
Panels (a) and (b) correspond to a random amplitude distribution under a 40% uniform spread of HH amplitudes (both below and above), the
average value corresponding to the HH amplitude in panel (c). Panels (c) and (d) correspond to the case of equal HH amplitudes. The parameter
values are the same as in Fig. 9. In panels (b) and (d) blue solid curves are plotted for x = 1.72 mm. The normalization coefficients for spectral
amplitudes in (a) and (c) are the same.

same factor 1.2. Thus, MAHH is robust with respect to a
change in the distribution of HH amplitudes at the entrance
to the medium.

V. CONCLUSION

In the present paper, we investigated the possibility of
amplifying a set of in-phase high-order harmonics, forming
a train of subfemtosecond pulses, in a hydrogenlike active
medium of a plasma-based x-ray laser with low free-electron
concentration, which is additionally irradiated by a strong
laser field of the fundamental frequency (a replica of the field
used to generate harmonics). In contrast to the active medium
with high free-electron concentration [44], in this case, mod-
ulation by the laser field leads not only to the amplification
of HHs, but also to their mutual coherent scattering into each
other. The efficiency of this scattering essentially depends on
the difference in phase velocities between the modulating field
and the field of HHs: the larger it is, the proportionally smaller
is the amplitude of the coherently scattered field. It is shown
that synchronization of a coherently scattered field with the
radiation of the amplified HHs results in their constructive
interference leading to the increase in the intensity of the
total output radiation by several times. We call this effect the
mutual amplification of high-order harmonics.

We derived an analytical solution considering the mutual
harmonic scattering as a perturbation and used it to optimize
the conditions of MAHH for a set of a given number of
in-phase HHs, under which (i) the maximum increase in the
intensity of the amplified pulses of high harmonics in the
case of their mutual amplification compared to the case of
independent harmonic amplification (in a medium with a high

free-electron concentration) is reached and (ii) the shape of
the amplified pulses is preserved. These optimal conditions
correspond to such values of intensity, wavelength, and initial
phase of the modulating field, as well as thickness of the
medium, at which (i) the gain coefficients for harmonics of
different orders are close to each other and are the maximum
possible and (ii) all spectral components of the coherently
scattered field are in phase with the HH field. In this case,
the amplification of a set of a larger number of harmonics
requires larger intensity and/or wavelength of the modulating
field. However, the allowable laser intensity is limited by the
ionization threshold of the active medium, while an increase
in the wavelength results in stronger plasma dispersion for the
modulating field, which reduces the role of MAHH. For this
reason, the largest gain in intensity of the amplified pulses due
to synchronization of the coherently scattered field is reached
for a set of the least number of high harmonics.

The possibilities for the experimental implementation of
the discussed effect were considered by the example of an
active medium of hydrogenlike Li2+ ions with the inverted
transition wavelength of 13.5 nm. In this case, the optimal
value of the modulating field intensity is 4 × 1014 W/cm2,
while the corresponding laser wavelengths for a set of three,
five, and seven HHs are 1.63, 2.77, and 3.92 μm, respectively.

We also performed numerical calculations based on the
Maxwell-Bloch equations in their general form (without us-
ing the perturbation theory). These calculations confirm the
predictions of the obtained analytical solution concerning, in
particular, the location and spatial period of the sections of the
medium, where the greatest gain from the mutual amplifica-
tion of HHs is observed in comparison with the case of their
independent amplification. The effect of MAHH is strongest
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for a set of three in-phase HHs. In this case, the peak intensity
of pulses in the amplified pulse train reaches the saturation
value of 1.8 × 1011 W/cm2 (at which further intensification
of the HH field is limited by the nonlinearity) at a medium
thickness of 1.4 mm. This intensity is 4.4 times higher than
in the case of independent amplification of high harmonics (in
the latter case, the same value of the peak intensity is achieved
for a medium with a thickness of 3 mm).

The results obtained open up the possibility of increasing
the efficiency of amplification of high harmonics, as well as
relaxing the requirements for the parameters of the active
medium of a plasma-based x-ray laser. Enhanced spectral

combs and trains of attosecond XUV and x-ray radiation
pulses can be used in x-ray spectroscopy, as well as in attosec-
ond metrology and chronoscopy.
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APPENDIX A: DERIVATION OF THE EQUATIONS FOR THE SPECTRAL AMPLITUDES OF HARMONICS

Let us consider the system of Eqs. (4) (see main text of the paper):

∂Ẽz

∂x
= i

4πωzNiondtr

c
√

εXUV
(ρ̃21 − ρ̃31),

∂ρ̃21

∂τ
= [−γz + i�� cos (�τ + �Kx + ϑ )]ρ̃21 − i

dtrntr

2h̄
Ẽz,

∂ρ̃31

∂τ
= [−γz − i�� cos (�τ + �Kx + ϑ )]ρ̃31 + i

dtrntr

2h̄
Ẽz. (A1)

