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We address the existence and dynamics of one-dimensional harmonically confined quantum droplets ap-
pearing in two-component mixtures by deploying a nonperturbative approach. We find that, in symmetric
homonuclear settings, beyond-Lee-Huang-Yang correlations result in flat-top droplet configurations for either
decreasing intercomponent attraction or larger atom number. Asymmetric mixtures feature spatial mixing
among the involved components with the more strongly interacting or heavier one exhibiting flat-top struc-
tures. Applying quenches on the harmonic trap we trigger the lowest-lying collective droplet excitations. The
interaction-dependent breathing frequency, being slightly reduced in the presence of correlations, shows a
decreasing trend for stronger attractions. Semianalytical predictions are also obtained within the Lee-Huang-
Yang framework. For relatively large quench amplitudes the droplet progressively delocalizes and higher-lying
motional excitations develop in its core. Simultaneously, enhanced intercomponent entanglement and long-range
two-body intracomponent correlations arise. In sharp contrast, the dipole motion remains robust irrespective of
the system parameters. Species-selective quenches lead to a correlation-induced dephasing of the droplet or to
irregular dipole patterns due to intercomponent collisions.
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I. INTRODUCTION

Ultracold atoms constitute versatile platforms for probing
correlated quantum many-body (MB) phases of matter [1]
such as self-bound quantum droplets [2–6]. The latter man-
ifest the existence of quantum correlations in macroscopic
mixtures, represented to first order by the Lee-Huang-Yang
(LHY) correction term [7], stabilizing the system against col-
lapse due to mean-field (MF) effects [2,4–6]. Importantly,
these self-bound states have been realized in both homonu-
clear [8–10] and heteronuclear [11] short-range interacting
bosonic mixtures in three dimensions as well as in single
component [3,12,13] and binary dipolar gases [14,15] and
mixtures thereof [4,5]. Focusing on short-range interacting
droplets, several experiments have addressed their dynamical
formation [10,16], the droplet to a gaseous BEC crossover
[9,17,18] and their collisional properties [19] with their
self-evaporation and three-body recombination being central
issues [8–11].

On the theoretical side, droplets have been found to emerge
also in Bose-Fermi mixtures with [20] and without spin-
orbit coupling [21,22], as well as in Bose-Bose mixtures in
the presence of three-body interactions [23,24]. Moreover,
collective excitations [25] and the properties of topological
excitations [26–30], e.g., vortices [26] embedded in a droplet
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background have been investigated to a certain extent. Ad-
ditionally, bosonic droplets can be accommodated in optical
lattices in both one [31,32] and two dimensions [33,34] as
well as in semidiscrete settings [35,36]. Their excitation spec-
trum was studied especially in one dimension [37–41] and
in the crossover from three dimensions to one dimension
[42]. Droplets spatial configurations acquire a flat-top (FT)
profile for larger atom number [2], while associated thermal
instabilities leading to their self-evaporation have also been
reported [43–47].

The lifetime of droplets is expected to be prolonged in
one dimension [48,49] and in the case of heteronuclear
mixtures, due to their lower density [11]. In spite of this
advantage, heteronuclear mixtures, where correlation effects
should be enhanced due to the mixed character of the en-
suing droplet, have not been extensively studied thus far
[50–52]. This is in part due to the complicated form of
the corresponding extended Gross-Pitaevskii equation (eGPE)
[19,50]. It is a partial aim of our study to explore the role of
correlations in harmonically trapped heteronuclear mixtures
and the associated droplet configurations. In one dimension,
droplets have been primarily described within the eGPE
framework [37–39,41,53],with notable exceptions where non-
perturbative approaches were utilized to unveil beyond-LHY
physics in free space [52,54,55] and in lattice settings [31,32].
Interestingly, however, the formation of one-dimensional
(1D) harmonically trapped droplets remains largely unex-
plored [52,56,57]. Within the eGPE framework [52,56], FT
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droplet structures were shown to be suppressed, while it
was argued that they can exist using temporally varying
interactions [57].

In this sense, it is highly desirable to inspect the inter-
play of correlations for both stationary droplet entities as
well as in their dynamics when trap effects, being com-
monly unavoidable in experiments [8–11], are not omitted.
The conditions under which FT configurations occur in an
external harmonic trap and importantly whether the presence
of beyond-LHY correlations favors their formation remain
unclear [52]. Moreover, droplet collective excitations, being
crucial for understanding, e.g., their ability to support nonlin-
ear excitations [30], can be triggered owing to the tunability of
the external confinement, without exciting higher order corre-
lations as is the case, e.g., for interaction quenches [52]. While
the behavior of the droplet breathing frequency in one dimen-
sion has been studied to some extent [37,52], the dynamical
response of the system and the build-up of intercomponent
correlations still remain elusive especially when species-
selective quenches are applied. In the present work, we study
the ground state and collective dynamics of 1D harmonically
trapped droplet structures in both homonuclear and het-
eronuclear mixtures which experience repulsive (attractive)
intra- (inter-)component interactions. For addressing correla-
tion effects on the formation of harmonically trapped droplets
beyond the LHY approximation we rely on the nonpertur-
bative multilayer multiconfiguration time-dependent Hartree
method for atomic mixtures (ML-MCTDHX) [58–60]. Ad-
ditionally, in order to explicate the role of correlations at
different levels we compare our results with the common MF
treatment [61] as well as the predictions of the eGPE [53].

