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Polarized Rabi-coupled and spinor boson droplets
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Self-bound quantum droplets form when the mean-field tendency of the gas to collapse is stabilized by the
effectively repulsive beyond-mean-field fluctuations. The beyond-mean-field effects depend on Rabi frequency
ωR and quadratic Zeeman effect q for the Rabi-coupled Bose mixtures and the spinor gases, respectively. For a
quantum droplet, the effects of varying ωR and q have recently been examined only for unpolarized Rabi-coupled
Bose mixtures and unpolarized spinor gases. In this paper, we theoretically explore the stability of the droplet
phase for polarized Rabi-coupled Bose mixtures and polarized spinor gases. We calculate the beyond-mean-field
corrections for both gases with polarized order parameters and obtain the phase diagram of the droplets on the
parameter space of Rabi frequency ωR and detuning δ for Rabi-coupled mixtures and quadratic Zeeman energy
q and linear Zeeman energy p for spinor gases. Finally, we highlight the similarities and differences between the
two systems and discuss their experimental feasibility.
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I. INTRODUCTION

Theoretical prediction and experimental realization of the
bosonic droplets strikingly highlight the significance of the
beyond-mean-field (BMF) effects which generally give mi-
nor corrections. Self-trapping of a Bose-Einstein condensate
(BEC) that is otherwise collapsing is only possible if the BMF
fluctuations are taken into account [1,2]. In a trapped single
component BEC with attractive interactions, the mean-field
(MF) interaction energy scales with −N2|a|/R3, where N is
the number of particles, R is the radius of the condensate, and
a is the s-wave scattering length (a < 0) [3]. The trapping
potential ∝ NR2 and kinetic energy ∝ N/R2 of the conden-
sate may balance this attractive MF interaction and yield a
metastable BEC only if the particle number is below some
maximum value [3]. The situation is drastically different in
the case of self-bound droplets. There, the MF collapse is
stabilized by the BMF quantum fluctuations even without a
confining potential [1,2,4–16], and droplets exhibit a mini-
mum particle number below which the gas is no longer stable
[2]. As particle number N decreases, the kinetic energy even-
tually dominates and causes the gas to expand.

In addition to these constraints in the particle number, the
stability of droplets also depends on the interaction param-
eters. Consider the three different classes of Bose droplets:
dipolar [1], binary mixture [2], and spinor [16]. For the dipolar
droplets, the dipole-dipole εdd and contact interactions as;
for binary mixtures, intraspecies a11, a22 and interspecies a12

contact interactions; for spin-1 gas, the spin-zero channel a0

and the spin-2 channel a2 interactions are the fundamental
interaction parameters to be considered. These parameters
should be fine tuned to drive the MF energy of the system
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towards collapse and balance the collapse with the BMF
energy.

The leading theoretical tool to study quantum droplets is
the Bogoliubov theory [1,2,16], which successfully captures
the physics behind the droplet phase. However, there exists a
quantitative disagreement between the theoretical prediction
and experimental results for the critical number of particles
[4,9,17]. Different proposals exist to resolve this disagreement
such as higher-order contributions [18,19], bosonic pairing
[20], beyond Born-approximation [21], or general Gaussian-
state Ansätze [22]. In this paper, we use the Bogoliubov theory
since it provides a sufficient qualitative understanding of the
droplet phenomena. Furthermore, to be able to rely on the
results of Bogoliubov theory, the gas should be in the dilute
regime

√
na3 � 1, where n is the density of the condensate.

Hence, the requirement of such stringent fine tuning motivates
a search for additional probes to adjust droplet formation in
cold atom experiments.

Recently, Bose mixtures with Rabi coupling between the
hyperfine states of the particles attracted attention due to inter-
esting many-body effects, such as effective tunable three-body
interactions [8,23–25]. The coupling between the two levels
of the system makes the BMF energy depend on the Rabi
frequency ωR [24] and provides an additional mechanism to
tune the droplet density. Similar to a critical particle number,
there is a critical Rabi frequency ωc above which the droplet
is no longer self-trapped [8]. For the spinor droplets, the
quadratic Zeeman energy-dependent BMF correction of the
spinor gas plays an analogous role with a maximum quadratic
Zeeman energy qc above which the droplet expands [16].
Additionally, when nonzero quadratic Zeeman energy or Rabi
frequency is introduced, one of the gapless Bogoliubov modes
becomes gapped for both spinor and Rabi-coupled mixtures.
The MF energies can be controlled by the detuning δ for
Rabi-coupled gases and linear Zeeman energy p for spinor
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gases. These similarities prompt us to investigate their droplet
states comparatively.

Previously, both the Rabi-coupled binary mixture droplets
[8] and the spinor gas droplets [16] were studied for zero net
polarization. For the Rabi-coupled droplets, the detuning δ

is assumed to be zero, which yields an unpolarized ground-
state order parameter within the MF picture. Similarly, for
the spinor droplet [16], the MF ground states are studied with
zero magnetization 〈F〉. In this paper, we theoretically explore
the droplet formation for the polarized Rabi-coupled binary
mixture and the spin-1 gas. We examine how the nonzero
polarization affects the MF and BMF energies and discuss
the feasibility of the droplet phases under finite polarization.
For the Rabi-coupled binary mixtures, the nonzero detuning δ

leads to an asymmetry in the particle number of the two levels
within the MF ground state. Finite polarization alters both the
MF and BMF interaction energies. For a given Rabi frequency
ωR, there is a critical value of the detuning δc above which the
droplet is not self-trapping. Similarly, for the spin-1 droplet,
finite magnetization alters the MF and BMF interactions and
a critical magnetization p̃c exists for given quadratic Zeeman
energy q. Using these critical values, we obtain the droplet
phase boundary of the Rabi-coupled mixture and spinor gas
in the ωR−δ and q−p planes, respectively.

