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Optical localization transition in a dual-periodical phase-modulated synthetic photonic lattice
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We investigated optical localization and vibration in a synthetic photonic lattice (SPL) with two-phase
modulators driven by different periodic voltages. By altering the periods of phase modulation, the induced phase
circumfluences, band structure, and transmission behaviors of light in the SPL are studied. A transition from
discrete diffraction to weak localization was observed in a small modulation period with equal modulation
periodicities. For large modulation periods, the band structure exhibits a density distribution and the optical
field delocalizes and vibrates. In contrast, strong localization occurs near the initial incident location with some
moiré modulation periods of phases that correspond to a flat-band structure. This study reveals the effect of
dual-periodic phase modulation on pulse propagation in discrete systems.
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I. INTRODUCTION

Localized light fields have attracted intensive interest in
theoretical and experimental studies over the past few decades
[1,2]. Optical localization can enhance the interaction be-
tween light and matter, improve the performance of lasers,
and realize lasing with high modulation rates and low thresh-
olds [3–5]. Research on optical localization has successfully
demonstrated some basic phenomena with potential applica-
tion value, thereby attracting broad attention in the scientific
community [3]. Owing to the strong impact of diffraction and
dispersion in the process of light propagation, the broadening
effect of light waves has been introduced [6,7]. Several studies
showed that the dispersion can be mitigated by introducing
randomness and balanced by nonlinearity, which led to the
Anderson localization and solitons, respectively [8–11]. In
addition, defects and dynamic modulation also enable the
existence of optical localization in photonic lattices [6,12–17].

The recent booming research field of moiré photonics pro-
vides a new and efficient way to achieve optical localization
[18–21]. Moiré lattices are formed by overlapping two iden-
tical or similar periodic structures with a twist angle or tuned
lattice frequency, which adds a new adjustable dimension for
optical localization. Compared with the previous system, the
localized mode provided by the moiré lattice is simpler and
more flexible without the need for a strong refractive index
contrast, special structure design, and strong laser power. The
moiré lattice is a prominent example of how to explore new
wave phenomena caused by purely geometric properties. The
dispersion of such systems, for example, flat energy band,
band-gap engineering, and localization-to-delocalization of
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light, can be modulated by changing the angle between the
two child components [18,19,22–24]. In addition, optical
localization can be realized by frequency detuning and non-
linearity [7,20,25]. In a one-dimensional system, the moiré
lattice can be obtained by superimposing two Bragg gratings
with different periods, whereas Bragg gratings with the same
period form a so-called non-moiré lattice [21,26]. The local-
ization effect occurs when the beam is incident on the node
of the moiré lattice, on the other hand, the optical Zitterbewe-
gung effect is achieved when the initial beam is injected on
the peak [21].

The concept of a synthetic dimension has recently come
to light as a feasible path for exploring higher-dimensional
physics in lower-dimensional systems by simulating spatial
coordinates using nonspatial degrees of freedom. In contrast
to photonic crystals, synthetic dimensions possess intrinsic
flexibility, low cost, and high operability, without the need
for complex processing technology [27–30]. Among differ-
ent synthetic systems, synthetic photonic lattices (SPL) are
composed of two mutually coupled fiber rings that have
been successfully utilized to simulate optical behaviors in
discretized structures [27], quantum communication, quan-
tum computing, and so on [31–33]. A unique property of a
one-dimensional SPL is the discrete expansion of light trans-
mission in two axes owing to the time-multiplexing technique
[34–36]. Several explorations of surrounding optical local-
ization were proposed. For example, Anderson localization
in SPL was achieved by phase disorder and static random
coupling disorder [1,34]. Bloch oscillations in Hermitian and
non-Hermitian (global or local PT ) systems were investi-
gated by adding a gradient phase along the time axis [37].
In addition, the localization caused by the defect is in PT -
symmetric lattice [38], the localization is achieved by an
effective gauge-field interface [39] and optical funneling is
achieved by introducing the non-Hermitian topology [40]. In
the above research, the SPL model is used to simulate and
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apply a variety of optical localization phenomena. Compared
to general waveguide arrays, this model is discrete in time
and position, which endows the SPL with the ability to verify
new theories or explore new optical transmission behaviors
[41,42]. Therefore, it is worth studying the energy band vari-
ation and transmission behavior of light in SPL with moiré
modulation.

