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Oblique scattering from non-Hermitian optical waveguides
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A judicious design of gain and loss leads to counterintuitive wave phenomena that are inaccessible by
conservative systems. Notably, such designs can give rise to laser-absorber modes and anisotropic transmission
resonances. Here, we analyze the emergence of these phenomena in an optical scatterer with sinusoid gain-loss
modulation that is subjected to monochromatic oblique waves. We derive an analytical solution to the problem,
with which we show how the scatterer parameters, and specifically the modulation phase and incident angle,
constitute a real design space for these phenomena.
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I. INTRODUCTION

A judicious design of gain and loss in physical systems
in general [1,2] and in particular optical systems [3–8] leads
to counterintuitive wave phenomena that are inaccessible by
conservative systems. These phenomena, such as supersen-
sitivity [9–11] and unidirectional invisibility [12,13], can be
harnessed for different engineering applications that require
wave manipulation.

The bulk of the research is on systems that are invariant to
combined parity-time (PT ) transformations [14–20], which
translates to the condition ε(−z) = ε∗(z) for the dielectric
coefficient of a medium that is modulated along z. Depending
on the parameters of such systems, their spectrum can be real,
in spite of the fact that they are governed by non-Hermitian
operators [21,22]. This domain in the parameter space is
called the PT -exact phase, and the rest of the domain, at
which the eigenvalues are complex, is called the PT -broken
phase. The transition points between the two phases are a type
of exceptional points (EPs) [23–27], at which the eigenvalues
and eigenvectors become degenerate, and are the source of the
counterintuitive phenomena mentioned earlier [28–40].

Of particular relevance to this work is the phenomenon
of unidirectional invisibility, which was discovered by Lin
et al. [12] when analyzing a PT -symmetric scatterer with
sinusoid modulation. Using the rotating wave approximation,
they found that at the EPs of the scattering matrix, the re-
flection vanishes from one side only, while the transmission
is unity; they termed it later as anisotropic transmission res-
onance (ATR) [41]. In addition, the transmission also has
zero phase, hence the scatterer is unidirectionally invisible.
Later on, Longhi [42], Jones [43], and Uzdin and Moiseyev
[44] used exact solutions to analyze the scattering properties
beyond the limitations of the rotating wave approximation.

A second pioneering work that motivated the study to
follow is by Longhi [45]. He showed that a waveguide
with uniform grating and two symmetric layers of gain and
loss can simultaneously act as a laser oscillator, emitting
coherent waves [46], and as a coherent perfect absorber

(CPA), completely absorbing particular incoming waves [47].
Chong et al. [48] identified the CPA-laser states as special
solutions in the PT -broken phase, where a pole and a zero
of the scattering matrix1 coincide.

The pioneering works in Refs. [12,45] led to various stud-
ies whose objective was to control the phase transition and
scattering singularities by different means, such as the in-
cident angle of oblique waves and the chirality in a single
gain-loss bilayer [49,50] or the sinusoid modulation properties
[51]. Here, we extend the study to the problem of oblique
waves that are scattered by waveguides of different sinusoid
gain-loss modulations. We derive an exact analytical solution
to the problem with which we characterize how the scattering
properties, and specifically the EPs, depend on the parameters
of the system, such as the incident angle (θ ), driving frequency
(ω), and the wavelength (β), amplitude, and phase (z0) of the
modulation. For two particular cases where the modulation
yields a PT -symmetric medium, we characterize the PT
phase diagram in the (θ, ω) and (θ, β ) parameter spaces. We
also calculate the phase diagram that defines the ATRs in the
(θ, β ) space. We show that there is a range of modulation am-
plitudes and wavelengths at which these ATRs coincide with
(or reside very close to) Fabry-Pérot resonance frequencies.
By analyzing the resultant structure of the phase diagram,
we also gain insights on how to access bidirectional zero-
reflection states. We conclude the study with an analysis of
the poles and zeros of the scattering matrix. We show that the
modulation phase and incident angle constitute together real
(rather than complex) design space for these singularities and
specifically for quasi-CPA-laser states.

Our results are presented in the following order. Section II
contains the mathematical formulation of the problem, to-
gether with our derivation of its analytical solution. In Sec. III,
we recall the two definitions of the scattering matrix and

1This scattering matrix is different than the scattering matrix whose
EPs correspond to unidirectional invisibility, as detailed later in
Sec. III.
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(a) (b)

FIG. 1. (a) A nonmagnetic modulated waveguide that is connected to two uniform waveguides at z = 0 and L. The coefficients A1 and
A2 (B1 and B2) are identified with the amplitudes of the incoming (outgoing) waves. The dielectric coefficient of the modulated waveguide
is ε(z) = εh + εpei2β(z+z0 ). (b) An exemplary modulation profile for some z0. The continuous and dashed curves correspond to Re ε and Im ε,
respectively. The last term is also illustrated in the previous panel using the blue-red color map, designating gain and loss, respectively.

their connection to EPs. We further derive a useful relation
between the poles and zeros of the two matrix definitions for
the particular family of modulations that we analyze. We carry
out a parametric study in Sec. IV and conclude this paper with
a summary of our main results in Sec. V.