This paper is organized as follows. In Sec. II, we summa-
rize the Bogoliubov theory of Rabi-coupled binary mixtures
and discuss the possible MF ground states and mechanical sta-
bility of the mixture. In Sec. III, we develop the formulation of
the polarized Rabi-coupled droplet and present our numerical
results on the droplet phase boundary in the ωR−δ plane. In
Sec. IV, we summarize the Bogoliubov theory of polarized
spin-1 gas and discuss the mean-field order parameters for
antiferromagnetic interactions c1 > 0. In Sec. V, we develop
the formulation of the polarized spinor droplet and present
the droplet phase boundary in the p-q plane. In Sec. VI, we
discuss the experimental feasibility of the proposed phenom-
ena and highlight the similarities and differences between the
polarized Rabi-coupled and spinor droplets.

II. RABI-COUPLED BOSE MIXTURES:
BOGOLIUBOV THEORY

We consider a BEC consisting of N atoms in two inter-
nal states, m = 1, 2 with the corresponding s-wave scattering
lengths a11, a22, and a12. The internal states are coupled
through a Rabi frequency ωR and detuning δ. Applying the
rotating wave approximation to eliminate the explicit time
dependence, the Hamiltonian of this Rabi-coupled binary
mixture is given by [24]

Ĥ =
∫

dx

⎧⎨
⎩
∑

m=1,2

�̂†
m(x)

(
− h̄2∇2

2M

)
�̂m(x)

+
∑
m,m′

[gmm′

2
�̂†

m(x)�̂†
m′ (x)�̂m′ (x)�̂m(x)

]

− h̄ωR[�̂†
1 (x)�̂2(x) + �̂

†
2 (x)�̂1(x)]

−h̄
δ

2
[�̂†

2 (x)�̂2(x) − �̂
†
1 (x)�̂1(x)]

⎫⎬
⎭ (1)

FIG. 1. The phase diagram of Rabi-coupled Bose mixture as a
function of Rabi frequency 2h̄ωR

ḡn and detuning h̄δ

ḡn for g12
g < −1, and

g > 0. The shade (color bar) indicates the ratio r = √
N1/N2 in the

MF ground state (2). The dashed (red) line indicates the bound-
ary above or below which the total MF two-particle interaction for
g12/g = −1.5 is repulsive or attractive, respectively. The solid (red)
line is the boundary of the self-trapped droplet phase. In region I, the
gas expands due to the repulsive MF interaction. In region II, the MF
energy is attractive but the repulsive BMF energy is relatively strong
to lead to the expansion. In region III, the MF attraction is stabilized
by repulsive BMF energy to form a droplet.

where gmm′ = 4πamm′ h̄2/M is the coupling constant of the
s-wave interaction among the atoms of mass M within the in-
ternal states m and m′. �̂†

m(x) and �̂m(x) are the field operators
that create and annihilate the particle with internal state m at
position x, respectively.

To understand the ground-state order parameter within
the MF picture and how it differs from the binary mixture
without Rabi coupling, we focus on the MF energy of the
gas with an equal intraspecies scattering length g11 = g22 = g
for simplicity. The MF energy is given by [25,26] (see
Appendix A for details)

EMF

N
= −h̄ωR sin θ − h̄δ

2
cos θ + gN

2V
− ḡN

2V
sin2 θ (2)

where ḡ = g−g12

2 . The wave functions of the condensate com-
ponents (ψ1 ψ2) = √

n(sin θ/2 cos θ/2) where θ ∈ [0, π ]
is the polar angle on the Bloch sphere. Assuming the total
number of particles N fixed, the problem of determining the
MF ground state becomes finding θ that minimizes the energy
(2). The ground-state MF order parameter r ≡ √

N1/N2 =
tan(θ/2) for any g12/g with δ = 0 can be found in Ref. [8].

Here, we are interested in the parameter space for δ �= 0.
Since our purpose is to examine the order parameters in which
the system can collapse within the MF picture, we assume
g12/g < −1 and g > 0, which gives collapse without phase
separation. This interval also yields g > 0. The ratios between
the particle numbers r within the MF ground state for various
ωR and δ values are shown in Fig. 1. Without any detuning,
the MF energy is minimized by θ = π/2 or r = 1 for any
ωR. This is exactly the order parameter to which Cappellaro
et al. [8] restrict their droplet analysis. As detuning δ becomes
nonzero, the MF ground state becomes polarized r �= 1. The
polarization becomes sharper, i.e., r → 0 or θ → 0, as either

023322-2



POLARIZED RABI-COUPLED AND SPINOR BOSON … PHYSICAL REVIEW A 107, 023322 (2023)

ωR → 0 or δ → ∞. The order parameter r = tan(θ/2), and
θ ∈ [0, π/2] changes smoothly over the parameter space (see
Fig. 1).

Now let us discuss how the two-body interaction part
( gN2

2V − ḡN2

2V sin2 θ ) of the MF energy (2) changes with the de-
tuning δ. On the ωR axis, the MF ground state yields r = 1 or
θ = π/2 which gives the two-body interaction ∝ (g − ḡ)n2 =
(g + g12)n2/2, where n = N/V is the density of the gas. Since
g12/g < −1, the density collapse is expected within the MF
picture. However, on the δ axis, the MF ground state yields
r = 0 or θ = 0 for h̄δ/ḡn > 2. Hence, the MF two-body in-
teraction is ∝ gn2. Since g > 0, the gas expansion is expected
within the MF picture. Note that as detuning δ is increased
from zero to infinity, the gas becomes more polarized. As
the polarization of the gas increases, i.e., r → 0, the effective
MF interaction first becomes less attractive and then acts re-
pulsive. Consequently, we expect a value of θ = sin−1 √

g/ḡ,
below which the MF interaction is repulsive. For g12/g =
−1.5, the line that separates this attractive and repulsive MF
interaction is shown with the dashed red line in Fig. 1. For
region I in Fig. 1, the MF energy is repulsive and favors an
expansion of the gas. For regions II and III in Fig. 1, the MF
energy is attractive.

