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Mode pumping in photonic lattices using a single tailored auxiliary waveguide
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In this work, we propose a completely general method to pump the gapped topological modes of a lattice
of optical waveguides by controlling the propagation constant of an auxiliary waveguide and its coupling to
the main lattice. In this way, we can transform a single-waveguide excitation on the auxiliary waveguide into
a specific mode of the lattice. We also demonstrate the possibility of transferring supermodes between two
waveguide lattices using the same method. We illustrate the results by pumping and transferring the topological
modes of Su-Schrieffer-Heeger lattices. For both scenarios, we show that purities above 99% can be achieved
with parameter values within experimental reach. Additionally, we demonstrate how the technique can be used to
pump the bulk modes of the lattice for low number of waveguides or enable mode conversion between waveguide
lattices.
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I. INTRODUCTION

In recent years, photonic lattices with nontrivial topology
have been under intense study [1,2]. Topological states, be-
ing protected by the symmetries of the system, hold great
promise for applications such as lossless transmission [3–5],
nonreciprocal processes such as unidirectional propagation
[6–8], lasing applications [9,10], enhancement of frequency-
conversion processes [11,12], and many others. For modes
that are strongly confined, direct excitation on the waveg-
uide with highest amplitude may prove to be sufficient [13].
However, with this method other unwanted modes may also
be simultaneously excited, causing intensity beatings during
the propagation. Therefore, it is of high interest to develop a
general method to prepare specific modes with accuracy re-
gardless of mode confinement, while keeping the input beam
with the lowest possible complexity.

For this purpose, we propose a technique to pump topo-
logical modes of a lattice by using an auxiliary single-mode
waveguide whose propagation constant is adiabatically mod-
ulated along the propagation direction. In this way, we achieve
crossings between the propagation constant of the waveg-
uide mode and that of a particular gapped supermode of
the main lattice, e.g., a topological mode. The method also
works for bulk supermodes of the lattice for a low number
of waveguides, since they also display a gap. By controlling
the coupling between the lattice and the auxiliary waveguide,
the gapped supermode can be efficiently pumped, using a
single-waveguide excitation on the auxiliary waveguide as the
input. Even if the light transfer is not complete, the rest of the
supermodes in the main lattice are not significantly excited in
the process, implying a high purity of the target supermode
at the output facet of the device. In a similar way, one can
apply the proposed scheme to pairs of waveguide lattices. We
demonstrate how modulating all waveguides in an auxiliary
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lattice achieves crossings between the propagation constants
of its eigenmodes and those of the main lattice. This allows
transfer of light between specific modes of both structures.
Modulating the detuning between waveguides has a direct
analogy to the control of the onsite energies that have been
employed to achieve quantum state transfer in other contexts,
such as in spin chains [14–17].

The technique is effectively analogous to Stark-chirped
rapid-adiabatic-passage (SCRAP) between two levels.
SCRAP was originally introduced as a method to transfer
population between two [18,19] or three [20–23] atomic
states, and then applied in other contexts such as wave
mixing and frequency conversion [24–27]. Recently, SCRAP
has been adapted to waveguide optics in combination with
supersymmetry (SUSY) [28] to pump excited modes using
a pair of multimode optical waveguides. In contrast, the
implementation presented in this work can be used to pump
any desired gapped supermode in waveguide lattices and in
particular topological modes.

Although the method is completely general, we choose the
Su-Schrieffer-Heeger (SSH) model [29] in a lattice of single-
mode optical waveguides as a platform for the study. The
SSH model is the simplest instance of nontrivial topology in
one-dimensional (1D) lattices [30], and it can host topological
edge modes localized around the ends of the chain. These
states have been studied and exploited in several physical
platforms [31–44]. We showcase how we can use the proposed
method to pump or transfer them between lattices with high
precision. Finally, we show how the bulk supermodes of the
lattice, which are completely delocalized, can be also pumped
with precision using the same method, and that we can convert
light into them from an arbitrary mode in the auxiliary lattice.