We showcase that FT signatures stemming from beyond-
LHY correlations are present in symmetric homonuclear
mixtures for either decreasing attraction or an increasing atom
number, in contrast to the predictions of the eGPE [52,56].
Otherwise, a larger attraction leads to an alteration of the
droplet configuration from a FT to a Gaussian-shaped one as
in free space [52,55]. Another central result of our findings
is that similar structures occur also for interaction (mass)
imbalanced bosonic mixtures, whose 1D eGPE is not known,
where the more strongly repulsive (heavier) component fea-
tures FT signatures for reduced intercomponent attraction and
the setting is spatially mixed. In all cases, the droplets show
an antibunching (bunching) behavior at the same (different)
locations.

The breathing dynamics of the droplet is initiated through
quenching the trap frequency. Interestingly, using relatively
large quench amplitudes higher-lying motional excitations
build-upon the droplet core and simultaneously density por-
tions are expelled, a process that is reminiscent of the
self-evaporation mechanism in three dimensions [10,16]. This
self-evaporation mechanism, however, has not been previ-
ously reported in 1D settings [38,52], exposing the crucial
effect of the external confinement on the dynamical response
of quantum droplets. We show herein that this overall unsta-
ble dynamics is accompanied by enhanced intercomponent
entanglement and the development of long-range two-body
intracomponent spatial correlations. Analytical predictions
for the breathing frequency are provided at relevant limits
by extending the variational approximation within the LHY

theory introduced in Ref. [37], while numerical estimations
show that it tends to the ideal gas case for strong attractions
and it is reduced towards the FT regime in accordance with
Refs. [52,54,55]. Another important result is the development
of a pronounced correlation driven dephasing in the dynamics
of heteronuclear mixtures, where the relevant eGPE equa-
tion is not available. This dephasing is owed to the tendency of
the individual components to oscillate in phase (with a phase
difference) for strong (weak) attractions. In contrast to free
space, here the confinement allows to also excite the droplet
dipole motion, via a sudden displacement of the trap position,
which is found to be insensitive to interactions. Moreover, uti-
lizing relevant species-selective quenches for weak attractions
gives rise to irregular dipole patterns as a result of intercompo-
nent collisions and consequent energy transfer, while at strong
attractions the droplets prefer to maximize their overlap.

This work is organized as follows. In Sec. II we introduce
the bosonic mixture under investigation and briefly discuss
the established eGPE theory and the nonperturbative ML-
MCTDHX approach used for the description of quantum
droplets. Section III elaborates on the static properties of
harmonically confined droplets, with an emphasis on their
correlation aspects. The nonequilibrium droplet dynamics
upon considering quenches of the trap is subsequently exam-
ined focusing on their collective excitations and in particular
their breathing mode (Sec. IV) and dipole motion (Sec. V).
We conclude offering also perspectives for future work in
Sec. VI. The Appendix provides the ingredients of the varia-
tional approximation and the time-dependent Gaussian ansatz
employed for a complementary interpretation of the droplet
properties.

II. ATTRACTIVELY INTERACTING MIXTURE
AND THEORY MODELS

A. Many-body two-component bosonic system

We employ a particle-balanced bosonic mixture with
NA = NB = N atoms confined in a weak 1D harmonic trap.
To address confined droplet structures in both homonu-
clear and heteronuclear mixtures we shall consider mass
ratios mA/mB = 1 and mB/mA ≈ 2.1 respectively. Such two-
component systems can be experimentally emulated using
two hyperfine states of 39K [8–10] or in the heteronuclear
case a mixture composed of 42K and 87Rb [11]. Our setting
focuses in the ultracold temperature limit where s-wave scat-
tering dominates [62]. In this sense, interparticle interactions
correspond to contact potentials characterized by effective
intra- (gA, gB) and intercomponent (gAB) coupling strengths.
They can be tuned either through the three-dimensional (3D)
s-wave scattering lengths using Feshbach resonances [63,64]
or via the transversal confinement with confinement induced
resonances [62]. The MB Hamiltonian reads

H =
∑

σ=A,B

Nσ∑
i=1

[
− h̄2

2mσ

(
∂2

∂xσ
i

2

)
+ 1

2
mω2

(
xσ

i

)2

]

+
∑
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gσ

Nσ∑
i< j

δ
(
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δ
(
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j
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.