Below, the free parameters of the Rabi-coupled mixture
are taken as ωR, r, g12, g, and N . Furthermore, dimensionless
parameters ω̃ = h̄ωR

gn and γ = g12/g are used when appropri-
ate. The results are presented as functions of the parameter
set (ω̃, r) which then can be mapped to the parameter plane
(ωR, δ) when necessary.

We calculate the BMF energy of each correspond-
ing Bogoliubov mode separately using E±

BMF = 1
2

∑
k(E±

k −
limk→∞ E±

k ), where E±
k are the Bogoliubov dispersions and

we obtain (see Appendix A for details)

E±
BMF

V
= α(gn)5/2I±(ω̃, γ , r) (3)

where α = M3/2√
2π2 h̄3 . See Appendix A for I±(ω̃, γ , r). In the

limit ω̃ → 0 and r = 1, (3) recovers the BMF energy of the
Bose mixture without Rabi coupling. In the limit r → 1 for
any ω̃, the E±

BMF expressions of Cappellaro et al. [8] are
recovered for both modes. For more general cases (r �= 1), we
calculate the I+ numerically for various r values. For any r ∈
[0.6, 1], where the MF energy is attractive when γ = −1.5,
BMF energy (3) increases as either ω̃ or ratio r increases, since
I+ is a monotonically increasing function of both variables.

III. RABI-COUPLED BOSE MIXTURE DROPLET

We now discuss the possibility of self-trapping and ne-
glect the “soft” Bogoliubov mode contribution E−

k , as in
Refs. [2,11,16]. We first consider the infinite, homogeneous
Rabi-coupled Bose mixture. The pressure of the gas is calcu-
lated from P = −∂ (EMF + E+

BMF)/∂V as follows:

P = g(1 + r4) + 2g12r2

2(r2 + 1)2
n2 + α(gn)5/2 f (ω̃) (4)

where f (ω̃) = 3
2 I+(ω̃) − ω̃I ′

+(ω̃). For any g12/g, there is a
value of r ∈ [0, 1] above which the pressure due to the MF
energy is negative. Furthermore, this negative pressure can be

stabilized by a positive contribution from BMF energy, since
g > 0 and f (ω̃) is positive for any value of ω̃. Under these
circumstances, the vanishing pressure P = 0 condition can be
reached. We obtain an implicit equation for the equilibrium
density:

n0 = [g(1 + r4) + 2g12r2]2

4(r2 + 1)4α2g5 f 2(ω̃0)
(5)

where ω̃0 = h̄ωR
gn0

. If ωR = 0 and r = 1, this equilibrium

density becomes n(1)
0 = 25|δg|2

16α2g5(1+|γ |)5 , where δg ≡ g12 + g.

Here, n(1)
0 also approximates the density of the finite droplets

in which the kinetic energy is negligible. As the Rabi
frequency ω̃ is increased for a fixed ratio r, the function f (ω̃)
and BMF energy become greater, which in turn decreases the
equilibrium density of the droplet.

We study the feasibility of the finite droplet more
quantitatively by obtaining the governing Gross-Pitaevskii
equation (GPE). We use the locked-in approximation, i.e.,
different components of the droplet are in phase within any
region and the density ratio of the components is fixed
throughout the condensate. Therefore, a single scalar wave
function is sufficient to represent both components. Hence,
we assume a droplet wave function �(r) = ψ (r)(τ1 τ2)T ,
where τ1/τ2 = r and |τ1|2 + |τ2|2 = 1. We express the energy
functional of the droplet using n(r) = |�(r)|2 as

E[ψ∗, ψ] = h̄2

2M
|∇ψ |2 +

(
−2h̄ωRr

r2 + 1
− h̄δ(1 − r2)

2(1 + r2)

)
|ψ |2

+
(

g

2
− 2ḡr2

(1 + r2)2

)
|ψ |4

+ αg5/2I+

(
h̄ωR

g|ψ |2 , γ , r

)
|ψ |5 (6)

and write the wave function in dimensionless form ψ (r) =√
n(1)

0 φ(r). We minimize the total energy in the grand canon-

ical ensemble E = ∫ d3rE[ψ∗, ψ] − μN where the chemical
potential is fixed by the total number of particles N =∫

d3r|ψ |2. The resulting modified GPE is given by

μ̃φ = − 1

8

(
r +1

r

)2

∇̃2φ +
[
2α4|φ|2 +5α5

2
I+

(
ω̃

(1)
0

|φ|2 , r, γ

)
|φ|3

− α5ω̃
(1)
0 I ′

+

(
ω̃

(1)
0

|φ|2 , r, γ

)
|φ|
]
φ (7)

where ω̃
(1)
0 = h̄ωR

gn(1)
0

, α4 = 3
2|δg| (

(r2+1)2g
2r2 − 2ḡ), and α5 =

15
8(1+|γ |)5/2 (r + 1

r )2. Equation (7) is written in the dimensionless

form r̃ = r/ξ , where ξ =
√

6h̄2

M|δg|n(1)
0

is the coherence length

of the droplet and the total particle number is scaled by
Ñ = N/n(1)

0 ξ 3. This modified GPE reduces to the form
obtained by Petrov [2] when ωR = 0 and r = 1, since
α4 = −3/2 and α5I+(0, 1, γ ) = 1 in this limit. Below, we
fix the scattering length ratio γ = −1.5, as in Cappellaro
et al. [8].

We numerically solve the modified GPE (7) by imaginary
time evolution and obtain the ground-state wave function. For
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FIG. 2. The ground-state wave functions of the Rabi-coupled Bose mixture in the droplet phase for various values of ω̃
(1)
0 and ratio r.

Left: The wave functions for δ = 0, i.e., r = 1 and different values of ω̃
(1)
0 . The above ω̃c droplet is no longer self-trapped. Right: The wave

functions for fixed ω̃
(1)
0 = 0.25 and varying ratio r, which shows the self-bound droplet until a critical value of rc ≈ 0.7. The total particle

number Ñ = 500 for both plots.

a fixed total particle number Ñ = 500, we find the critical
value of ω̃

(1)
0 above which the droplet expands to infinity.