The present work is organized as follows: We introduce the
main theoretical ideas behind the proposed pumping method
in Sec. II. After that, we present the results of the numer-
ical simulations for the different supermodes of the SSH
lattice in Sec. III. Finally, we lay out our conclusions in
Sec. IV.
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FIG. 1. (a) Illustration of the geometry of the proposed device.
An auxiliary single-mode waveguide has a controlled detuning (indi-
cated by the color scheme) and controlled coupling to the main lattice
along the propagation direction. The main lattice is not modulated.
(b) Normalized variations of the coupling strength (yellow) and
propagation constant (brown) of the auxiliary waveguide displayed
in panel (a). (c) Mode spectrum along the propagation direction
for a lattice of 5 uniformly spaced waveguides with a coupling of
c = 2 cm−1. The red dashed lines represent the propagation constants
for the main lattice and the auxiliary waveguide separately, while the
solid blue lines represent the ones for the modes of the joint structure.
In panels (b) and (c), the vertical lines mark the points where the
crossings occur.

II. THEORY

We consider lattices of N identical single-mode optical
waveguides coupled to an auxiliary single-mode waveguide
whose coupling and propagation constant are tailored along
the propagation direction, as displayed in Fig. 1(a). We as-
sume the tight-binding approximation to be valid, which
implies that the system can be described via a coupled-mode
model [45],

i
d

dz
ψ = Hψ, (1)

where ψ = (ψ1, . . . , ψN )T are the complex modal amplitudes
in each waveguide and H is the following tridiagonal Hamil-
tonian:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 c1 0
c1 0 c2

0 c2 0
. . .

0 cN−1 0
cN−1 0 c(z)

0 c(z) b(z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where ci are the couplings between waveguides in the main
lattice and where we assume that all their detunings are
equal to zero. b(z) and c(z) correspond to the detuning of
the auxiliary waveguide and its coupling to the main lattice,
respectively. The proposed pumping method is based on mod-
ulating the propagation constant of the auxiliary waveguide in
order to produce crossings with the propagation constant βl

of a certain supermode of the main lattice at two points in z.
Namely, we impose

b(z) = βl + �0 − 2�0 exp

(
− (z − ζ )2

Z2
s

)
, (3)

where �0 = b(0) − βl is the initial detuning of the auxiliary
waveguide with respect to the target mode l , and where we
choose ζ = L/2 + Zs

√
ln 2, with L being the length of the

device and Zs being the width of the modulation. This ensures
that the first mode crossing, around which most of the light
transfer occurs, is located at the center of the device. To
complete the pumping method, the coupling strength of the
auxiliary waveguide c(z) is modulated to be maximal at this
first crossing and near zero during the second. By symmet-
rically bending the auxiliary waveguide away from the main
lattice, we approximately obtain a Gaussian dependence for
the coupling [46]:

c(z) ≈ C exp

(
− (z − L/2)2

Z2
c

)
, (4)

where C = c0 exp (−κdmin) is the coupling strength at the
point of minimum distance between the main lattice and the
auxiliary waveguide, dmin. The parameters κ and c0 can be
extracted by checking the beat length in pairs of waveguides
[47]. We define Z2

c = 2r/κ , with r being the curvature radius
of the waveguide. The modulations in (3) and (4), which are
sketched in Fig. 1(b), can be implemented in laser-writing
setups by tuning the relative speed of the laser and the dis-
tance between waveguides, respectively [48]. Combining both
modulations enables efficient light transfer between the mode
of the auxiliary waveguide and the target supermode l of the
main lattice. For this to be true, the modulations have to fulfill
the adiabaticity condition. That is, for any mode m, the target
mode l has to fulfill

|〈ψl |∂tψm〉| � |βm − βl |. (5)

The above modulations affect the spectrum of a waveguide
lattice in the manner displayed in Fig. 1(c), where we use a
set of equidistant lattices as an example. The crossing of the
propagation constants of the mode of the auxiliary waveguide
and that of a particular supermode of the lattice enables cou-
pling between them, while the rest of the supermodes are not
significantly altered. Effectively, the system can be described
by a two-level Hamiltonian,

H (z) =
(

0 k(z)
k(z) b(z)