II. PROBLEM STATEMENT AND EXACT SOLUTION

We consider a nonmagnetic medium at 0 � z � L whose
dielectric coefficient is modulated according to

ε(z) = εh + εpei2β(z+z0 ), (1)

where β = π/L is half the wave number of the modulation.
Note that when z0 = 0 or L/2, the dielectric coefficient sat-
isfies the necessary condition for PT symmetry, namely,

ε(−z) = ε∗(z). (The particular case of z0 = 0 was considered
in Refs. [12,42–44] for normal incident waves.) Two homoge-
neous nonmagnetic waveguides with a dielectric constant εh

are connected at z � 0 and z � L, guiding oblique monochro-
matic waves to and from the modulated medium (Fig. 1). We
focus on TE (or H) modes [52], such that the electric field is in
the y direction and propagates in the xz plane. The governing
equation for these modes is[

∂2
x + ∂2

z + ω2

c2
ε(z)

]
E (x, z) = 0, (2)

where c is the speed of light and we consider time dependency
of the form e−iωt with an angular frequency ω. The solution in
the homogeneous waveguides is given by

E (x, z) =
{

A1eikh (x cos θ+z sin θ ) + B1eikh (x cos θ−z sin θ ), z � 0,

A2eikh[x cos θ−(z−L) sin θ] + B2eikh[x cos θ+(z−L) sin θ], z � L,
(3)

where A1 and A2 (B1 and B2) are the amplitudes of the in-
coming (outgoing) waves, kh = ω

√
εh/c, and θ is the angle

between the xy plane and the waves in these waveguides.
Inside the modulated medium, we seek solutions in the

form

E (x, z) = eikhx cos θZ (z), (4)

where the x dependency is enforced by the continuity of E at
z = 0 and L. By substituting the ansatz (4) into Eq. (2), we
obtain the following equation for Z (z):[

∂2
z + ω2

c2

(
εh + εpei2β(z+z0 )) − k2

h cos2 θ

]
Z (z) = 0, (5)

which can rearranged as[
∂2

z + k2
h sin2 θ

(
1 + 1

sin2 θ

εp

εh
ei2β(z+z0 )

)]
Z (z) = 0. (6)

Our next step is to rewrite Eq. (6) as a Bessel equation. To this
end, we perform a change of variable, namely,

ζ =
√

k2
hεp

−β2εh
eiβ(z+z0 ), (7)

such that

∂zζ = iβζ , ∂2
z ζ = −β2ζ , (8)

which together with the chain rule ∂zZ = ∂ζ Z∂zζ allows us to
replace Eq. (6) with[

ζ 2∂2
ζ + ζ∂ζ +

(
ζ 2 − k2

h

β2
sin2 θ

)]
Z = 0. (9)

Equation (9) is solved exactly using the Bessel functions
J±ν (ζ ) =: ψ±(z), where ν = (kh/β ) sin θ is assumed to be
a noninteger number. Essentially, Eq. (9) and its solution
are generalizations of the results in Refs. [42–44] to oblique
waves. The electric field in the modulated medium is a linear
combination of these solutions, such that

E (x, 0 � z � L) = C1eikhx cos θψ+(z) + C2eikhx cos θψ−(z).
(10)

Our next objective is to relate the amplitudes of the waves
inside the modulated medium to the amplitudes in the ho-
mogeneous waveguides. To this end, we assemble the two
quantities that are continuous along z, i.e., E and ∂zE , into
a column vector which we denote by s. In the modulated
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medium, this so-called state vector can be written as

s(0 � z � L) = Q(z)c, (11)

where

Q(z) =
(

ψ+(z) ψ−(z)
∂zψ+(z) ∂zψ−(z)

)
, c =

(
C1

C2

)
.

Similarly, the state vector in the right and left ends of the left-
and right-homogeneous waveguides is

s(0−) = Qhl, s(L+) = Qhr, (12)

respectively, where

Qh =
(

1 1
ikh sin θ −ikh sin θ

)
, l =

(
A1

B1

)
, r =

(
A2

B2

)
.