We will look for a solution for Ẽz in the form

Ẽz(x, τ ) =
∫ ∞

−∞
Ã(x, ω)e−iωτ dω, (A2)

where Ã(x, ω) is the amplitude of the spectral component at the frequency ω at the propagation distance x inside the medium.
Further, let us consider the second equation of the system (A1) and look for its solution in the form

ρ̃21(x, τ ) = ρ̂21(x, τ ) exp [iP� sin (�τ + �Kx + ϑ )], (A3)

where P� = ��/� is the modulation index, and ρ̂21(x, τ ) satisfies the equation

∂ρ̂21

∂τ
+ γzρ̂21 = −i

dtrntr

2h̄

∞∑
k=−∞

Jk (P�)e−ik(�Kx+ϑ )
∫ ∞

−∞
Ã(x, ω − k�)e−iωτ dω, (A4)

which is obtained taking into account (A2) and the equality eiP� sin(x) = ∑∞
k=−∞ Jk (P�)eikx, where Jk (x) is the Bessel function

of the first kind of order k. Then we represent ρ̂21 in the form of a Fourier integral ρ̂21 = ∫ ∞
−∞ ρ̂

(ω)
21 (x, ω)e−iωτ dω, and after

substituting it into (A4) get an expression for the spectral amplitude ρ̂
(ω)
21 (x, ω):

ρ̂
(ω)
21 (x, ω) = −i

dtrntr

2h̄γz

∞∑
k=−∞

Jk (P�)e−ik(�Kx+ϑ ) Ã(x, ω − k�)

1 − iω/γz
. (A5)

Performing the inverse Fourier transform of (A5) and using (A3), we obtain the following solution for the coherence ρ̃21(x, τ ):

ρ̃21(x, τ ) = −i
dtrntr

2h̄γz

∞∑
k,m=−∞

Jk (P�)Jm(P�)ei(m−k)(�Kx+ϑ )
∫ ∞

−∞

Ã(x, ω + (m − k)�)

1 − i(ω + m�)/γz
e−iωτ dω. (A6)

Similarly, we obtain a solution to the third equation of the system (A1):

ρ̃31(x, τ ) = i
dtrntr

2h̄γz

∞∑
k,m=−∞

(−1)m−kJk (P�)Jm(P�)ei(m−k)(�Kx+ϑ )
∫ ∞

−∞

Ã(x, ω + (m − k)�)

1 − i(ω + m�)/γz
e−iωτ dω. (A7)

Substituting (A6) and (A7) into the first equation of the system (A1) and performing some transformations, we obtain an
equation for the spectral amplitude Ã(x, ω):

∂Ã(x, ω)

∂x
=

∞∑
k=−∞

g0J2
k (P�)

1 − i(ω + k�)/γz
Ã(x, ω) +

∞∑
k,p=−∞

p�=0

g0Jk (P�)J2p+k (P�)ei2p(�Kx+ϑ )

1 − i[ω + (2p + k)�]/γz
Ã(x, ω + 2p�). (A8)
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Next, we represent the spectrum Ã(x, ω) in the form of a set of 2N + 1 high-order harmonics, which are separated from each
other by the frequency interval 2�:

Ã(x, ω) =
N∑

n=−N

Ãn(x, ω − 2n�). (A9)

Substituting (A9) into (A8), we get the equation for the spectral amplitude of the nth harmonic:

∂Ãn(x, ω)

∂x
=

∞∑
k=−∞

g0J2
k (P�)

1 − i[ω + (2n + k)�]/γz
Ãn(x, ω) +

∞∑
k,p=−∞

p�=0

g0Jk (P�)J2p+k (P�)ei2p(�Kx+ϑ )

1 − i[ω + (2p + 2n + k)�]/γz
Ãn+p(x, ω), (A10)

where we take into account that Ãn+p(x, ω) = Ãn(x, ω + 2p�) and n = –N, –N + 1, . . . , N . Thus, (A10) is a system of 2N + 1
equations. Further, we assume that the frequency separation between the harmonics, 2�, is much larger than both (i) the spectral
linewidth of each high harmonic (so that, in the spectral domain, the neighboring harmonics do not overlap with each other)
and (ii) the gain spectrum width of the active medium, � >> γz. Thus, in (A10) all terms in the sums can be neglected, except
for one term in the first sum, corresponding to k = −2n, and one term in the second sum, corresponding to k = −2p−2n. We
also assume that no new sidebands appear in the spectrum of high harmonics during the amplification process. Thus, in (A10)
in the sum over the index p, only the terms with p = –N–n, –N–n + 1, . . . , N–n should be taken into account. After making the
substitution m = n + p, Eqs. (A10) can be rewritten as

∂Ãn(x, ω)

∂x
= g0J2

2n(P�)

1 − iω/γz
Ãn(x, ω) +

N∑
m=−N
m �=n

g0J2m(P�)J2n(P�)

1 − iω/γz
Ãm(x, ω)ei2(m−n)(�Kx+ϑ ). (A11)

Let us seek a solution for Ãn(x, ω) in the form

Ãn(x, ω) = Ân(x, ω) exp

[
g0J2

2n(P�)