)
, (6)

where the coupling k(z) will in general have a different value
from the coupling c(z) introduced in Eq. (2), as it will depend
on the overlap between the two modes in question, but it will
keep the same Gaussian dependence.
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FIG. 2. (a) Representation of the SSH model with odd number
of sites, where the weak and strong couplings, cw and cs respec-
tively, are represented by the different relative distance between sites.
(b) Amplitudes of the edge mode hosted by the chain in panel (a).
(c) SSH chain with even number of sites, hosting edge modes in both
ends. We use c′

w and c′
s to indicate different values from the ones in

panel (a). [(d), (e)] Amplitudes of the symmetric and antisymmetric
combinations of edge modes hosted by the chain in panel (c), re-
spectively. For panel (b), cw = 0.8 cm−1 and cs = 2.1 cm−1; and for
panels (d) and (e), c′

w = 2.2 cm−1 and c′
s = 2.5 cm−1.

To demonstrate the potential of the method, let us now
consider a lattice described by the Su-Schrieffer-Heeger
(SSH) model [29]. The SSH model is characterized by a
one-dimensional (1D) lattice of identical waveguides with
alternating weak and strong couplings, cw and cs, respectively.
The Hamiltonian describing the model is

HSSH =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 cw 0 . . . . . . 0

cw 0 cs 0 . . .
...

0 cs 0 cw
. . .

...
... 0 cw 0 . . .

...
...

. . .
. . .

. . .
. . .

...

0 . . . . . . . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

For finite lattices, the SSH model can host edge modes,
which are topologically protected and exponentially local-
ized around the edges of the lattice [30]. Their propagation
constants are localized at the center of the spectrum and are
gapped from the bulk bands. For the edge modes to exist,
the outermost coupling of the lattice has to be the weak
one, cw. For an odd number of waveguides N , the chain will
display a single edge mode at one of its ends. An example
can be seen in Figs. 2(a) and 2(b) for N = 7, where we also
see that these edge modes only have nonzero amplitudes in
alternating waveguides. For a chain with an even number of
waveguides, as the one in Fig. 2(c) with N = 6, both ends of
the lattice can display an edge mode. These will in general
hybridize into symmetric and antisymmetric combinations;

see Figs. 2(d) and 2(e), respectively. This hybridization causes
the propagation constants of these modes to split by an amount
depending on the number of waveguides, N , and the ratio
between couplings, cs/cw [30]. This ratio also controls how
localized these edge modes are at the ends of the chain.

III. RESULTS

A. Single auxiliary waveguide

The above formalism is now used to pump a specific topo-
logical mode of the SSH chain by tuning b(z) in Eq. (3)
to its propagation constant. We start by analyzing the SSH
lattice coupled to a single modulated waveguide, in which
we inject a single-mode excitation. In Figs. 3(b) and 3(d),
we show the variation of the propagation constants for SSH
lattices of N = 7 and N = 6, respectively. In there, the red
dashed lines represent the propagation constants of the su-
permodes of the SSH latice and of the auxiliary waveguide
independently, while the blue solid lines correspond to those
of the eigenmodes of the joint structure. As explained above,
the dynamics is restricted to the single mode of the auxiliary
waveguide and the topological mode that we intend to pump.
In particular, for the even-N chain we are restricted to small
dimerizations |cs − cw|, since symmetric and antisymmetric
edge modes need sufficiently different propagation constants
to avoid crossing both of them during the modulation, thus
ensuring that light transfers only to one of them. In Figs. 3(a)
and 3(c), we show the light intensity propagation through the
proposed device when pumping the edge mode of a chain of
odd N and the symmetric combination of edges modes of a
chain of even N , respectively. In these figures, we see that
most of the light intensity is transferred into the edge modes of
the main lattice while using a single excitation of the auxiliary
waveguide as input.