In this study, a model of SPL with two-phase modulations
governed by two cosine functions with different periods was
established. With the adjustment of the period of the double-
phase modulations, the combination of the two phases induces
non-moiré and moiré phase accumulations along the space
(transverse) axis. We analyzed the relationship between phase
accumulation and band structure and studied the localization-
to-delocalization transitions that exist in both non-moiré and
moiré phase accumulations. The localization distribution with
respect to the two modulation periods was investigated us-
ing statistical methods. In contrast to Anderson localization
created by fiber rings with random modulation [34], the local-
ized transmission trajectory in this study is deterministic and
repeatable. In addition, the localization-to-vibration transition
of SPL with a large periodic modulation was also simulated
and analyzed. We further confirm that the localization inten-
sity is not only related to the number of flat bands but also the
band gaps.

II. FUNDAMENTAL MODEL OF SPL WITH
DUAL-PERIODIC PHASE MODULATIONS

Figure 1(a) shows the time-multiplexing scheme, which is
formed by two coupled fiber loops with a length difference
�L. When a periodic pulse train is launched into a longer or
shorter loop, two new pulse sequences are generated in each
loop after it passes through the coupler. The pulse returns to
the coupler in the long and short loops with an average time
of T and a relative delay time of �T . Because the lengths
of the two loops are different, the pulse train returns to the
coupler after a round trip in the long loop is delayed compared
with that in the short loop, and then the two pulse trains are
split again by the coupler. As the number of round trips in-
creases, a pulse train over time is eventually generated, which
is similar to the beam dynamics in the optical mesh lattice.
Interestingly, the arrival time of each pulse at the coupler can
be reinterpreted as an index of position along the synthetic
spatial dimension, expressed as t = mT + n�T , where m is
the number of times each pulse enters the coupler (discrete-
time coordinates) and n is the number of times the pulse passes
through the long loop more than the short loop (space-like
coordinates). As the light propagates, m increases to record
subsequent increases in the number of round trips, whereas n
can increase or decrease depending on which loop the light
travels. Whereafter, m can be reinterpreted as a continuously
increasing number of discrete time steps, where n is a discrete
position index. We relate the average round-trip times through
the coupler to the discrete-time step m and the discrete arrival
time to the relative position of the pulse in the sequence n,
leading to the equivalent mesh lattice in the time domain
described in Fig. 1(b). The equivalent (1 + 1) lattice model
was used several times in the field of optics. In Fig. 1(b),
we indicate the corresponding phase on the grid diagram. We

FIG. 1. (a) Schematic of two mutually coupled optical fiber loops
with a different length �L. (b) The corresponding SPL of the fiber
loops mapped onto a (1 + 1)D lattice (the square represents the fiber
coupler). (c)The distribution of phase modulation φn and ψn.

treat the evolution of discrete time as a quantum state through
the optical grid, which is decomposed into a translation-like
operation of free propagation along with directional links and
local scattering processes. The output pulses generated after
m + 1 round trips were[

U m+1
n−1

Dm+1
n+1

]
=

[
eiφn 0

0 eiψn

][
cos θ i sin θ

i sin θ cos θ

][
U m

n

Dm
n

]
, (1)

where U m
n and Dm

n describe the complex amplitudes of pulses
in the short and long loops, respectively. The variables θ

denote the coupling coefficients of the coupler with a coupling
ratio of 50 : 50. The phases in the two loops are represented by
φn and ψn. The above equation can be deduced as an iterative
equation

U m+1
n = eiφn

[
cos θU m

n+1 + i sin θDm
n+1

]
,

Dm+1
n = eiψn

[
cos θDm

n−1 + i sin θU m
n−1

]
. (2)

To control the optical transmission in the SPL, we pur-
posely changed the phase modulation functions φn and ψn

acting on the phase modulators in the two fiber loops for
subsequent round trips. In this work, the phases φn and ψn

are set as cosine functions versus the space axis n, which are
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expressed as

φ =
{

φn = A cos
(

2πn
d1

)
,

ψn = A cos
(

2πn
d2

)
,

(3)

where A denotes the amplitude of the phase modulation and d1

and d2 represent the periods of phase modulation in the short
and long loops, respectively. The model of SPL is illustrated
in Fig. 1(b), indicating that the values of both phases at the
bottom of the figure are discrete because of the discrete apace
axis. Owing to phase modulation, there are phase circum-
fluences with intensities of �n = φn + ψn−1 − φn+1 − ψn in
every unit surrounded by four couplers. As a result, the inten-
sity difference between adjacent n values is �� = 2(φn+1 +
ψn) − φn+2 − ψn+1 − φn − ψn−1. In the SPL, the phase accu-
mulation �n represents the superimposed result of two phases
in the two rings, which is equivalent to the potentials in
photonic lattices, paving the way for configuring non-moiré
and moiré patterns. When the periods (d1 and d2) of the two

phases are identical, �n remains in the same period, namely,
the non-moiré pattern. Once the periods of the two phases
are different, the period of �n is the lowest common multiple
(LCM) of d1 and d2; thus, the moiré pattern is established. To
investigate the optical dynamics of the system, it is necessary
to derive the band structure in the momentum space. The
band structure or dispersion relationship can be obtained by
introducing a plane-wave-like Bloch wave into Eq. (2), which
is [