It now follows from the continuity of the state vector at z = 0
and L that

Qhl = Q(0)c, Qhr = Q(L)c. (13)

Accordingly, the transfer matrix M that relates between the
wave amplitudes of the two homogeneous waveguides is

M = Q−1
h Q(L)Q−1(0)Qh, such that r = Ml; (14)

this completes the solution for the electric waves given any
amplitude of incoming waves. Using the Bessel’s continuation

rule we have that Q(L) = Q(0)(
eikh sin θL 0

0 e−ikh sin θL ), which

together with Eq. (14) yields det M = 1.

III. SCATTERING ANALYSIS

We can now relate the incoming and outgoing waves in
terms of the components of M. One way to do that is(

B1

B2

)
= S

(
A1

A2

)
, S =

(
M12/M22 M−1

22
M−1

22 −M21/M22

)
. (15)

If we prescribe an incoming wave with unitary amplitude
from the left (right), such that A1 = 1 and A2 = 0 (A1 = 0
and A2 = 1), it follows that the amplitude of the transmitted
wave is S21 (S12) and the amplitude of the reflected wave is S11

(S22). Accordingly, the components of S are identified with
the reflection and transmission coefficients, such that

S =
(

rL t
t rR

)
. (16)

The eigenvalues of S are

λ
(S)
1,2 = rL + rR

2
±

√
(rL − rR)2

4
+ t2; (17)

they become degenerate, together with their eigenvectors,
when (rL − rR)/t = ±2i. These exceptional points of S for
a PT -symmetric scatterer are linked to the degeneracies in
its eigenmodes if it was bounded [53].

There is an alternative scattering matrix, denoted here as
S̃, that is obtained if we interchange the two entries of the
column vector in the left-hand side of Eq. (15). By doing so,
we obtain (

B2

B1

)
= S̃

(
A1

A2

)
, S̃ =

(
t rR

rL t

)
. (18)

Both Eqs. (15) and (18) deliver the same relations between
the incoming and outgoing waves, however, the corresponding
scattering matrices have different eigenvalues. Specifically,
the eigenvalues of S̃ are

λ
(S̃)
1,2 = t ± √

rLrR; (19)

they become degenerate when either rL or rR vanish. When
the scatterer is PT -symmetric, the exceptional points of S̃
reflect anisotropic transmission resonances (ATRs), at which
the reflection may vanish only from one side while the
transmittance is unity since the scattering coefficients for
PT -symmetric system satisfy

|T − 1| = √
RLRR, (20)

where T := |t |2 is the transmittance and RL,R := |rL,R|2 are the
two reflectances.

The zeros of S, which correspond to a zero eigenvalue,
reflect a perfectly absorbing medium, while the poles of S,
which correspond to an infinite eigenvalue, reflect a lasing
oscillator which emits outgoing coherent waves. It is follows
that if S has a zero, then from Eq. (17) we have t2 = rLrR,
thus S̃ has a zero as well. In our case, it also follows that if S
has a pole then S̃ has a pole also. To show this, we note that

σ1S∗(−z0)σ1 = S−1(z0), S̃∗(−z0) = S̃−1(z0), (21)

where σ1 is the first Pauli matrix, since ε(z) satisfies Eq. (1).
As a result, the product of the modulus of the eigenvalues of
S(−z0) and S(z0) must be 1 and the same holds for S̃. There-
fore, if S(z0) has a pole then S(−z0) has a zero and hence
S̃(−z0) has a zero also, which finally implies that S̃(z0) has
a pole. In the next section, we analyze the dependency of the
zeros, poles, and EPs of S and S̃, and the scattering properties
on the system parameters and specifically the incident angle.

IV. PARAMETRIC STUDY

In our case study, we set εh = 4 and study the scattering
properties as functions of the remaining parameters of the
system. We begin with Fig. 2(a), where we evaluate the log-
arithm of the transmittance T (solid black) and the logarithm
of the two reflectances RL/R (dash-dotted green and dashed
blue) as functions of the incident angle θ , setting the rest of
the parameters to

ξ := εp

εh
= 10−1/2,

β

kh
= 1√

2
, z0 = 0; (22)

and recall that since z0 = 0 the scatter is PT symmetric.
We observe that T varies from 0 at θ = 0 to an anomalous
peak of T = 2.63 at θ = 0.25. Notably, the reflectance from
the right and left are different, where RL vanishes at θ = 0.12
and θ = 0.77, there the transmittance is unity. These angles
correspond to unidirectional reflection that occurs at the EPs
of S̃, as was first reported by Lin et al. [12] for the case
of normal incident wave. To show this, we plot in Fig. 2(b)

the logarithm of the magnitude of λ
(S̃)
1,2 as a function of the

incident angle θ . Indeed, we observe that there is a transition
from unimodular eigenvalues to nonunimodular eigenvalues
at θ = 0.12 and θ = 0.77.