One can expect that driving the gas to region II in Fig. 1,
in which the MF energy is attractive, results in the collapse
of the gas. However, the repulsion due to the BMF energy
is strong enough to lead to an expansion. To understand this
intuitively, consider a condensate with particle number Ñ and
radius R̃. The total energy Ẽ consists of attractive MF energy
∝ −Ñ2/R̃3, repulsive BMF energy ∝ I+Ñ5/2/R̃9/2, and the
kinetic energy ∝ Ñ/R̃2. For fixed Ñ , as the BMF energy
increases with greater I+, the equilibrium radius R̃ of the
droplet increases. Then the kinetic energy (∝ R̃−2) becomes
significant relative to both MF (∝ R̃−3) and BMF (∝ R̃−9/2)
energies. Hence, the minimum of Ẽ (R̃) first shifts to greater
R̃, and then disappears. For Ñ = 500 and δ = 0, or r = 1, the
critical frequency is ω̃c = 0.9, above which the gas expands.
Figure 2 shows the increase in the droplet radius with increas-
ing ω̃

(1)
0 up to the critical ω̃c in the left panel.

As r decreases, the MF interaction energy [α4 term in
(2)] first decreases, then acts repulsive for r < 0.62. BMF
energy (3) also decreases with r. However, since MF energy
shrinks at a higher rate, we expect ω̃c to become smaller
with decreasing r. As r changes from 1 to 0.7, ω̃c changes
from 0.9 to 0, and we do not observe a droplet phase below
r = 0.7. For 0.62 < r < 0.70, the MF interaction of the gas
is attractive. However, the MF energy is comparatively weak,
hence any BMF repulsion leads to an expansion. We show the
droplet wave function for various ratio r for fixed Ñ = 500
and ω̃

(1)
0 = 0.25 in the right panel of Fig. 2.

We numerically obtain the critical ω̃c values for different
r and fixed Ñ = 500 and |γ | = 1.5 to obtain the boundary of
the droplet phase as shown in Fig. 1.

IV. SPIN-1 GASES: BOGOLIUBOV THEORY

In previous work [16], we study the spin-1 gas with vanish-
ing magnetization 〈F〉 = 0 and find that the spinor droplet is
possible in the polar and antiferromagnetic phases if density
interaction is negative c0 < 0 and spin interaction is positive
c1 > 0. The quadratic Zeeman energy q in spinor gas is anal-

ogous to the Rabi frequency ωR in Bose mixtures and both
can tune the density of the droplet. As q increases, the BMF
energy causes the droplet to expand and beyond a critical level
of q the gas cannot self-bind. Similarly, the detuning δ in the
Rabi-coupled mixture is analogous to the linear Zeeman shift
p in the spinor gas.

Here, we extend our spinor droplet discussion to include
the effects of nonzero magnetization p �= 0. The ground-state
order parameter changes only for the antiferromagnetic phase
(see Fig. 3) and it gives a constant shift in the MF energy for
the polar phase [27–29].

The spin-1 BEC with s-wave interactions and a uniform
magnetic field along the z axis is described by the following
Hamiltonian:

Ĥ =
∫

dx

{
�̂†

m(x)

(
− h̄2∇2

2M
+ qm2 − pm

)
�̂m(x)

+ c0

2
�̂†

m(x)�̂†
m′ (x)�̂m′ (x)�̂m(x)

+ c1

2
�̂†

m(x)�̂†
m′ (x) Fmn · Fm′n′�̂n′ (x)�̂n(x)

}
(8)

where �̂†
m(x) and �̂m(x) create and annihilate the spin-1

atom in the magnetic quantum state m = −1, 0, 1, Fmm′ =
(F x

mm′ , F y
mm′ , F z

mm′ ) are the spin-1 matrices in the z-axis basis,
and the summation convention is used for m indices. The
linear Zeeman energy p = −gLμBB is the product of the
Landé gL factor, the Bohr magneton μB, and the applied mag-
netic field B. The quadratic Zeeman energy q = qB + qMW

can be tuned using both an external static field qB = (gμBB)2

�Eh f

and microwave field qMW. Hence, the linear Zeeman energy
p can be set using the static magnetic field B, whereas the
quadratic Zeeman energy q can be independently tuned by
the microwave fields [28]. Interactions in the density and spin
channels are parametrized by coupling constants c0 = g0+2g2

3
and c1 = g2−g0

3 , where g0 and g2 are the total spin-zero and
spin-2 channel coupling constants, respectively.
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FIG. 3. The phase diagram of spin-1 gas as a function of
quadratic q/nc1 and linear p/nc1 Zeeman energies. The or-
ange region corresponds to the antiferromagnetic order τAF =
1/

√
2(

√
1 + p̃ 0

√
1 − p̃). MF interaction is repulsive outside the

dashed (blue) lines | p̃| > 0.44, and attractive inside | p̃| < 0.44 for
c1/c0 = −5 with c0 < 0. The droplet phase boundary is shown with
solid (purple) line where the gas can be stabilized by BMF fluctua-
tions. In region I, the repulsive MF interaction causes an expansion.
In region II, while the MF energy is attractive, the BMF repulsion
is relatively strong, leading to expansion. In region III, the MF at-
traction is stabilized by the repulsive BMF energy. The total particle
number Ñ = 500.