(1)
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The frequency of the longitudinal (ωx) over the transverse
(ω⊥) trapping frequencies is fixed to ω = ωx/ω⊥ = 0.01.
Similar values are commonly employed experimentally to
realize 1D settings [65]. In the following, we rescale the
Hamiltonian in terms of h̄ω⊥. This means that the length,
time, and interaction strengths are expressed with respect to√

h̄/(mω⊥), 1/ω⊥, and
√

h̄3ω⊥/m, respectively.

B. Droplet region and the extended Gross-Pitaevskii equation

Within the local density approximation and under the
impact of the first-order quantum correction term (LHY con-
tribution), Bogoliubov theory leads to the so-called eGPE
framework [2,53]. It has been demonstrated that the eGPE, in
the absence of confinement (ω = 0) and in the thermodynamic
limit, describes the formation of quantum droplets [53]. Con-
sidering the average repulsion g = √

gAgB, the droplet interval
is quantified by the measure δg = g + gAB with 0 < δg � g
[53], which implies interspecies attraction gAB < 0. For a
symmetric mixture, i.e., mA = mB ≡ m, NA = NB ≡ N , and
gA = gB ≡ g, the genuine two-component system is described
by a reduced single-component eGPE equation which in the
presence of a sufficiently weak (ω � 1) harmonic trap reads

ih̄
∂�(x, t )

∂t
= − h̄2

2m

∂2�(x, t )

∂x2
+ δg|�(x, t )|2�(x, t )

−
√

2m

π h̄
g

3
2 |�(x, t )|�(x, t ) + 1

2
mω2x2�(x, t ).

(2)

Within the interaction regime 0 < δg � g a structure rem-
iniscent of a liquid puddle appears being characterized by a
FT density profile, which saturates at n0 = 8mg3/(9π2h̄2δg2)
[53]. However, an increasing attraction such that 0 < δg � g
results in a transition behavior towards more localized solu-
tions having a Gaussian shape. In both cases, these self-bound
localized structures emerge due to the competition between
the overall quadratic MF repulsion and the linear LHY attrac-
tion and thus constitute a beyond MF effect. Moreover, in the
case that the interspecies MF attraction balances exactly the
respective intraspecies repulsion, namely, δg = 0, the eGPE
equation depends purely on the quantum fluctuation LHY
term and the so-called LHY fluid arises [66]. Finally, turn-
ing to δg < 0 the eGPE approach admits various soliton-type
solutions, including “bubble” or “W-shaped” configurations
under suitable conditions; see for details Refs. [41,67,68].

The inclusion of a harmonic trap (ω �= 0) leads to local-
ized Gaussian-shaped (soliton-type) configurations in the MF
realm, independently of the value of the interspecies interac-
tion gAB [61]. The corresponding density distributions exhibit
a larger width for decreasing |gAB| [61,69]. Hence, as we shall
demonstrate below, the more pronounced BMF effect that is
expected in the presence of confinement is the existence of a
FT density profile restricted around the trap center, where trap
effects are diminished.

Concluding, the eGPE (2) was derived in the absence of
confinement (ω = 0), and it is valid for macroscopic systems
close to the MF balance point δg ≈ 0 [53]. However, it has
been demonstrated that its predictions can be in good quali-
tative agreement with nonperturbative methods even for finite

values of δg and N , i.e., for mesoscopic systems [52,54,55].
The inclusion of a harmonic trap is expected to affect the Bo-
goliubov modes and therefore the form of the LHY term [49].
Nevertheless, throughout this work, we employ the eGPE
framework since it provides an adequate phenomenological
description of quantum droplets and in order to exemplify
when effects beyond the standard LHY theory become im-
portant.

C. Many-body wave function approach

To expose the impact of beyond LHY correlation effects
on the ground state and quench dynamics of quantum droplets
we shall utilize the ab initio ML-MCTDHX method [58–60].
It enables us to numerically solve the time-dependent MB
Schrödinger equation of the mixture and specifically its mul-
tilayer structure of the total MB wave function is tailored
to account for both intra- and intercomponent correlations.
Comprehensive discussions on the ingredients, successful ap-
plicability and benchmarking of this approach to various
multicomponent settings such as impurity setups, cavities and
spinor systems and reductions to other approaches can be
found in the recent reviews [70,71].

Particularly, to address the intercomponent correlations of
the bosonic mixture, the MB wave function is written as a
truncated Schmidt decomposition [72] based on D different
species functions, |�σ

k (t )〉, for each component σ = A, B.
Accordingly

|�(t )〉 =
D∑

k=1

√
λk (t )

∣∣�A
k (t )

〉∣∣�B
k (t )

〉
. (3)

The time-dependent Schmidt weights
√

λk (t ) characterize the
degree of intercomponent correlations (or entanglement) of
the system, since if only λ1(t ) = 1 is nonzero and λk>1(t ) =
0, then the MB ansatz is a product (nonentangled) state. Con-
versely, the wave function is in a superposition and the system
is referred to as entangled [70,72].