023503-3



TAL GOLDSTEIN AND GAL SHMUEL PHYSICAL REVIEW A 107, 023503 (2023)

(a) (b)

S

(c)

S

FIG. 2. The case z0 = 0. (a) Logarithm of the transmittance T = |t |2 (solid black) and the two reflectances RL/R = |rL/R|2 (dash-dotted

green and dashed blue) as functions of the incident angle θ . (b) Logarithm of the magnitude of λ
(S̃)
1,2 as a function of the incident angle θ . (c)

Logarithm of the magnitude of λ
(S)
1,2 as function of the incident angle. In all panels, ξ = 10−1/2 and β/kh = 2−1/2.

Ge et al. [41] made the observation that, while unidirec-
tional reflectivity occurs at the EPs of S̃, the EPs of S are those
that capture the breaking of the PT symmetry of the system.
These EPs are analyzed in Fig. 2(c) where we evaluate the
logarithm of the magnitude of λ

(S)
1,2 as a function of the incident

angle. We observe that for 0 < θ < 0.44, the eigenvalues are
nonunimodular and are associated with broken PT symme-
try. PT symmetry is restored at θ = 0.44 as the eigenvalues
become unimodular again. Specifically, both the eigenvalues
and eigenvectors coalesce at θ = 0.44, which identifies this
angle as the EP of S. Note that, while the modulus of both the
eigenvalues is unity beyond this point, the eigenvalues them-
selves are different. To examine the dependency of the PT
symmetry breaking on the amplitude of the modulation, we
evaluate in Fig. 3 the EPs of S for ξ = 10−2 (red), 10−1 (blue),
and 10−1/2 (green), as functions of ωL/c [Fig. 3(a)] and β/kh

[Fig. 3(b)]. We highlight the regions that are associated with
broken PT symmetry when ξ = 10−2, 10−1, and 10−1/2 by
the light gray, gray, and dark gray, respectively. We observe
that, as we increase the amplitude of the perturbation, the
region of the broken phase is extended to lower frequencies, or
equivalently, greater β/kh and higher incident angles. Having
evaluated the phase diagram of S, we proceed to the phase
diagram of S̃, shown in Fig. 4. Specifically, Figs. 4(a)–4(c)
correspond to ξ = 10−2 (red), 10−1 (blue), and 10−1/2 (green),

respectively. Here, we distinguish between EPs associated
with rL and rR by light and dark shades, respectively. In
contrast to the phase diagram of S, which shows that there
is at most one EP for a given ξ and β/kh, here there could be
multiple EPs. For example, there are six EPs when ξ = 10−1

and β/kh = 0.32 [black vertical line in Fig. 4(b)].
In all the panels, there is a broken region that extends to

β/kh = 1. Interestingly, this region is bounded from above
by the function β = kh sin θ , which corresponds to the first
Fabry-Pérot resonance [54]. In the Appendix, we used a
multiple scale expansion to derive an approximated solution
under the assumption β ≈ kh sin θ and that the perturbation is
small, resembling the case studied by Lin et al. [12]; using
this approximation, we show that indeed the scatterer exhibits
unidirectional reflection under these assumptions. In fact, all
Fabry-Pérot resonances, i.e., mβ = kh sin θ for any m ∈ N,
provide an approximation for the EPs of S̃. These approxi-
mations for m = 0 . . . 10 are depicted in magenta lines.

The quality of the Fabry-Pérot resonances approximation
depends on how small the perturbation and detuning are. To
show this, we use our analytical expressions for rL and rR

[Eqs. (14) to (16)] to find that they are proportional to

rL ∝ I−(ν+1)

(
ν

√
ξ̃

)
, rR ∝ I−(ν−1)

(
ν

√
ξ̃

)
, (23)

(a) (b)

FIG. 3. The case z0 = 0. EPs of S for ξ = 10−2 (red), 10−1 (blue), and 10−1/2 (green). as functions of θ versus (a) ωL/c and (b) β/kh.
Light gray, gray, and dark gray denote the broken phase region of ξ = 10−2, 10−1, and 10−1/2, respectively.
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(a) (b) (c)

(d) (e) (f)

FIG. 4. The case z0 = 0. Phase diagram of S̃ in the space of (θ, β/kh ) for (a) ξ = 10−1/2, (b) ξ = 10−1, (c) ξ = 10−2. The broken region
is denoted in gray and the EPs of S̃ are highlighted by the colored lines. Panels (d)–(f) show the logarithm of T (solid black) and the two
reflectances RL/R (blue, dash-dotted green, and dashed blue) as functions of the incident angle θ for the three different modulations when
setting β/kh = 1/4.

where I is the modified Bessel function of the first kind and
we recall that ν = (kh/β ) sin θ . The modified Bessel function
vanishes in the limit ξ̃ → 0+ when its order is a nonzero
integer, i.e., ν → m �= 1, in line with our assumptions. When
ν is close to an even (odd) number from above (below), then
I−(ν−1) and I−(ν+1) vanish for some small positive number.
This corresponds to vanishing rL and rR at some small per-
turbation amplitude ξ̃ , near a Fabry-Pérot resonance of even
(odd) integer. Exceptions for this rule are for (i) I0, which
is nonzero at ξ̃ = 0, hence rR does not vanish in the limit
ν → 1 that is associated with the first Fabry-Pérot resonance
(m = 1); (ii) when ν → 0+, rR is proportional to I1− , which
does not vanish at some small positive number, hence rR does
not vanish for m = 0.