The MF ground-state order parameter τ is determined by
minimizing the MF energy [28] (see Appendix B for deriva-
tion):

EMF

V
= n2

2
(c0 + c1〈F〉2) + qn

〈
F 2

z

〉− pn〈Fz〉. (9)

We consider the magnetic orders when the spin coupling
constant is positive c1 > 0 as shown in Fig. 3. For p =
0, the order parameter is τP = (0 1 0) if q > 0, or τAF =
1/

√
2(1 0 1) if q < 0. When q > 0, introducing nonzero p

does not make any difference in τP around the q axis. How-
ever, if q < 0, the MF energy is minimized by a p dependent
order parameter τAF = 1/

√
2(

√
1 + p̃ 0

√
1 − p̃), where p̃ ≡

p/nc1. Note that 〈Fz〉 = p̃, hence, τAF is defined for −1 �
p̃ � 1. Outside this interval, the order parameter becomes
ferromagnetic. In this paper, we focus on this p̃ dependent
τAF to analyze how the spinor droplets in the antiferromag-
netic phase are affected when the nonzero magnetization p̃ is
introduced.

The order parameter τAF gives 〈F 2
z 〉 = 1, 〈Fz〉 = p̃, and

〈F〉 = p̃êz and the resulting MF and BMF energies are (see
Appendix B for the derivation)

EMF

V
= (q − p̃p)n + (c0 + c1 p̃2)n2

2
, (10)

EBMF

V
= 8

√
2

15
α(c1n)5/2I0(q̃, β )

+ 8
√

2

15
α[(c0 + c1)n]5/2[I+(κ ) + I−(κ )] (11)

where q̃ = q
nc1

, I± = (1±κ )5/2

4
√

2
, κ ≡

√
1 − 4β2c0c1

(c0+c1 )2 , β =√
1 − p̃2, and I0(q̃, β ) can be approximated as (see

Appendix C)

I0(q̃, β ) ≈ 15πβ2

32
√

2

[√
−q̃ + 1 − β2

32

1

(−q̃ + 1)3/2

]
. (12)

These expressions reproduce the results given in Ref. [16] for
p̃ = 0 and τAF = 1/

√
2 (1 0 1).

Notice that when p̃ = 0, the MF interaction is attractive if
c0 < 0. Interestingly, MF energy decreases in magnitude as
polarization | p̃| increases, and if p̃ >

√|c0|/c1, it becomes
repulsive, which leads to an expansion of the gas above a
critical level shown with dotted lines in Fig. 3.

In the attractive MF regime p̃ <
√|c0|/c1, the contribu-

tion of the BMF energy is repulsive since c1 > 0, and it can
stabilize the gas. The hard modes given above by I+ and I0

dispersion provide such stabilization whereas the soft mode
I− containing imaginary parts can be neglected, similar to the
approach in the previous Sec. II and droplet studies [2,16].

V. POLARIZED AF SPIN-1 DROPLET

In the parameter regime c0 < 0 and c1 > 0, the pressure of
the gas is calculated using the thermodynamic identity P =
−∂E/∂V with the total energy given by E = EMF + E+

BMF +
E0

BMF, which gives

P =
(

c0 + p̃2c1

2

)
n2 + 4

√
2

15
α(c1n)5/2 h(q̃, β ) (13)

where h(q̃, β ) = 3I0(q̃, β ) + 3(c0/c1 + 1)5/2I+(κ ) − 2q̃I ′
0(q̃,

β ). Here, the prime on I0 denotes the partial derivative with
respect to q̃. The equilibrium density for the infinite homoge-
neous droplet can be found from the vanishing pressure

n0 = 225

128

(c0 + p̃2c1)2

c5
1 h2(q̃0, β )

(14)

where q̃0 = q
n0c1

. n0 is equivalent to the equilibrium density
result of Ref. [16] for zero magnetization p̃ = 0. We take the

limit q → 0 to obtain a density scale n(1)
0 = 25|c0|2

512α2|c1|5 and use
it to express the dimensionless modified GPE. Since h(q̃, β )
is a monotonically increasing function of q̃, the equilibrium
density decrease with the increase of the quadratic Zeeman
energy q̃. Larger q̃ provides stronger BMF fluctuations and
the system can stabilize at lower densities.

We use again the locked-in approximation �(r) =
ψ (r)τAF with τAF = 1/

√
2(

√
1 + p̃ 0

√
1 − p̃) and write the
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FIG. 4. The ground-state wave functions of the spinor gas in AF phase for various values of quadratic Zeeman q̃(1)
0 and linear Zeeman p̃

energy. The total particle number Ñ = 500 and c1/c0 = −5 with c0 < 0 for both plots. Left: The wave functions for fixed p̃ = 0.2 and varying
q̃(1)

0 . Above q̃c, a self-bound droplet cannot be formed. Right: The wave functions for |q̃(1)
0 | = 1 and different values of p̃. Similarly, the above

p̃c droplet is no longer self-trapped.

energy functional

E[ψ∗, ψ]

= h̄2

2M
|∇ψ |2 + (q − p̃p)|ψ |2 +

(
c0 + c1 p̃2

2

)
|ψ |4

+ 8
√

2

15
α{(c1n)5/2I0(q̃, β ) + [(c0 + c1)n]5/2I+(κ )}|ψ |5.

(15)

Using ψ (r) =
√

n(1)
0 φ(r), we minimize the total energy E =∫

d3rE[ψ∗, ψ] − μN with the total number of particles N =∫
d3r|ψ |2 which yields the modified GPE

μ̃φ = − 1

2
∇̃2φ

+
{

−3

(
1 + c1

c0
p̃2

)
|φ|2 + 5

4
I0

(
q̃(1)

0

|φ|2 , β

)
|φ|3

+ 5

4

(
c0

c1
+ 1

)5/2

I+(κ )|φ|3 − q̃(1)
0

2
I ′
0

(
q̃(1)

0

|φ|2 , β

)
|φ|
}

φ

(16)

where q̃(1)
0 = q

n(1)
0 c1

, r̃ = r/ξ , and ξ =
√

6h̄2

M|c0|n(1)
0

is the coher-

ence length of the droplet. In the limit p̃ → 0, we recover
the GPE of the unpolarized AF gas τAF = 1/

√
2(1 0 1) with

I+(κ ) → ( c1
c0+c1

)5/2, which is expected to give a droplet phase

up to a critical |q̃| ≈ 4.4 for Ñ ≈ 500 and c1/c0 = −5 [16].
When | p̃| � √|c0|/c1 ≈ 0.45, the blue dashed line in

Fig. 3, MF interaction becomes repulsive, the gas goes
through expansion, and BMF fluctuations provide corrections
for further repulsion. When | p̃| <

√|c0|/c1 the MF drives a
density collapse while BMF interactions are still effectively
repulsive. Typically, the effect of p̃ is much more pronounced
in the MF terms than the BMF corrections whereas the effect
of |q̃| is small in MF interactions, but it strengthens the BMF
fluctuations for given p̃.