Subsequently, intracomponent correlations are incorpo-
rated, by expanding each species function as a linear
superposition of time-dependent number states |nk

σ 〉 with
time-dependent expansion coefficients Aσ

nk
(t ). The number

states |nσ
k 〉 refer to the full set of permanent states defined

by dσ time-dependent variationally optimized single-particle
functions (SPF’s) or orbitals |	σ

i 〉 with occupation numbers
n = (n1, . . . , ndσ

). Moreover, the dσ time-dependent SPFs
evolve in the single-particle Hilbert space spanned by the
time-independent basis {|rk

j 〉}Mj=1. The latter, in our case, is
taken to be an M-dimensional discrete variable representa-
tion with M = 1000 grid points. The equations of motion
for the coefficients of the ML-MCTDHX wave function
ansatz describing the MB Hamiltonian of Eq. (1) are found,
e.g., using the Dirac-Frenkel variational principle [60,73],
〈δ�|(ih̄∂t − Ĥ )|�〉 = 0.

Summarizing, a major asset of the above outlined ap-
proach is the expansion of the MB wave function in terms
of time-dependent and variationally optimized basis sets. In
this sense, the relevant Hilbert space is efficiently spanned
employing a computationally feasible basis size as compared
to other approaches such as exact diagonalization using a
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time-independent basis. Naturally, as in every ab initio
method, the superposition of multiple orbitals restricts its
applicability to mesoscopic systems when the degree of
correlations is enhanced. For instance, in the current attrac-
tively interacting mixture where intercomponent correlations
become appreciable the truncated Hilbert space is charac-
terized by the orbital configuration space C = (D; dA; dB) =
(10, 4, 4) for NA = NB = N = 20 and C = (10, 6, 6) for
NA = NB = N = 5. As a consequence, the number of the re-
spective equations of motion that are numerically solved is
tractable. Notice that due to the variational character of the
method, its convergence has been carefully checked, namely,
the used observables remain unchanged within a desired ac-
curacy upon increasing the basis size.

The ML-MCTDHX wave function ansatz naturally reduces
to the usual MF one [61], where all correlation are absent,
when only a single Schmidt coefficient and SPF for each
species are used (D = dA = dB = 1). In this case, the cor-
responding wave function takes a simple product form, and
considering a variational principle yields the widely used cou-
pled set of Gross-Pitaevskii equations for the bosonic mixture
[61,69]; namely,

ih̄
∂	σ (x, t )

∂t
= − h̄2

2m

∂2	σ (x, t )

∂x2
+ mω2x2

2
	σ (x, t )

+ gσ |	σ (x, t )|2	σ (x, t )

+ gσσ ′ |	σ ′
(x, t )|2	σ (x, t ). (4)

By comparing the MF predictions to the MB ones, we are
able to infer the impact of interparticle correlations on the
formation and dynamics of confined quantum droplets.

III. GROUND STATE DROPLETS

We begin by studying the formation of 1D harmonically
trapped quantum droplets appearing in two-component short-
range interacting bosonic mixtures. Our analysis is mainly
based on the above-discussed MB ML-MCTDHX approach
which allows us to systematically account for beyond MF
corrections. To expose the latter we also occasionally compare
with the predictions of the eGPE treatment and the common
MF method.

A. Symmetric bosonic mixtures

Initially, we consider a fully symmetric homonuclear mix-
ture characterized by NA = NB ≡ N , mA = mB ≡ m, gA =
gB ≡ g = 0.1 while the interspecies attraction gAB < 0 is
tuned. Recall that in this case the two components behave
equivalently [2,37,70], since they also experience the same ex-
ternal trap and thus the mixture reduces to a single-component
system. The respective one-body density1ρ(x), which is
throughout normalized to unity, is depicted in Fig. 1(a).
Apparently, there is a transition from the Gaussian density

1In the case of the symmetric mixture the observables associated
with the two components are the same. For instance, the densi-
ties ρA(x) = ρB(x) ≡ ρ(x) as well as the reduced density matrices
[Eq. (5)] ρ

(2)
AA (x1, x2) = ρ

(2)
BB (x1, x2 ) ≡ ρ (2)(x1, x2).

(a)

(b)

FIG. 1. Ground state droplet densities of a symmetric mixture in
a harmonic trap as obtained in the MB approach. The cases of (a) dif-
ferent δg and fixed NA = NB = N = 20 and (b) varying atom number
N for constant interaction δg = 0.01 are presented. A transition from
a Gaussian-type distribution to a FT one for increasing either δg or N
occurs. In (b) a FT profile appears for N = 50. Inset of (a): Density
around the trap center within the MF, MB and the eGPE approach
for δg = 0.08. Notice that only the MB calculation captures the FT
profile.

profile (see, e.g., δg = 0.01) to a more delocalized FT one
(e.g., for δg = 0.08) around the trap center for increasing
δg = g + gAB. The FT structure appears only for the MB case,
and it is an effect of residual beyond LHY correlations since
it does not appear in the eGPE case; see the inset of Fig. 1(a).
However, it should be mentioned that the above-described de-
localization trend of the density for larger δg is also captured
within the eGPE (not shown), and it can be explained by the
scaling of the healing length ξ ∝ δg/g3/2 [38]. Accordingly,
also the MF fails to capture this FT structure showing a rela-
tively more delocalized density distribution.