Indeed, we observe that for the smallest modulation
[Fig. 4(a)], almost all of the magenta lines coincide with
the EPs that we find using the exact solution, including the
zeroth order, i.e., when θ = 0. By contrast, for the largest
modulation [Fig. 4(c)], the zeroth order does not provide a
good approximation at all and the first order begins to coincide
with the exact solution only from β/kh ≈ 0.5.

By analyzing how the zeros of the modified Bessel func-
tions depend on the order, we deduce that the EPs associated
with vanishing rL will always be closer to the Fabry-Pérot
resonances than those of vanishing rR. Since higher Fabry-
Pérot resonances become closer in the (β/kh, θ ) space, and the
approximated solution improves at smaller modulation ampli-
tude and higher order, the EPs of rL and rR become closer at
smaller modulations and higher Fabry-Pérot resonances; from
a certain frequency they practically coincide. Thus, this trend
provides guidelines for achieving bidirectional zero reflection.

To demonstrate this, we evaluate in the remaining panels
the logarithm of T (solid black) and the two reflectances
RL/R (dash-dotted green and dashed blue) as functions of the

incident angle θ for the three different modulations when
setting β/kh = 1/4. Specifically, Figs. 4(d)–4(f) correspond to
ξ = 10−2, 10−1, and 10−1/2, respectively. Figure 4(d) shows
that RL vanishes at θ = 0.01, 0.25, 0.52, and 0.85, as denoted
by the cross marks, while RR vanishes very closely to the
later two angles, i.e., near θ = 0.52 and 0.85, as designated
by the circle marks. This observation is in agreement with
Fig. 4(a), where the wave number ratio β/kh = 1/4 is de-
noted by the dashed line. This line intersects the exceptional
line that is near the zeroth Fabry-Pérot resonance at θ =
0.01 and then intersects the exceptional lines that practically
coincide with the Fabry-Pérot resonances that are defined by
m = 1, 2, and 3. Indeed, near Fabry-Pérot resonances for
which m equals zero and one, there is no EP that is associated
with RR, while near the higher-order Fabry-Pérot resonances,
i.e., two and three, there are pairs of EPs of RL and RR

that are very close to each other about θ = 0.52 and 0.85.
Figure 4(e) shows that RL vanishes at θ = 0.17, 0.18, 0.53,
and 0.85; here, since the modulation amplitude is greater than
in Fig. 4(d), the angles at which RR vanishes, namely, θ =
0.73 and 0.75, are not as close to the nearest angles at which
RL vanishes. Again, these EP observations agree with the way
in which the dashed line that denotes β/kh = 1/4 intersects
the exceptional lines and the Fabry-Pérot resonances. Finally,
we see that in Fig. 4(f), which corresponds to the larger mod-
ulation amplitude, there are no angles at which RR vanishes,
nor vanishing values RL near the two lowest-order Fabry-Pérot
resonances (zero and one), but only from order two.

The analysis so far was for a zero modulation phase,
yielding a PT -symmetric scatterer. We recall that when
z0 = L/2, the scatterer is also PT -symmetric: this case is
analyzed next. We begin with Fig. 5, which is the same as
Fig. 2, only for z0 = L/2. A comparison between Figs. 2(a)
and 5(a) shows that while only RL vanishes (twice) when z0 =
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(a) (b)

S

(c)

S

FIG. 5. The case z0 = L/2. (a) Logarithm of the transmittance T = |t |2 (solid black) and the two reflectances RL/R = |rL/R|2 (dash-dotted

green and dashed blue) as functions of the incident angle θ . (b) Logarithm of the magnitude of λ
(S̃)
1,2 as a function of the incident angle θ . (c)

Logarithm of the magnitude of λ
(S)
1,2 as a function of the incident angle. In all panels, ξ = 10−1/2 and β/kh = 2−1/2.