We display the droplet wave functions obtained from the
numerical solution of modified GPE for |q̃(1)

0 | = 1 with vary-
ing p̃ on the right, and for p̃ = 0.2 with varying |q̃(1)

0 | on the
left panel of Fig. 4.

For a fixed p̃, larger |q̃(1)
0 | gives stronger BMF repulsion,

which widens the droplet radius. For p̃ = 0.2, after |q̃c| ≈ 2.2,
the gas cannot form a droplet. For a fixed |q̃(1)

0 |, greater mag-
netization p̃ means both lower MF attraction and lower BMF
repulsion. Since the polarization changes the MF attraction
in a greater ratio than the BMF repulsion, the critical |q̃c|
becomes lower for greater p̃. For p̃ > p̃c even a small BMF
repulsion is sufficient to expand the gas, since the MF attrac-
tion becomes much weaker. For instance, after a critical level
of p̃c ≈ 0.3 for |q̃(1)

0 | = 1, the gas cannot bind into a droplet.
We obtain the critical levels for each q̃(1)

0 and p̃ within
the parameter region of interest for c1/c0 = −5 and show the
droplet phase boundary in Fig. 3 with the solid red curve.

VI. DISCUSSION OF EXPERIMENTAL
REALIZATION AND CONCLUSION

The parameters of the phase diagrams discussed above
are within the current experimental capabilities for the Rabi-
coupled gas. Consider a mixture of 39K atoms in the hyperfine
states |F = 1, mF = 0〉 and |F = 1, mF = −1〉. The Fesh-
bach resonance around B ≈ 54.5 G can be used to tune the
intracomponent scattering lengths as a11 = a22 = 40aB and
the intercomponent scattering length a12 = −60aB [8], where
aB is the Bohr radius. The ratio of interactions gives γ =

g
g12

= −1.5. In the absence of detuning and Rabi coupling,
N ≈ 23 000 particles give a droplet of radius 0.4 μm with a
peak density n0 = 4.12 × 1016 cm−3. For zero detuning δ =
0, one can introduce a Rabi coupling ωR = 2π fR up to the
level fR ≈ 51 kHz. As the Rabi coupling frequency increases,
the droplet expands to a radius r ≈ 0.65 μm and the density at
the center of the droplet decreases to n0 ≈ 0.8 × 1016 cm−3.
Above 51 kHz, the droplet will not be self-bound. The role
of nonzero detuning can be tested by setting the Rabi fre-
quency to fR = 10.2 kHz for the same number of particles.
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The critical level of detuning for these parameters is δc =
41 kHz, which gives density n0 = 3.75 × 1016 cm−3 and ra-
dius 7.4 μm beyond which it is no longer self-bound.

Experimentally realized spinor BECs so far are not fa-
vorable for obtaining a spinor droplet since they are all
mechanically stable c0 > 0 [28,30–33]. While the use of Fes-
hbach resonance is not possible, the spinor BEC scattering
lengths may be tuned using theoretically proposed optical
Feshbach resonances in future cold atom settings [34,35].
The scattering lengths that favor droplet formation can be
estimated considering an atom with scattering lengths a0 =
−50aB in the spin-zero channel and a2 = 20aB in the spin-
1 channel with Landé factor gL = 1/2 (s = 1/2, l = 0, I =
3/2) which gives c1/c0 = −5 with c0 < 0. For zero linear and
quadratic Zeeman energies, the spinor droplet with a density
8.3 × 1016 cm−3 and radius 0.6 μm can be formed with the
total particle number N ≈ 130 000. This droplet will be self-
bound until a critical level of quadratic Zeeman energy q ≈
680 kHz. For an initial magnetization per particle p̃ = 0.2, the
gas will be stable until the quadratic Zeeman energy exceeds
320 kHz where the density of the droplet at its center will be
around 2.1 × 1016 cm−3 and the radius 0.95 μm.

In conclusion, Rabi-coupled Bose mixture and spinor gas
are similar to each other in the following ways.

(i) The BMF energies are Rabi frequency or quadratic
Zeeman energy dependent.

(ii) One of the Bogoliubov modes become gapped when
nonzero Rabi frequency or quadratic Zeeman energy is intro-
duced.

(iii) The polarization, hence the effective mean-field en-
ergy, can be significantly changed using the detuning or linear
Zeeman energy.

Therefore, droplet formation and its properties are highly
affected by the linear and quadratic Zeeman energies in spinor
gases, the Rabi frequency, and the detuning in the Bose mix-
tures.

Note added. Recently, we became aware of a recent study
[36] related to polarized Rabi-coupled Bose mixture.

ACKNOWLEDGMENT

This work is supported by TUBITAK 2236 Co-funded
Brain Circulation Scheme 2 (CoCirculation2) Project No.
120C066 (A.K.).