Naturally, in our trapped system the FT features are
not as prominent as in free space. Quantitatively, if the
system resides in its ground state with density close to
its saturation value in free space, i.e., |�(x, t )|2 ≈ n0 =
8g3/(9π2δg2), then it is described to a good approximation by
the static eGPE in the Thomas-Fermi limit, namely, δgn0 −√

2
π h̄ g

3
2
√

n0 + 1
2ω2x2 = 0. The effect of the harmonic trap then

becomes comparable to that of the MF and LYH terms for
x ≈

√
8g3/(9π2δg)ω−1 � 10, for the parameter values con-

sidered here, which gives an estimation for the size of the
observed FT profiles. This suggests that the FT profile is not
expected to grow significantly in size even for very large
particle numbers. Of course, a systematic study of the first-
(LHY) and potentially higher-order perturbative corrections in
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the presence of the trap would be required to fully characterize
the FT configurations, a study that lies beyond the scope of
this work.

A similar structural deformation from a Gaussian to a
FT configuration can be realized for a fixed interspecies at-
traction, e.g., δg = 0.01 and by varying the atom number as
illustrated in Fig. 1(b). This behavior can be understood in
terms of the eGPE predictions in free space. Particularly, it has
been shown [53] that in the absence of a trap, the droplet ex-
hibits a FT profile when its particle density saturates towards
n0 = 8g3/(9π2δg2) ≈ 0.9 for g = 0.1 and δg = 0.01. In our
case where ω �= 0 we can assume that the mixture resides
within the spatial region |x| < 2aosc = 20. As such, its peak
density is of the order of N/4aosc with aosc = 1/ω. Then the
above-mentioned free space saturation density is reached as
long as Ns/4aosc ≈ n0, which corresponds to a critical atom
number Ns ≈ 36 for saturation in the trap. This prediction is
found to be consistent with our MB calculations [Fig. 1(b)],
where the FT profile emerges only for N > 40. Note, however,
that this argument does not apply for larger values of δg. As
an example, for g = 0.1 and δg = 0.08, the saturation density
in free space is n0 ≈ 0.014 and the corresponding critical par-
ticle number for saturation in the trap is Ns ≈ 0.5. The latter
implies that a FT should occur for any atom number, which is
of course not confirmed within our simulations (not shown).
Let us mention that in the absence of an external trap it was
argued, by employing a quantum Monte Carlo approach, that
for larger values of δg droplet formation is inhibited due to
the generation of dimers that appear due to beyond-LHY
correlations [54,74]. This can be understood from the fact that
the droplet saturation density n0 = 8g3/(9π2δg2) lies below
the dimer threshold 2n0/g � 1 for sufficiently large δg ≈ g.
Evidently, in our setup, the harmonic trap prevents the mixture
from reaching such low densities and, e.g., in the case of
N = 20, g = 0.1, and δg = 0.08 a liquid-like state with satu-
ration density ntr (δg = 0.08) = Nρmax(δg = 0.08) = 0.5342,
where ρmax denotes the droplet peak density, is established as
observed in Fig. 1(a).

Overall, we can conclude that in our setting the interac-
tion region where FT structures appear (for fixed particle
number) is shifted to larger values of δg when compared
to their free space counterparts. Moreover, the Lieb-Liniger
parameter [70,75] γ = mg/(h̄2nmax) takes the value γ = 0.19
[γ = 0.047] for the parameters where FT structures occur in
the case of N = 20 and δg = 0.08 [N = 50 and δg = 0.01].
Notice that the eGPE framework is expected to be valid for
γ � 1 [38], and indeed it provides a somewhat adequate
description for the N = 50 case, while it fails in the case of
N = 20 as discussed above. Therefore, the increased localiza-
tion and hence peak density caused by the presence of the trap,
shifts the validity region of the eGPE further towards macro-
scopic weakly interacting systems, i.e., δg � g and N � 1.

B. Asymmetric two-component settings

We address now droplet configurations arising in asymmet-
ric bosonic mixtures. First, for a homonuclear mixture, corre-
sponding, e.g., to two hyperfine states of 39K, e.g., |1,−1〉
and |1, 0〉 as in the experiments of Refs. [8–10]; here gB =
2gA = 0.1 while mA = mB ≡ m and NA = NB = N = 20.