0, when z0 = L/2 both RL and RR vanish once, at different
angles. A comparison of the remaining two panels in Figs. 2
and 5 shows that, while the broken region of S̃ is similar for
z0 = 0 and L/2, the broken region of S is completely different
since, when z0 = L/2, S is always at the PT -symmetric
phase for the same given scattering parameters. A more com-
plete picture of the difference in the phase diagrams of the
two PT -symmetric systems is given next by providing the
diagrams that are associated with z0 = L/2. We start with
Fig. 6, which shows the EPs of S as functions of θ versus
ωL/c [Figs. 6(a) to 6(c)], and β/kh [Figs. 6(d) to 6(f)] for
ξ = 10−2 [red, Figs. 6(a) and 6(d)], 10−1 [blue, Figs. 6(b)
and 6(e)] and 10−1/2 [green, Figs. 6(c) and 6(f)], where the
broken regions are highlighted with gray. A comparison with
the diagram of z0 = 0 (Fig. 3) shows that z0 = L/2 has a much
richer diagram, exhibiting multiple reentries to the broken
region when either one of the three parameters (θ , ω, and
β) is varied. This is in sharp contrast with a single entry

when z0 = 0. In addition, when z0 = 0, the broken region
of the greater modulations encloses the broken region of the
smaller modulations, while when z0 = L/2, there are regions
that belong to the broken phase of smaller modulations, while
belonging to the exact phase of greater modulations.

In Fig. 7 we also evaluate the phase diagram of S̃ in the
(θ, β/kh) space; Figs. 7(a) to 7(c) correspond to ξ = 10−2,
10−1, and 10−1/2, where the EPs are highlighted in red, blue,
and green, respectively, and the broken regions are in gray.
We distinguish between the EPs that are associated with zero
rL and rR by light and dark shades, respectively. There is
some similarity with the diagram of z0 = 0, however, here
the structure is more complicated and the broken regions are
larger.

Here again, all Fabry-Pérot resonances provide an ap-
proximation for the EPs of S̃ and these approximations for
m = 0 . . . 10 are depicted in magenta lines. Now we find that
the expressions for rL and rR are proportional to the Bessel

(c)

(d) (e) (f)

(a) (b)

FIG. 6. The case z0 = L/2. Phase diagram of S in the (θ, ωL/c) (a)–(c) space and (d)–(f) (θ, β/kh ) space for (a), (d) ξ = 10−1/2, (b), (e)
ξ = 10−1, and (c), (f) ξ = 10−2. The broken region is denoted in gray and the EPs of S are highlighted by the colored lines.
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(a) (b) (c)

FIG. 7. Phase diagram of S̃(z0/L = 1/2) in the space of (θ, β/kh ) for (a) ξ = 10−1/2, (b) ξ = 10−1, (c) ξ = 10−2. The broken region is
denoted in gray and the EPs of S̃ are highlighted by the colored lines.

functions

rL ∝ J−(ν+1)

(
ν

√
ξ̃

)
, rR ∝ J−(ν−1)

(
ν

√
ξ̃

)
J(ν−1)

(
ν

√
ξ̃

)
.

(24)

In contrast with the behavior of the modified Bessel functions
in Eq. (23), the Bessel functions in Eq. (24) vanish at some
positive argument when ν approaches to a positive integer
number from below. This corresponds to vanishing rL and rR

at some small perturbation amplitude ξ̃ near a Fabry-Pérot res-
onance. Here there is only one exception to this rule, namely,
that rR does not vanish in the limit ν → 1, which is associated
with the first Fabry-Pérot resonance, i.e., m = 1.

We proceed to analyze scatterers that do not satisfy PT
symmetry by considering three exemplary values of z0 that
are different from 0 and L/2. This is carried out in Fig. 8,
where we evaluate the logarithm of T and RL/R as func-
tions of θ , setting ξ = 10−1/2 and β/kh = 2−1/2. Specifically,
Figs. 8(a)–8(c) correspond to z0 = −1/10, 3/10, and −2/5,
respectively. While RL vanish near θ = π/4 in all the panels
(corresponding to ν = 1), overall there is a strong variation in
the scattering properties from one z0 to another. For example,
when z0/L = −1/10, T peaks at θ = 0.57 to 1.34, and then
decays to 1.01 at θ = π/2. By contrast, when z0/L = 3/10,
T peaks at θ = 0.82 to 1.11, and then decays to 1.04 at
θ = π/2. Furthermore, when z0/L = −1/10, RL is unity at
θ = 0, decays to 0.09 at θ = 0.13 which is a local minimum,
then peaks to 0.14 at θ = 0.29 and then decays to zero at
θ = 0.78, and increases again to 0.01 at θ = π/2. By con-
trast, when z0/L = 3/10, the peaks of RL is at θ = 0 from
which it decays to zero at θ = 0.79 and increases again to
0.01 at θ = π/2. The most interesting result is observed for