APPENDIX A: THE BOGOLIUBOV THEORY
OF RABI-COUPLED MIXTURE

We obtain the MF energy and BMF fluctuations using
the Bogoliubov theory in the Hamiltonian (1). Assuming a

homogeneous gas, we express the field operators in terms
of Fourier modes �̂m(x) = V −1/2∑

k âk,meikx, and write the
operators âk,m = â0,m +∑k �=0 âk,m keeping only the terms up
to the quadratic order in âk �=0,m. We replace the operators
with the classical number â0,m ≈ √N0,m, where N0,m is the
number of particles with internal state m in the k = 0 state.
The Hamiltonian (1) becomes

Ĥ = − 2h̄ωR
√

N1N2 − h̄δ

2
(N2 − N1) +

∑
m,m′

gmm′NmNm′

2V

+
∑
k �=0

{⎛⎝εk + g11n1 + h̄ωR

√
N2

N1

⎞
⎠â†

k,1âk,1

+
⎛
⎝εk + g22n2 + h̄ωR

√
N1

N2

⎞
⎠â†

k,2âk,2

+ g11n1

2
(â†

k,1â†
−k,1 + âk,1â−k,1)

+ g22n2

2
(â†

k,2â†
−k,2 + âk,2â−k,2)

+ g12
√

n1n2(â†
k,1â†

−k,2 + âk,1â−k,2)

+ (g12
√

n1n2 − h̄ωR)(â†
k,1âk,2 + â†

k,2âk,1)

}
(A1)

where εk = h̄2k2

2M is the free particle dispersion. The first line
of (A1) is the MF energy of the Rabi-coupled binary mixture
gas, while the rest of the terms account for the quantum
fluctuations that constitute the BMF energy.

The MF energy of Rabi-coupled gas reads

EMF = −2h̄ωR
√

N1N2 − h̄δ

2
(N2 − N1) +

∑
m,m′

gmm′NmNm′

2V
.

(A2)

For equal intraspecies coupling g11 = g22 = g and the
parametrization of particle number ratio of the components
with tan(θ/2) = N1/N2 and N1 + N2 = N , the MF energy in
(A2) becomes

EMF

N
= −h̄ωR sin θ − h̄δ

2
cos θ + gN

2V
− ḡN

2V
sin2 θ. (A3)

By applying the Bogoliubov transformation on the
quadratic Hamiltonian (A1), the Bogoliubov modes of the
Rabi-coupled binary mixture [24] are obtained:

E±,k =

√√√√Dk ±
√

D2
k − εk

(
εk + h̄ωR

(
r + 1

r

))[(
εk + 2gn1 + h̄ωR

1

r

)
(εk + 2gn2 + h̄ωRr) − (2g12

√
n1n2 − h̄ωR)2

]
,

Dk = 1

2

∑
m=1,2

[(
εk + h̄ωR

√
nm̄

nm

)(
εk + 2gnm + h̄ωR

√
nm̄

nm

)
− h̄ωR(2g12

√
n1n2 − h̄ωR)

]
(A4)
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where m̄ = 3 − m, n1 = r2

r2+1 n, and n2 = 1
r2+1 n. These Bogoliubov modes reduce to the results of Cappellaro et al. [8] for r = 1

and nonzero ωR, and they recover the usual Bose mixture results without Rabi coupling for ωR = 0 and r = 1.
The total BMF energy is the zero-point energy of the Bogoliubov excitations:

EBMF = 1

2

∑
k

{
E+,k + E−,k − 2εk −

(
r + 1

r

)
h̄ωR − gn1 − gn2 + g2n2

1 + g2n2
2 + 2g2

12n1n2

2εk

}
(A5)

where the last term within the summation is the T-matrix renormalization energy for the Bose mixture [2].
To calculate the BMF energy of each mode separately, we divide the renormalization energy among the two modes such that

none of the modes yield divergence. We calculate each corresponding Bogoliubov mode separately using E±
BMF = 1

2

∑
k(E±

k −
limk→∞ E±

k ), which gives

E±
BMF

V
= α(gn)5/2I±(ω̃, γ , r) (A6)

where α = M3/2√
2π2 h̄3 , ω̃ = h̄ωR

gn , the particle number ratio r =
√

N1
N2

, and coupling constant ratio γ = g12

g .

The integral expression for the function I±(ω̃, r, γ ) within the BMF energy (A6) is given by

I±(ω̃, γ , r) ≡
(

r2

r2 + 1

)5/2 ∫ ∞

0
dyy2

{√
(y4 + β2y2 + β0) ±

√(
β2

2 + 2β0 − z4
)
y4 + (2β0β2 − z6)y2 + β2

0

− y2

⎡
⎢⎢⎢⎣1 +

β2 ±
√

β2
2 + 2β0 − z4

2y2
+

β0 ± β0β2−z6/2√
β2

2 +2β0−z4
−
(
β2±

√
β2

2 +2β0−z4

)2

4

2y4

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A7)

where

β0 ≡ (r2 + 1)2

r4

[
2rω̃

r2 + 1
(1 − γ ) + ω̃2 + ω̃2

2r2
+ ω̃2r2

2

]
, (A8)

β2 ≡
(

1 + 1

r2

)(
1 + ω̃

r
+ ω̃r

)
, (A9)

z4 ≡
(

2 + ω̃(r2 + 1)

r3

)(
2

r2
+ ω̃(r2 + 1)

r

)
+ ω̃

(r2 + 1)3

r5

(
2 + ω̃(r2 + 1)

r

)
−
(

2γ

r
− ω̃(r2 + 1)

r2

)2

, (A10)

z6 ≡ ω̃
(r2 + 1)2

r3

[(
2 + ω̃(r2 + 1)

r3

)(
2

r2
+ ω̃(r2 + 1)

r

)
−
(

2γ

r
− ω̃(r2 + 1)

r2

)2
]

(A11)

where gn1y2 ≡ εk. Check Fig. 5 to see how I+(ω̃, γ , r) be-
haves for various r values as ω̃ changes.