To check the efficiency of these devices, we define two
figures of merit. First, we define the purity,

P = |〈ψ̃t |ψ̃(L)〉|2, (8)

which compares the normalized amplitudes of the output state
ψ̃(L) to the target mode ψ̃t in the waveguides of the main
lattice. This figure of merit shows the ability to obtain a
particular mode without significant excitation of any others.
Additionally, we define the intensity fraction,

Ĩ = I

I0
, (9)

which compares the intensity that is transferred from the aux-
iliary waveguide to the main lattice, I , to the input intensity
I0. We first plot in Figs. 4(a) and 4(b) the purity of the output
modes displayed in Figs. 3(a) and 3(c), respectively, with
respect to the parameters of the SCRAP scheme that can be
controlled geometrically. Those are the maximum strength of
the outer coupling C between the main lattice and the aux-
iliary waveguide, controlled through the minimum distance
dmin between them, and the width of the Gaussian coupling
function Zc, controlled through the curvature radius r. For
those figures, we keep the propagation constant modulation
fixed. We see that there is a wide region of parameter values
where the purity comfortably exceeds P = 0.99, especially for
low values for the outer coupling C. Due to the nature of the
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FIG. 3. Light intensity propagation (a) and spectrum of propagation constants along the propagation direction (b) when pumping the single
edge mode of the N = 7 SSH lattice with a single excitation of the auxiliary waveguide as input. We use C = 0.55 cm−1 and Zc = 1.8 cm.
[(c), (d)] Same figures as in panels (a) and (b), respectively, for the symmetric combination of edge modes of the N = 6 SSH lattice with
C = 0.75 cm−1 and Zc = 2.3 cm. For all cases, Zs = 2.55 cm and �0 = 0.4 cm−1 and the coupling parameters are the same as in Fig. 2.

method, which is based on the propagation constant crossing
between input and target modes, it is expected that only the
target mode has a significant amplitude at the output facet
if the adiabatic conditions are fulfilled. The total amplitude,
however, will depend on the fraction of intensity that is trans-
ferred into the main lattice. We plot this quantity in Figs. 4(c)
and 4(d), where we see that there exist regions in parameter
space where the transfer of light is very efficient. Moreover,
we see that the two devices are efficient for different sets of
parameter values; in particular, the case in Fig. 4(c) requires
lower outer couplings than the one in Fig. 4(d) to be efficient.
This is caused by the different coupling between the partic-
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FIG. 4. Purity of the output mode (top row) and intensity frac-
tion of the pumping (bottom row) with respect to the width of the
Gaussian coupling and its maximum strength for [(a), (c)] the edge
mode of the N = 7 lattice and [(b), (d)] the symmetric combination
of edge modes of the N = 6 lattice. The rest of the parameter values
are indicated in Figs. 2 and 3.

ular supermodes, which ultimately depends on the overlap
between their spatial profiles. Choosing a region of parameter
values where both P and Ĩ is large yields almost full transfer
of light into the target mode. Also, even if the parameters are
slightly off and we fail to transfer all light intensity from the
auxiliary waveguide, only the target mode will be significantly
pumped and minimal intensity will be transferred to other
modes, as can be gathered from the wide parameter regions
of high purity.

B. Auxiliary lattice

The same kind of analysis can be performed for the case
of two SSH lattices, where all waveguides of the auxiliary
lattice are modulated equally. In this case, the gap between
edge and bulk modes also allows for efficient transfer as in
the case of a single auxiliary waveguide, despite the fact that
there is a larger amount of supermodes present. In fact, we
produce multiple crossings since all modes of the auxiliary
lattice are equivalently modulated [see Figs. 5(b) and 5(d)] but
the dynamics is restricted to the two modes between which
we want to establish the transfer. This is indicated in both
figures by the region enclosed in dotted lines. We first show
in Fig. 5(a) the light transfer between an SSH lattice with
odd N coupled and an identical auxiliary lattice, but reflected
with respect to the x axis so that their respective edge states
have a significant overlap. With this setup, the edge mode
of the auxiliary lattice gets fully transferred into the edge
mode of the main lattice. In Fig. 5(c), we instead consider two
lattices of even N . In that case, the symmetric combination
of edge modes gets fully transferred between the two lattices.
The modes in the auxiliary lattice could be injected using the
method described in the previous section in both cases.