z0/L = −2/5 about θ = 0.09, where T, RR, and RL all peak
to giant values at the order of 104. The extreme scattering
values in the later case hint at the existence of a pole of
the scattering matrix near z0/L = −2/5 and θ = 0.09. This
observation motivates us to evaluate the eigenvalues of the
scattering matrix eigenvalues in the (θ, z0/L) space. By doing
so, we can identify the poles and zeros of the scattering matrix,
which we plot in Fig. 9 using black circles and red crosses,
respectively, for ξ = 10−2 [Fig. 9(a)], 10−1 [Fig. 9(b)], and
10−1/2 [Fig. 9(c)], when β/kh = 1/30. We observe that the
poles and zeros are distributed symmetrically with respect
to the PT -symmetric perturbation z0 = 0, namely, if at a
certain (z0, θ ) pair there is a pole (zero) then at (−z0, θ ) there
is a zero (pole). This is in accordance with our analysis in
Sec. III, where we showed that product of the modulus of
the eigenvalues of S(−z0) and S(z0) is 1. Such distribution is
similar to the symmetric distribution of poles and zeros in the
complex frequency plane that was studied by Ge et al. [41].
There, this distribution resulted from the PT symmetry of
the medium, while in our case, it is a consequence of Eq. (21).

A comparison of the different panels in Fig. 9 shows that
by increasing the amplitude of the modulation, the number of
poles and zeros increases as well. The collection of all these
points constitutes an arc-like structure whose tip is associ-
ated with the angle at which PT transition occurs for the
PT -symmetric system defined by z0 = 0. To show this, we
evaluate the logarithm of the eigenvalues of S when z0 = 0
as function of θ . Specifically, Figs. 9(d) to 9(f) correspond
to ξ = 10−2, 10−1, and 10−1/2, respectively; we highlight the
broken region at which the eigenvalues are nonunimodular by
gray. Indeed, we observe how the tip of the arc-like structure
and the transition angle from gray to white coincide. While

(a) (b) (c)

FIG. 8. The transmittance T = |t |2 (solid black), reflectance from the left RL = |rL|2 (dash-dotted green), and reflectance from the right
RR = |rR|2 (dashed blue) as functions of the incident angle for ξ = 10−1/2, β/kh = 2−1/2, and z0/L equals (a) −1/10, (b) 3/10, and (c) −2/5.
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(a) (b) (c)

(d)

S

(e)

S

(f)

S

FIG. 9. Poles (black circles) and zeros (red crosses) of the scattering matrix in the (z0/L, θ ) space for β/kh = 1/30 and (a) ξ = 10−2, (b)
10−1, and (c) 10−1/2. Logarithm of the eigenvalues of S as function of θ for (d) ξ = 10−2, (e) 10−1, and (f) 10−1/2; we highlight the broken
region at which the eigenvalues are nonunimodular by gray.

we are unable to derive a mathematical explanation for this
observation, we note that similar observations were made
in Refs. [41,48], which were later explained in Ref. [53].
Specifically, Fig. 8 in Ref. [41] showed that at the phase
transition of the S matrix there is an anticrossing of the poles
in the complex frequency plane, see also Fig. 3 in Ref. [48].
There, the symmetric distribution of the poles and zeros about
the imaginary axis is a result of the PT symmetry of the
system; here, the (θ, z0) space plays a similar role, where the
symmetric distribution of the poles and zeros is about z0 = 0,
owing to Eq. (21).

Figure 9(f) also displays a divergence of the eigenvalues,
as one of them tends to explode and the other tends to vanish.
This is in accordance with the proximity of a zero and a pole
near z0 = 0 in Fig. 9(c), where we recall that their overlap
corresponds to CPA-laser states. We thus refer to these states,
where a zero and pole are very close but not coincide, as a
quasi-CPA-laser state. In such states, as we highlight next,
one of the eigenvalues tends to vanish, but remains greater
from zero, while the other grows significantly, but remains
finite. This behavior of the eigenvalues implies that the scat-
terer can simultaneously absorb almost completely incoming
coherent waves and significantly enhance certain incoherent
excitations.

Quasi-CPA-laser states occur also, e.g., for ξ = 10−2 at
θ ≈ 0.12, when z0/L ≈ ±0.1. We examine in Fig. 10 how the
logarithm of the eigenvalues modulus of S vary near these
states as a function of two different variables: (i) z0/L when
theta is fixed to ≈0.12 [Fig. 10(a)] and (ii) θ when z0/L is
fixed to z0 ≈ 0.1 [Fig. 10(b)], while the rest of the param-
eters are set to β/kh = 1/30 and ξ = 10−2. We observe in
Fig. 10(a) the symmetric distribution of each one of the eigen-
values with respect to z0 = 0. In addition, we observe how
near z0/L ≈ −0.1 one of them grows and the other dimin-
ishes, where near z0/L ≈ 0.1 their tendency is interchanged.