U m
n

Dm
n

]
=

[
U
D

]
exp(ikn + iβm), (4)

where β is the propagation constant, and k is the transverse
wave number. Substitute Eq. (4) into Eq. (2) to obtain the
eigenfunction

H (θ, φ)

[
U
D

]
= λ

[
U
D

]
, (5)

where eigenvalue λ = eiβ is an intrinsic characteristic of SPL.
H (θ, φ) denotes the Hamiltonian of the system. which is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 SK0 PK0 0 · · · 0
0 · · · 0 PM0 SM0 0 0
0 0 0 0 SK1 PK1 0 · · · 0

PM1 SM1 0 · · · 0
...

...
...

...
. . .

...
...

...
...

...
...

0 · · · 0 SKn−1 PKn−1

0 · · · 0 PMn−1 SMn−1 0 0 0 0
SKn PKn 0 · · · 0

0 · · · 0 PMn SMn 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

where S = cos θ , P = sin θ , Kn = ei(k+φn ), and Mn = ei(k+ψn )

were set to simplify H . The dispersion relation is calculated
by solving Eqs. (5) and (6). Under the modulation of the two
phases, the dimension of H is defined by the total period of
phase modulation, that is, two times the LCM of d1 and d2.
The dynamic properties of an SPL system can be inferred
from the band gap and eigenvalue distributions by calculating
the eigenfunction. Note that the calculation becomes more
difficult with an increase in the matrix dimensions of Eq. (6).
The energy bands cannot be explicitly expressed by equations;
only the diagrams are provided in the following sections.

III. RESULTS AND DISCUSSIONS

A. Optical dynamics in non-moiré periodic phase accumulations

First, we consider the non-moiré periodic phase accu-
mulation case, in which the periods of the two phases
are coincident. To investigate the optical dynamics, the
phase accumulations �n, band structures according to the
eigenfunction, and light transmission were investigated by
numerically calculating Eq. (2) were adopted. The corre-
sponding results are shown in Fig. 2. The phase accumulations
shown in Figs. 2(a1) to 2(a3) were calculated using the ex-
pression �n. By changing the phase modulation periods d1

and d2, the phase accumulations are distributed periodically,
analogous to the potential of the Bragg lattice. This clearly

shows that as the period increases, the value of adjacent phase
accumulations becomes close, indicating that the band gaps
between them are narrow. By calculating the band structure,
it was found that the band structure was repeated twice in
the first Brillouin zone values −π ∼ π . Thus only the band
structures from 0 to π are provided for a clearer investiga-
tion as there are many bands according to Eq. (6). The band
structures are significantly affected by the phase modulation
periods, as depicted in Figs. 2(b1) to 2(b3). The band structure
with d1 = d2 = 3 is shown in Fig. 2(b1), which contains three
bands with a period of 2π/3 with respect to wave number k.
For the condition d1 = d2 = 7, [see Fig. 2(b2)], the number of
bands increases to seven, decreases in the period versus k, and
becomes flatter than that in Fig. 2(b1). Similarly, there were 13
energy bands with d1 = d2 = 13. In this case, three flat bands
are observed [Fig. 2(b3)]. From these results, we conclude that
the phase modulation period determines the number of energy
bands. When the periods of dual-phase modulations are equal
(d1 = d2 = d), the period (d) is identical to the number of
bands, and the energy bands become flat.

A series of simulations of the SPL transmission dy-
namics were performed. A narrow Gaussian beam centered
at position n was employed as the initial excitation. Fig-
ures 2(c1) to 2(c3) show the simulated results of the optical
transmission and accompanying participation ratio P(m) =
(
∑

n |U m
n |2)2/

∑
n |U m

n |4 to represent the localization intensity
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FIG. 2. (a1)–(a3) Phase circumfluence �n, (b1)–(b3) band struc-
tures, (c1)–(c3) propagation dynamics and participation ratio for
the conditions: top row d1 = d2 = 3, middle row d1 = d2 = 7, and
bottom row d1 = d2 = 13, respectively. The red line indicates that
the energy is concentrated near the input pulse in (c3). All other
elements are initially set to zero except U 0

0 = 1 in (c1)–(c3). In the
above situations, the variable A = π/2 remains invariant.