1 − iω/γz

]
, (A12)

where Ân(x, ω) satisfies the equation

∂Ân(x, ω)

∂x
=

N∑
m=−N
m �=n

g0J2m(P�)J2n(P�)

1 − iω
γz

Âm(x, ω)e
g0x

1− iω
γz

(J2
2m (P� )−J2

2n(P� ))
ei2(m−n)(�Kx+ϑ ). (A13)

Integrating (A13) we obtain

Ân(x, ω)=Ân(x=0, ω) +
N∑

m=−N
m �=n

g0J2m(P�)J2n(P�)ei2(m−n)ϑ

1−iω/γz

∫ x

0
Âm(x′, ω) exp

[
g0x′

1−iω/γz

(
J2

2m(P�)−J2
2n(P�)

)+i2(m − n)�Kx′
]

dx′.

(A14)
Substituting (A14) into (A12) we obtain the following system of interrelated equations for the spectral amplitudes of the

harmonics, Ãn(x, ω):

Ãn(x, ω) = Ãn(x = 0, ω)egnnx/(1−iω/γz ) +
N∑

m=−N
m �=n

gnmei2(m−n)ϑ

1 − iω/γz

∫ x

0
Ãm(x′, ω)egnn(x−x′ )/(1−iω/γz )+i2(m−n)�Kx′

dx′, (A15)

where Ân(x = 0, ω) = Ãn(x = 0, ω) and gnm = g0J2n(P�)J2m(P�).

APPENDIX B: CALCULATION OF Ẽindep(x, τ )

The integral

Ẽindep(x, τ ) =
∫ ∞

−∞
Ã0(ω) exp[geffx/(1 − iω/γz )]e−iωτ dω (B1)

can be calculated using the response function technique in the time domain. In this case, Ẽindep(x, τ ) equals to the convolution
integral of the incident field, Ẽin(τ ) = ∫ ∞

−∞ Ã0(ω)e−iωτ dω, and the response function of the resonant amplifier, R(τ ),

Ẽindep(x, τ ) =
∫ ∞

−∞
Ẽin(t )R(τ − t )dt, (B2)
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where

R(τ ) = 1

2π

∫ ∞

−∞
exp[geff x/(1 − iω/γz )]e−iωτ dω = δ(τ ) + θ (τ )e−γzτ geff xγz

I1
(
2
√

geffxγzτ
)

√
geff xγzτ

. (B3)

Here δ(τ ) is the Dirac delta function and I1(x) is the first-order modified Bessel function of the first kind. According to Eq. (3)
from Sec. II of the main text, Ẽin(τ ) = E0θ (τ ). In this case, the integral (B2) takes the form

Ẽindep(x, τ ) = θ (τ ) + θ (τ )e−γzτ

∫ τ

0
eγzt

I1
(
2
√

geffxγz(τ − t )
)

√
geffxγz(τ − t )

geffxγzdt . (B4)

By introducing the change of variable, ξ = 2
√

geff xγz(τ−t ), in the integral in (B4), we rewrite (B4) in equivalent form

Ẽindep(x, τ ) = θ (τ ) + θ (τ )
∫ 2

√
geff xγzτ

0
I1(ξ ) exp[−ξ 2/(4geff x)]dξ . (B5)

Since I1(ξ ) = ∑∞
k=0

1
k!(k+1)! (ξ/2)2k+1, by introducing the notation η = ξ 2/(4geff x) in the integral in (B5), we get

∫ 2
√

geff xγzτ

0
I1(ξ ) exp[−ξ 2/(4geff x)]dξ =

∞∑
k=0

(geffx)k+1

k!(k + 1)!

∫ γzτ

0
ηke−ηdη. (B6)

The integral in (B6) has the form∫ γzτ

0
ηke−ηdη = k! − k!e−γzτ

k∑
m=0

(γzτ )m

m!
= k!e−γzτ

∞∑
m=k+1

(γzτ )m

m!
, (B7)

where the expansion exp(γzτ ) = ∑∞
m=0 (γzτ )m/m! is used. Thus, Ẽindep(x, τ ) takes the form

Ẽindep(x, τ ) = θ (τ )

⎡
⎣1 + e−γzτ

∞∑
k=0

(geffx)k+1

(k + 1)!

∞∑
m=k+1

(γzτ )m

m!

⎤
⎦. (B8)

If γzτ < 1, then the sum over the index m can be estimated from the first term of this series:
∑∞

m=k+1 (γzτ )m/m! ≈
(γzτ )k+1/(k + 1)!. Thus, the sum in the second term of (B8) is

∞∑
k=0

(geffx)k+1

(k + 1)!

∞∑
m=k+1

(γzτ )m

m!
≈

∞∑
k=0

(geff xγzτ )k+1

[(k + 1)!]2 = I0
(
2
√

geff xγzτ
) − 1, (B9)

and

Ẽindep(x, τ ) � θ (τ )[1 + e−γzτ (I0(2
√

geffxγzτ ) − 1)]. (B10)
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