The rapid growth and decay of the eigenvalues near the critical
angle θ ≈ 0.12 is demonstrated in Fig. 10(b).

V. SUMMARY

We derived an exact solution to the problem of monochro-
matic oblique TE waves that are scattered by a waveguide with
sinusoid gain-loss modulation. We analyzed a family of mod-
ulations that are parametrized by their phase, amplitude, and
wavelength. We investigated how these parameters, together
with the frequency and incident angle of the waves, affect
the emergence of lasing, perfect absorption, and anisotropic
transmission resonances. For two particular modulations that
satisfy PT symmetry, we evaluated the diagram of the exact
and broken PT phases in the parameter space and the phase
diagram that defines the anisotropic transmission resonances.
The two modulations have different diagrams, one of which
is much richer, exhibiting multiple re-entries to the broken

(a)

S

(b)

S

FIG. 10. Logarithm of the modulus of the eigenvalues of S̃(ξ =
10−2) (a) as a function of the phase with fixed incident angle θ ≈
0.12 and (b) as a function of the incident angle with fixed phase
z0 ≈ 0.1.
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region. With regard to the diagrams of the anisotropic trans-
mission resonances, we showed that there is a regime in the
parameter space where these resonances reside very close to
Fabry-Pérot resonances. A further investigation of this prop-
erty has provided guidelines on how to design bidirectional
zero-reflection states. Finally, we analyzed the poles and ze-
ros of the scattering matrix, which correspond, respectively,
to lasing and perfect absorption states. We showed that the
the modulation phase and incident angle constitute a design
space for these singularities when the scatterer is subjected
to monochromatic waves. Specifically, we identified quasi-
CPA-laser states when a zero and pole are very close but
do not coincide. These states correspond to scatterers that
can simultaneously absorb almost completely the incoming
coherent waves and significantly enhance certain incoherent
excitations.

ACKNOWLEDGMENTS

We thank anonymous reviewers for constructive feedback
that helped us improve this paper. This project was funded
by the European Union (ERC, EXCEPTIONAL, Project No.
101045494).

APPENDIX: APPROXIMATED SOLUTION NEAR THE
FIRST FABRY-PÉROT RESONANCE

Lin et al. [12] showed that, for normal incident waves (θ =
π/2) impinging on a PT -symmetric Bragg scatterer, the
scattering matrix S̃ exhibits an EP at the Bragg point. Here,
using a multiple scale expansion, we show a similar result
for oblique waves, impinging on a non-Hermitian scatterer
exhibiting one period of modulation, where the EP occurs
at the first Fabry-Pérot resonance, i.e., β = kh sin θ . To show
this, we assume that the detuning δ := β − kh sin θ is very
small relatively to the perturbation wave number. We further
assume that the amplitude of the perturbation is small, such
that ξ̃ := ξ/ sin2 θ 	 1. With these assumptions at hand, we

introduce the variables z(1) := z and z(2) := ξ̃z, and employ a
power expansion of Z in the form

Z = Z (1) + ξ̃Z (2) + · · · , (A1)

to solve Eq. (6). Upon substituting Eq. (A1) into Eq. (6), using
the transformation ∂z = ∂(1) + ξ̃ ∂(2), we obtain two equations

∂2
(1)Z

(1) + β2Z (1) = 0, (A2)

∂2
(1)Z

(2) + β2Z (2) =
(

β2 − (kh sin θ )2

ξ̃
− k2

h

ξ

ξ̃
e2iβ(z+z0 )

)

× Z (1) − 2∂(1)∂(2)Z
(1), (A3)

for the orders O (1) and O (ξ̃ ), respectively. The solution of
Eq. (A2) for the leading order is

Z (1) = A f (z(2) )eiβz(1) + Bb(z(2) )e−iβz(1)
,

and to determine A f and Bb we require that the secular terms
in Eq. (A3) vanish [55]. This provides

∂(1)

(
A f

Bb

)
=

(
δ
i k2

h
ξ

−2ikh sin θ
e2iβz0

0 − δ
i

)(
A f

Bb

)
. (A4)

The solution of Eq. (A4) is(
A f

Bb

)
=

[
cos(δz)

(
1 0
0 1

)

+ i
sin(δz)

δ

(−δ k2
h

ξ

2kh sin θ
e2iβz0

0 δ

)](
A f (0)
Bb(0)

)
.

(A5)

Following the standard procedure to calculate T and RL/R, we
obtain

T =1, RR =
k4

h
ξ 2

4(kh sin θ )2

|δ cot(δL)|2 + δ2
, RL = 0, (A6)

which indeed implies that, under the foregoing assumptions,
there is unidirectional reflection that is associated with an EP
of S̃.
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