To compare these results with the case of a single aux-
iliary waveguide, we plot the purity of the output mode in
Figs. 6(a) and 6(b) and the fraction of transferred intensity
in Figs. 6(c) and 6(d). Comparing them with the respective

023506-4



MODE PUMPING IN PHOTONIC LATTICES USING A … PHYSICAL REVIEW A 107, 023506 (2023)

z (cm)
0 5 10

(a) (c)

(b)

(d)

m
m

( m) ( m)

4

-4

(a
rb

. u
ni

ts
)

FIG. 5. Light intensity propagation (a) and spectrum of propagation constants along the propagation direction (b) when pumping the single
edge mode of the N = 7 SSH lattice with the same mode of the auxiliary waveguide as input. We use C = 0.55 cm−1 and Zc = 2 cm. [(c),
(d)] Same figures as in panels (a) and (b), respectively, for the the symmetric combination of edge modes of the N = 6 SSH lattice with
C = 1.3 cm−1 and Zc = 2.55 cm. The rest of the parameter values are the same as in Figs. 2 and 3.

results displayed in Fig. 4, we see that they are very similar.
This is especially true for the first case of odd N , where the
edge mode is still mostly contained within the closest waveg-
uide of the auxiliary lattice. As such, the overlap between
the modes is similar to the one in the previous section. As
for the symmetric combination of edge modes, the amplitude
profile in the auxiliary lattice is entirely different from that
of the single-waveguide case, resulting in a lower overlap
with the mode of the main lattice. Hence, the outer coupling
needs to be much stronger for the light intensity to be trans-
ferred completely. This can be readily observed by comparing
Figs. 4(d) and 6(d). Nevertheless, we are still able to obtain
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FIG. 6. Purity of the output mode (top row) and intensity fraction
of the transfer from the auxiliary lattice (bottom row) with respect
to the width of the Gaussian coupling and its maximum strength
for [(a), (c)] the edge mode of the N = 7 lattice and [(b), (d)] the
symmetric combination of edge modes of the N = 6 lattice. The rest
of the parameter values are indicated in Figs. 2 and 3.

purities and intensity fractions above P = 0.99 and Ĩ = 0.99,
respectively, despite the mode being delocalized throughout
the whole lattice.

C. Bulk modes

In this work, we placed the main focus on topological
modes for their inherent interest. Nonetheless, the proposed
pumping method goes beyond them and can be used to pump
any gapped mode of the main lattice. Bulk modes are gen-
erally harder to pump, and so the fractions of transferred
intensity will struggle to reach high values. However, even if
the transfer is not complete and the final light intensity in the
main lattice is rather low, this can be easily compensated by
increasing the input beam intensity as long as the mode purity
is high at the output. To showcase the potential to accurately
reach these bulk modes, we consider again the case of an SSH
lattice coupled to a single auxiliary waveguide. Due to the chi-
ral symmetry of the lattice, the spectrum is symmetric around
the central mode. We thus focus on one half of the spectrum,
as results for the other half of the modes will be similar, and
we show this fact for a lattice of N = 7 in Fig. 7(a). We tune
b(z) in (3) to the propagation constant of each bulk mode
in the lower half of the spectrum, and compute the purities
for each of them. As shown in Figs. 7(b) through 7(d), there
are significant regions of parameter values where the output
modes closely resemble each of the bulk modes of the lattice.
This is further demonstrated by comparing the normalized
output profile with the profile of the target mode in Figs. 7(e)
through 7(g). These results are remarkable, considering that
to achieve all of them we only require a single input beam and
index modulations on a single waveguide. However, the in-
tensity fraction that can be transferred into the modes is lower
than for gapped topological modes, reaching a maximum of
98% for Fig. 7(e), 94% for Fig. 7(f), and 61% for Fig. 7(g).
The decrease in intensity for the bulk modes of the lattice
is mainly due to the gap between them becoming smaller
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FIG. 7. (a) Mode spectrum for the SSH lattice. [(b), (c), (d)] Purity of the output mode for the pumping of different bulk modes of the SSH
lattice with N = 7 with respect to the width of the Gaussian coupling and its maximum strength. [(e), (f), (g)] Output mode in the main lattice
(colored bars) and target mode (dashed line) corresponding to the figures in the top row. The geometrical parameters are indicated by a blue
cross in the upper figures. The propagation constants of the modes displayed in panels (e), (f) and (g) are marked with a yellow star, an orange
triangle, and a brown square, respectively, in panel (a). For all cases, cw = 2.2 cm−1 and cs = 2.5 cm−1 and the rest of the parameter values
are the same as in Fig. 3.

the further away they are from the center of the spectrum.
Additionally, however, since their mode profiles are extended
throughout the lattice, the effective coupling k(z) between
them and the auxiliary waveguide is significantly smaller than
for the edge modes, which also hinders efficient light transfer.