(a)

(b)

FIG. 2. Density profiles of harmonically confined droplets within
the MB approach for varying δg in (a) an interaction-imbalanced
(gB = 2gA = 0.1) and (b) a mass-imbalanced (mB = 2.1mA) bosonic
mixture. A tendency towards a FT droplet building upon the B com-
ponent being either (a) more strongly interacting or (b) heavier takes
place for larger δg. Intercomponent spatial mixing is also enhanced
for increasing δg. In both cases NA = NB = N = 20, while in the
mass-imbalance setting gB = 1.6gA = 0.08.

Tuning the interspecies coupling, only the ground state den-
sity of the more strongly interacting component B exhibits
a transition from a Gaussian profile (δg = 0.01) to one fea-
turing a FT signature (δg = 0.06) [Fig. 2(a)]. Instead, the
more weakly interacting component A features a significantly
more localized Gaussian profile for all attractions. This is
attributed to the implicit violation of the particle number
condition NA/NB = √

gB/gA [2,53]. We aim to address this
intriguing question in more detail in a future work. Last,
since gA �= gB, the SU(2) symmetry of the mixture is broken
and thus the components are not equivalent [10]. As a result
intercomponent spatial mixing is induced independently of δg
and becomes more prominent for larger δg.

Similarly, the components are distinguishable and spa-
tially mixed for heteronuclear (i.e., mass-imbalanced) settings
[Fig. 2(b)]. To support this argument we employ a mixture
of N = 20 in a species-selective harmonic trap with ωA =
1.5ωB = 0.015, a mass ratio mB/mA = 2.1, and intraspecies
interactions gA = 0.05 and gB = 0.08 inspired by the exper-
iment of Ref. [11] where the isotopes 41K and 87Rb have
been exploited. Apparently, an intercomponent spatial mixing
trend between the components occurs. This is a result of the
mass imbalance which counteracts the interaction imbalance
as well as the weaker confinement of the heavier species. The
two latter contribute towards a larger width of the heavier
component density distribution. We note that this effect will
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(a) (b) (c)

FIG. 3. Two-body reduced intracomponent density for species (a) A and (b) B as well as (c) the respective intercomponent density in the
ground state of the mass and interaction-imbalanced mixture with mB = 2.1mA, gB = 1.6gA = 0.08, δg = 0.05 and NA = NB = N = 20. An
intraspecies antibunching behavior at the center of the droplet occurs [see the diagonal of ρ

(2)
AA (x1, x2), ρ

(2)
BB (x1, x2)], which is more prominent

for the more strongly interacting B component. Intercomponent mixing is identified in ρ
(2)
AB (x1, x2).

have a significant impact on the dipole dynamics of mass-
imbalanced mixtures, as we shall argue below in Sec. V.

C. Two-body droplet configurations

To further probe the superposition nature of the droplet MB
state we examine the respective two-body reduced densities

ρ
(2)
σσ ′ (x1, x2) = 〈�|�̂†

σ (x1)�̂†
σ ′ (x2)�̂σ (x1)�̂σ ′ (x2)|�〉, (5)

where �̂σ (xi ) denotes the bosonic field operator annihilating
a σ -species particle at position xi. ρ

(2)
σσ ′ (x1, x2) refers to the

probability of simultaneously measuring one boson of species
σ at position x1 and a boson of species σ ′ located at x2 [76,77].

Focusing on the case of a mass-imbalanced mixture, we
observe that each species features a tendency towards an anti-
correlated behavior; see Figs. 3(a) and 3(b). This is evident by
the suppressed amplitude of the diagonal of the intraspecies
two-body densities which implies a reduced probability of
two σ -species atoms to reside at the same position. However,
it is more likely two atoms of the same component to be
symmetrically placed close to x = 0, as it can be seen from
the two-body density humps appearing in ρ (2)

σσ (0.5 < x1 < 6,

−6 < x2 < −0.5). Such two-body patterns occur also in the
the absence of a trap [52]. Naturally, the anticorrelation is
more pronounced for the heavier component which is the
more strongly interacting one. In contrast, intercomponent
two-body correlations take place among the species especially
at the trap center where the FT profile forms [Fig. 3(c)]. The
above discussed two-body correlation patterns are found to
be robust for the different systems considered herein (not
shown) and become enhanced for stronger repulsions or in-
creasing particle numbers. It should also be noted that we
do not observe a sharp increase of interspecies correlations
for increasing δg. Such an enhancement would be associated
with the generation of dimers predicted in free space due
to beyond-LHY correlations [54,74]. However, as we argued
in Sec. III A the presence of the harmonic confinement sup-
presses dimer formation.

IV. COLLECTIVE EXCITATIONS OF DROPLETS

Having determined the ground state of harmonically con-
fined droplets, let us now investigate the impact of correlations
during their nonequilibrium dynamics. The presence of the
external harmonic trap enables us to seed dynamical sce-
narios that have not been addressed previously. Specifically,
in order to trigger the time evolution of quantum droplets,
a quench of either the frequency (Secs. IV A and IV E) or
the position (Sec. V) of the external trap is applied. These
protocols naturally excite the breathing and dipole motion of
the quantum droplet respectively. Moreover, by employing
species-selective quenches we are able to break the SU(2)
symmetry of the symmetric mixture and consequently mon-
itor the emergent droplet interspecies collisions. Notice that
performing these trap quenches, while keeping the interac-
tions intact, provides the possibility to study the build-up of
correlations both at the FT and the Gaussian-type phase inde-
pendently. Concluding, the dynamics of the above-mentioned
low-lying collective modes are monitored in heteronuclear
mixtures (Secs. IV E and V), which are found to feature en-
hancement of correlations and intercomponent mixing.