[1]. The smaller the value of P(m), the stronger the localized
intensity. When the period of the phase modulation is small
(d1 = d2 = 3), a discrete diffraction pattern is obtained, as
shown in Fig. 2(c1), the participation ratio increases linearly.
As the phase modulation period increases, discrete diffraction
is suppressed, as shown in Fig. 2(c2). For d1 = d2 = 13, en-
ergy diffusion is weakened and most of the light is localized
near the input site owing to the emergence of flat bands.
Correspondingly, the optical pattern exhibited a narrow bright
line at the center. The final value of P(m) is less than 10, which
also indicates optical localization. The above results show that
the optical localization arises with the increase of the phase
modulation period and the strong localization attributes to
the emergence of flat bands that originate from the weaker
coupling between adjacent compound cells as the result of the
enlarged modulation period.

B. Optical dynamics in moiré periodic phase accumulations

In the case of moiré periodic phase accumulations, the
phase modulation periods in the two loops are different.
The phase accumulations as a function of the discrete po-
sition n exhibit moiré patterns, as shown in Figs. 3(a1) to
3(a4). There are four and eight energy bands for the cases
of d1 = 2, d2 = 4 and d1 = 4, d2 = 8, respectively, as shown
in Figs. 3(b1) and 3(b4), both of which have degenerate
bands that originate from phase accumulation differences of
2π and 0, respectively. No flat bands were observed in the
two cases [see Figs. 3(b1) and 3(b4)]. The corresponding
transmission behaviors belong to discrete diffraction with dif-
ferent diffraction angles when a narrow Gaussian beam is
injected into the short loop at the central position axis. In
addition, the linearly growing P(m) verifies discrete diffrac-
tion propagation. For comparison, for d1 = 2 and d2 = 7,
there were 14 energy bands [Fig. 3(b2)]. The number of
bands is the smallest common multiple of d1 and d2. Fig-
ures 2(b1) to 2(b3) and Figs. 3(b1) to 34b1) show that the

FIG. 3. The same as Fig. 2 for four conditions of top row d1 = 2,
d2 = 4; second row d1 = 2, d2 = 7; third row d1 = 4, d2 = 7; and
bottom row d1 = 4, d2 = 8, respectively.

number of bands increases and the bands gradually become
flat as the value of LCM(d1, d2) increases. When d1 and d2

are not multiples, the number of energy bands increases and
many flat bands are induced. The generation of abundant flat
bands is related to the variation of the moiré period, which
is different from the specifically designed flat band systems
with special symmetry or topological protection [43–47], such
as quasi-one-dimensional rhombic lattice and Su-Schrieffer-
Heeger model in one dimension. The superiority of abundant
flat bands allows flexibility in choosing the incident position,
thereby reducing the difficulty of optical localization. It was
found that strong optical localization was generated when the
participation ratio was less than 10 and the amplitude was
small, as illustrated in Figs. 3(c2) and 3(c3), respectively.
Therefore, based on the participation ratio, the localization
shown in Fig. 3(c2) is stronger than that shown in Fig. 3(c3).
Although there are more flat bands in Fig. 3(c3), optical lo-
calization is weaker than that in Fig. 3(c2) because the band
gap decreases. From the results, the localization intensity is
not only dependent on the number of flat bands but is also
affected by the band-gap width.

C. Statistics of optical localization area

According to the discussion above, the transition from dis-
crete diffraction to optical localization depends on the number
of flat bands. However, the localization intensity cannot be
distinguished directly using only the number of flat bands. To
qualitatively study the localization intensity in the SPL mod-
ulated by the two phases, the inverse participation ratio [48]
is used to intuitively investigate the localization. As shown in
Fig. 4, the average values of 1/P(m) in the last 100 grid points
m were calculated with different d1 and d2. The color change
from blue to red represents a gradually increasing localization
intensity. In Fig. 4(a), when the phase modulation periods in
the two loops are identical, the localization becomes stronger
with an increase in the period, as previously investigated in
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FIG. 4. Statistical diagram of localization intensities versus d1

and d2. The intensities correspond to the average value of inverse P in
the last 100 grid point m, and the larger the intensity, the stronger the
localization. (a,b) are the small- and large-scale periods, respectively.

Sec. III A. One of the two modulation periods is 1, and there is
a similar localization principle for the cases of identical phase
periods. However, the localization strengths under the above
two conditions were very weak. When the phase modulation
periods are different, there is no obvious principle for the
localization strength; however, the localization pattern is al-
most symmetric on the main diagonal, which is clearly shown
in Fig. 4(b). This is because of the symmetrical positions
of d1 and d2. This discrepancy arises because of different
band excitations by the initial pulse. However, the maximum
localization intensity with a participation ratio less than 2.3
is generated in the area of d1 or d2 in the range of 3 to 15.
In addition, for larger d1 and d2, the localization strength
becomes weaker. This is reasonable because the energy bands
are restricted within −π ∼ π , the band gap becomes narrower
as the number of bands increases, reducing the difficulty of
transitions between energy levels.