APPENDIX B: BOGOLIUBOV THEORY OF SPIN-1 GAS

With the Bogoliubov approximation, the Hamiltonian in
(9) reduces to quadratic form [37]:

Ĥeff = V n2

2
(c0 + c1〈F〉2) + qN

〈
F 2

z

〉− pN〈Fz〉

+
∑
k �=0

{[
εk − nc1〈F〉2 + qm2 − q

〈
F 2

z

〉]
â†

k,mâk,m

+ nc1〈F〉 · Fmm′ â†
k,mâk,m′

+ nc0

2
(2D̂†

kD̂k + D̂kD̂−k + D̂†
kD̂†

−k )

+ nc1

2
(2F̂†

kF̂k + F̂kF̂−k + F̂†
kF̂†

−k )

}
(B1)

where εk = h̄2k2/2M is the free particle dispersion, 〈F〉 ≡∑
m,m′ Fmm′τ ∗

mτm′ is the expectation value of the spin-1 order

parameter, D̂k ≡∑m τ ∗
mâk,m and F̂k ≡∑m,m′ Fmm′τ ∗

mâk,m′ are
the density and spin fluctuation operators, N0 is the number
of particles in the k = 0 state, and τ is the ground-state order
parameter in the spin-1 manifold.

The MF energy of the spin-1 BEC obtained from (B1) is
[37]

EMF

V
= n2

2
(c0 + c1〈F〉2) + qn

〈
F 2

z

〉− pn〈Fz〉 (B2)

whereas all the other terms within the summation constitute
the quantum fluctuations.

The order parameter τAF gives 〈F 2
z 〉 = 1, 〈Fz〉 = p̃, and

〈F〉 = p̃êz and the resulting quadratic Hamiltonian is

Ĥ = EAF
0 +

∑
k �=0

{
(εk − q + c1n)â†

k,0âk,0

+ c1nβ

2
(â†

k,0â†
−k,0 + âk,0â−k,0)
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FIG. 5. The integral I+ in (A7) as a function ω̃ for various r and
fixed g12/g = −1.5.

+
∑

m=±1

[
εk + (c0 + c1)n(1 + mp̃)

2

]
â†

k,mâk,m

+
∑

m=±1

[
(c0 + c1)n(1 + mp̃)

4

]
(â†

k,mâ†
−k,m + âk,mâ−k,m)

+ (c0 − c1)nβ

4
(2â†

k,−1âk,1 + â†
k,−1â†

−k,1 + â†
k,1â†

−k,−1

+ 2â†
k,1âk,−1 + âk,−1â−k,1 + âk,1â−k,−1)

}
(B3)

where β =
√

1 − p̃2, and EAF
0 is the MF energy:

EAF
0

V
= (q − p̃p)n + (c0 + c1 p̃2)n2

2
. (B4)

The diagonalization of the quadratic Hamiltonian in (B3)
yields three distinct Bogoliubov modes [27]:

Ek,±1 =
√

εk[εk+(c0 + c1)n(1 ± κ )],

Ek,0 =
√

(εk − q + (1 − β )c1n)(εk − q + (1 + β )c1n)

(B5)

where κ ≡
√

1 − 4β2c0c1

(c0+c1 )2 . To calculate the renormalization
terms, rewrite the two-body interaction energy in the MF
energy functional (B4) as

(c0 + c1 p̃2)n2

2
= [ p̃2(c0 + c1) + (1 − p̃2)c0]n2

2
. (B6)

Then, replace the bare coupling constants c0 and c0 + c1 in
(B6) with the renormalized coupling constants c0 and c0 + c1

by using the T-matrix approach up to the second order (see the
Appendix of Ref. [37]):

c0 = c0 +
(
c2

0 + 2c2
1

)
V

∑
k �=0

1

2εk
, (B7)

c0 + c1 = (c0 + c1) + (c0 + c1)2

V

∑
k �=0

1

2εk
. (B8)

Then, we distribute the total renormalization energy into three
distinct modes to avoid the divergence in each mode sepa-
rately. The BMF energies become

EBMF,±1 = 1

2

∑
k �=0

{
Ek,±1 −

(
εk + (c0 + c1)(1 ± p̃)n

2

)

+ (κ2 + 1)(c0 + c1)2n2

4εk

}
, (B9)

EBMF,0 = 1

2

∑
k �=0

{
Ek,0 − (εk − q̃ + c1n) + β2(c1n)2

2εk

}

(B10)

where q̃ = q
nc1

. Then, we obtain the following total BMF
energy density for the AF order parameter:

EAF
BMF

V
= 8

√
2

15
α(c1n)5/2I0(q̃, β )

+ 8
√

2

15
α[(c0 + c1)n]5/2[I+(κ ) + I−(κ )] (B11)

where I± = (1±κ )5/2

4
√

2
and I0(q̃, β ) can be approximated as (see

Appendix C)

I0(q̃, β ) ≈ 15πβ2

32
√

2

[√
−q̃ + 1 − β2

32

1

(−q̃ + 1)3/2

]
. (B12)

APPENDIX C: ANALYTICAL
APPROXIMATION FOR I0(q̃, β)

The integral that determines the BMF energy for the Ek,0

mode reads

I0(q̃, β ) = 15

8
√

2

∫ ∞

0
dx x2

×
[√

(x2 − q̃ + 1)2 − β2 − (x2 − q̃ + 1) + β2

2x2

]

(C1)

where εk ≡ c1nx2 substitution is done.
We use a change of variable y ≡ x2 − q̃ + 1 in the integral

(C1) and expand
√

1 − β2/y2 in Taylor series up to the second
order in the domain x � 0 and q̃ � 0 and obtain

I0(q̃, β ) = − 15β2

16
√

2

∫ ∞

0
dx

(
(q̃ − 1)

x2 − q̃ + 1
+ β2x2

4(x2 − q̃ + 1)3

)
.

(C2)

Each term above can be calculated to give

I0(q̃, β ) ≈ 15πβ2

32
√

2

[√
−q̃ + 1 − β2

32

1

(−q̃ + 1)3/2

]
. (C3)

Higher-order terms in the expansion of
√

1 − β2/y2 improve
the accuracy but we numerically checked that the second-
order expansion is sufficient to achieve less than 1% error for
all q̃ values.
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