A. Homonuclear mixtures: Breathing dynamics

To excite the lowest-lying breathing mode of the droplet,
building upon the homonuclear mixture, a quench of the
trap frequency is performed from an initial ωi to a final
value ωf . The bosonic setting consists of NA = NB = N = 20
atoms with gA = gB = g = 0.1 and different intercomponent
attractions gAB < 0. Since we aim to also reveal the interplay
between the quench amplitude and the droplet excitation dy-
namics two different postquench frequencies are employed,
namely, ωf = 4ωi = 0.04 and ωf = 2ωi = 0.02.

To track the dynamics of the ensuing breathing motion
of the droplet cloud we initially invoke its one-body density.
The time evolution of this observable for a weakly attractive
mixture with δg = 0.08 and a postquench frequency ωf =
4ωi = 0.04 is presented in Figs. 4(a) and 4(b) within the
MB and the eGPE approach respectively. Overall, a periodic
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(a)

(b)

FIG. 4. Density evolution of a weakly attractive, symmetric mixture upon considering a sudden increase of the trap frequency, namely, ωf =
4ωi = 0.04 within (a) the ML-MCTDHX and (b) the perturbative eGPE approach. The droplet undergoes a breathing motion, while higher-
lying motional excitations arise in the droplet for long evolution times (t > 1000). Apparently the eGPE prediction slightly overestimates the
delocalization of the droplet density profile and the peak density of the localized excitations around the trap center at long evolution times. The
bosonic mixture contains NA = NB = N = 20 atoms with gA = gB = 0.1 and δg = 0.08.

expansion and contraction of the droplet is observed within
both methods for timescales t < 500 followed by a progres-
sive delocalization of the density profile. Later, for t > 800,
prominent spatial undulations arise in the droplet density es-
pecially around the trap center manifesting its excited nature;
see also selective density snapshots in Fig. 5(a). They ini-
tially appear as relatively small density humps around t =
830 [solid red line in Fig. 5(a)] and eventually dominate the
droplet profile rendering the FT background no longer visible;
see, e.g., the dashed green line in Fig. 5(a).

It is also worth mentioning that even during the contraction
process there are delocalized density tails; see, e.g., |x| ≈ 20
of the dotted blue line at t = 1845 in Fig. 5(a). These mo-
tional excitations can be understood in terms of the MB wave
function superposition and in particular stem from the non-
negligible occupation of higher-lying natural orbitals being
the eigenstates of the one-body reduced density matrix. To
support this argument the densities of the first four orbitals,
|	i(x)|2 where i = 1, . . . , 4, are also provided for the same
time instants in Figs. 5(b)–5(d). As expected, higher-order
orbitals exhibit a hierarchy in terms of their nodal structure
accompanied by an enhanced spatial delocalization. Hence,
the existence of higher-lying orbitals is responsible for both
the delocalization and the excitation of the droplet.

Notably, the eGPE provides a somewhat accurate descrip-
tion of the observed MB dynamics, as it captures both the
delocalization trend and the spatial undulations appearing in
the time-evolved one-body density; see Fig. 4. However, it
should be emphasized that the delocalized density tails are
slightly more pronounced within the eGPE treatment indi-

cating a tendency towards a slightly less stable droplet state
as compared to the MB approach. A closer inspection of
Figs. 4(a) and 4(b) for t > 1600 and |x| > 20 or of the
corresponding variances (not shown) indicates an increased
delocalization in the eGPE compared to the MB approach
of the order of ∼4% of the initial dropltet width. Also, the
spatial undulations predicted by the eGPE are characterized
by more prominent density peaks and thus a higher degree
of localization; see Figs. 4(a) and 4(b). These differences
may be interpreted at the microscopic level in terms of the
superposition of the orbitals shown in Figs. 5(b)–5(d). The
fact that beyond-LHY correlations are not substantial during
the evolution is partly attributed to the quench protocol related
to the single-particle potential.