D. Optical localization transition in large modulation
period of phases

In this section, the band structures and optical dynam-
ics of the SPL with a large phase modulation period are

FIG. 5. Optical dynamics in SPL with large periods of phase
modulations. Band structures with identical dual-period modulation
of (a1) d1 = d2 = 100, (a2) d1 = d2 = 200. Pulse behaviors with
narrow Gaussian beam excitation (b1) d1 = d2 = 100, (b2) d1 =
d2 = 200, the narrow beam has a width of 2δ = 1 and an initial phase
tilt of k0 = 0. Pulse behaviors with wide Gaussian beam excitation
(c1) d1 = d2 = 100, (c2) d1 = d2 = 200, the wide beam has a width
of 2δ = 12 and an initial phase tilt of k0 = π/2. The initial incident
position of the Gaussian beam is n = −53.

simulated. Figures 5(a1) and 5(a2) show band structures with
periods d1 = d2 = 100 and d1 = d2 = 200, respectively. The
band-gap widths were narrower than those in the case of
small-period phase modulation. In addition, the energy bands
present a density distribution and all energy bands are flat. The
incidence of a narrow Gaussian beam and a wide Gaussian
beam was simulated by the numerical solution of Eq. (2).
The dynamic participation ratio is also simulated on the right
side of Figs. 5(b1) to 5(b4). The simulation results (numerical
value of participation rate) show that the localization intensity
decreases with an increase in the modulation period when a
narrow Gaussian beam is incident, which coincides with the
statistical principle. If a wider Gaussian beam is incident, the
light is first split into two oscillating pulses, which is caused
by alternately exciting the two density regions of the energy
bands. Finally, the light becomes localized in a region owing
to its small dispersion. The localization region is broadened
by comparing it with the case d1 = d2 = 100. Furthermore,
by altering the wave number k, long-range optical vibration
with an oscillation period of ∼143 was formed. The narrower
the incident Gaussian beam, the greater the number of excited
energy bands, resulting in a weaker localization intensity.
Under long-period phase modulation, light can be transferred
from vibration to localization by altering the incident position
site n and wave number k.

IV. EXPERIMENTAL PROPOSAL

To prove the feasibility of our study, a corresponding
experimental arrangement is suggested according to the
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theoretical model (Fig. 1). A 50/50 optocoupler (OC) con-
nects two fiber loops with an average length of 4 km,
with a lower ring dozens of meters longer than the other
[36,39,49,50]. Each loop has an erbium-doped fiber amplifier
(EDFA) to compensate for the optical loss of various compo-
nents. Phase modulators (PMs) were inserted into each loop to
obtain the phases of this study. Zero dispersion is guaranteed
by inserting two dispersion compensation fibers (DCF) into
the loops, and an isolator (ISO) is used to ensure that the
pulse propagates unidirectionally. Polarization beam splitters
(PBS) and polarization controllers (PCs) are used to manage
the polarization state in the birefringence of fibers and EDFAs
to obtain good optical interference. The phase accumulation
generated by two-phase modulators was previously realized in
Ref. [39]. Therefore, it is simple to obtain phase accumulation
based on our theoretical model by adding two PMs controlled
by a discrete cosine function to the two loops.

V. CONCLUSION

In conclusion, we study the optical localization transition
in SPL with two-phase modulators in two fiber loops. By al-
tering the periods of both phases, the number of energy bands
is defined by the LCM of d1, d2, and there is a localization-
delocalization transition in the small-period region. From the

statistical diagram of inverse participation ratios, strong local-
ization is distributed symmetrically on the diagonal line and
concentrates in the region of 3 < d1 < 15 or 3 < d2 < 15. In
the large modulation period area, the localization intensities
are weakened owing to the narrower band gap. Therefore, we
further investigated the band structures and optical transmis-
sion in SPL with large modulation periods. The energy bands
exhibited a density distribution and there was a transition from
optical vibration to localization by changing both the position
and wave number of the input Gaussian wave packet. This
study explores the effects of moiré modulation and non-moiré
modulation on pulse dynamics in an SPL system, the trans-
mission trajectory of which is deterministic and repeatable,
which provides an alternative way to achieve optical localiza-
tion in discrete fiber synthetic dimension systems.
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