D. Mode conversion

Another possible application of the proposed technique is
enabling mode conversion between two lattices. Up until this
point, when producing the modulation in the propagation con-
stants we only considered crossings between the propagation
constants of the same modes in the main and auxiliary lattices.
Nevertheless, further shifting the spectrum of the auxiliary
lattice can allow crossings for different modes, and as such
it can lead to mode conversion between them. To prove this
we consider the transfer of light from an edge mode into the
bulk mode displayed in Fig. 7(e), as we sketch in Fig. 8(a).
All waveguides in the auxiliary lattice are further detuned
by a quantity �β = βl − βi, corresponding to the difference
in propagation constant between the initial mode i and the
target mode l , to cause crossings between their propagation
constants during the modulation. Light propagation in this
system is displayed in Fig. 8(b), where we see that a large
fraction of light intensity, approximately 96% in this case,
gets transferred into the target mode. Checking the purity of
the final mode in Fig. 8(c), we can establish that for large
regions of parameter values light gets transferred into the
target mode only, proving a clean mode conversion between
the lattices. Note that in this case, the input edge mode is
strongly delocalized due to the choice of coupling parameters
for the SSH lattice.

IV. CONCLUSIONS

In this work, we have proposed an efficient and general
technique to pump gapped modes of a general lattice of
coupled optical waveguides, or to transfer modes between
different lattices. The technique is based on using an auxiliary
waveguide—or an auxiliary lattice—whose relative couplings
and propagation constants are controlled along the propaga-
tion direction. First, we have analyzed the performance of
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FIG. 8. (a) Spectrum of propagation constants of the SSH model
with N = 7, where the input and target modes of the mode conver-
sion are highlighted in red. (b) Light intensity propagation in the
system where the edge mode of the auxiliary lattice gets transferred
into a bulk mode of the main lattice. (c) Purity of the output mode
in this process. The blue cross indicates the set of parameter values
chosen for panels (a) and (b). The rest of parameter values are
indicated in Figs. 2 and 3.
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the technique by pumping edge modes of an SSH lattice.
We have then further explored this technique for the transfer
of topological modes between two SSH lattices, one being
a detuned copy of the other. In both cases, purities above
P = 0.99 and intensity transfer fractions above Ĩ = 0.99 are
obtained for a wide range of parameter values. Aside from
topological modes, we have shown that the technique can be
used to transfer light into any mode that present a gap, such as
bulk modes for low number of waveguides. We have proven
this both for pumping from a single waveguide excitation as
well as for conversion from a different input mode in a system
of two coupled lattices.

In general, as for all adiabatic transfer methods, the trans-
fer of light for this technique is limited by the gap between
modes. The maximum change in propagation constants is
limited by the presence of other supermodes of the lattice,
since crossings with the propagation constants of nondesired
modes can cause leaking onto them and thus spoil the transfer.
Despite this limitation, we have seen that we can perform
efficient transfer in waveguides with parameter values within
current experimental reach. Additionally, we have seen how
the purity of the output modes in the main lattice compared
with the target modes remains very large even when shifting
away from the regions of highest intensity transfer. Small

variations in the geometrical parameters of the system, which
may be caused by disorder or imperfections, mainly reduce
the total light intensity at the output facet and do not cause
transfer into unwanted modes, making the technique robust.
Throughout the work, however, we have considered that all
waveguides in the system only sustain a single mode. For
an experimental implementation, one should appropriately
choose the waveguide parameter values that ensure that the
auxiliary waveguide remains single mode for the entire mod-
ulation of the propagation constant.

The present scheme is not limited to the cases displayed in
this work, as it allows efficiently pumping or transfering light
into any target mode as long as this mode displays a gap in
the spectrum. The technique can be extended to other geome-
tries exhibiting gapped topological modes or other modes of
interest, such as 2D systems of optical waveguides and sets of
multimode waveguides.
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