The above-described dynamical phenomena appear in
experimentally accessible evolution times, e.g., for cus-
tomarily used 1D trap frequencies ωx = 2π×1.5 Hz and
ω⊥ = 2π×300 Hz [65,78,79] the excitations become evident
after t ≈ 265 ms and the delocalization around t ≈ 530 ms.
While exact estimations of the lifetimes of 1D quantum
droplets remain still elusive, experimental observations in
higher dimensions typically report lifetimes of the order of
10 ms for homonuclear mixtures [10] and significantly higher
ones for heteronuclear systems, i.e., ∼120 ms [11]. Impor-
tantly, three-body losses which lead to droplet decay, are
commonly reduced by one order of magnitude in 1D settings
[80], and they have been recently argued to become negli-
gible in the droplet regime [44,49], resulting in even longer
droplet lifetimes. These substantially improved lifetimes con-
stitute a major benefit for studying 1D systems and especially
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(a) (b)

(c) (d)

FIG. 5. Density profiles of (a) the symmetric homonuclear
droplet and (b)–(d) the respective orbitals |	i(x)|2 with i = 1, . . . , 4
(see legend) at different evolution times. Namely, at (b) t = 830,
(c) t = 1260, and (d) t = 1845. Evidently, higher-lying orbitals sup-
port the spatial delocalization and excitation patterns of the density,
while the lowest orbital has the dominant contribution to the density.
The breathing dynamics of the symmetric mixture, characterized
by gA = gB = 0.1, NA = NB = N = 20, is triggered by a frequency
quench where ωf = 4ωi = 0.04.

heteronuclear droplets and suggest that the long-time dynam-
ics presented herein, might be experimentally accessible.

The aforementioned delocalization behavior suggests a dis-
sociation tendency of the droplet, resembling the well-known
self-evaporation mechanism observed in 3D experiments
[2,8,9]. This dynamical response has not yet been reported in
1D free space [38,52], and it is thus inherently related to the
presence of the trap. On the other hand, the robustness of the
excitation patterns in the central droplet region for long evolu-
tion times supports the assumption that the FT configuration
can maintain nonlinear structures, e.g., solitons, a study that
will be interesting to be pursued in the future.

B. Correlation and entanglement dynamics

A feature that is inherently related with the droplet for-
mation is their correlated character [31,52,54], while the fate
of dynamical droplet correlations remains largely unexplored.
Specifically, in our setting we aim to reveal the correlation
patterns that correspond to the above-mentioned droplet exci-
tation processes. Below, we infer the build-up of intraspecies
two-body correlations during the breathing evolution of the
droplet in a spatially resolved manner by investigating the
so-called two-body coherence function [76,77]:

G(2)
σσ (x1, x2, t ) = ρ (2)

σσ (x1, x2, t )

ρσ (x1, t )ρσ (x2, t )
. (6)

(a) (b)

(c) (d)

FIG. 6. (a)–(d) Profiles of the two-body coherence G2(x1, x2 ) in
the breathing dynamics of the symmetric mixture with gA = gB =
0.1, NA = NB = N = 20 at distinct time instants (see legend) after
a quench to ωf = 4ωi = 0.04. Suppression of two-body correlations
in the bulk [G2(x1, x2 = x1)] occurs for long evolution times while a
correlated behavior is evident for bosons located at different edges of
the droplet [G2(x1, x2 = −x1)].

The two-body reduced density matrix ρ (2)
σσ (x1, x2, t ) is de-

fined in Eq. (5). Naturally, in the symmetric mixture
case G(2)

AA(x1, x2) = G(2)
BB(x1, x2) = G(2)(x1, x2). Apparently, a

two-body correlated (anticorrelated) behavior occurs for
G(2)(x1, x2, t ) > 1 (G(2)(x1, x2, t ) < 1), while the case of
G(2)(x1, x2, t ) = 1 is said to be two-body uncorrelated.

Snapshots of G(2)(x1, x2, t ) are illustrated in Figs. 6(a)–
6(d). At the initial stages of the dynamics [Fig. 6(a)] the
droplet maintains the two-body anticorrelated behavior of its
ground state (see Sec. III) for two bosons at the same location
[i.e., G(2)(x1, x2 = x1, t ) < 1] while two atoms placed sym-
metrically with respect to the FT exhibit a correlated tendency,
namely G(2)(x1, x2 = −x1, t ) > 1. For longer evolution times
where the density delocalization is observed [Fig. 4(a)], a
suppression of two-body correlations takes place at the central
bulk region since G(2)(x1, x2 = x1, t ) ≈ 1; see Figs. 6(b)–
6(d). However, the delocalized density tails [see, e.g., ρ(|x| >

20, t > 1000) in Fig. 4(a)] develop a noticeable two-body
correlated behavior among each other as can be deduced, e.g.,
from the antidiagonal of G(2)(x1, x2 = −x1, t ) > 1 depicted in
Fig. 6(d) (e.g., at x1 = −x2 ≈ 20).

Regarding the impact of intercomponent correlations (en-
tanglement) on the breathing dynamics of quantum droplets
we analyze the corresponding von Neumann entropy [72]

SVN(t ) = −
D∑

k=1

λk (t ) ln[λk (t )]. (7)

In this expression, λk (t ) refer to the Schmidt coefficients
of the MB wave function ansatz (3) which are essentially
the eigenvalues of the species reduced density matrix [72].
This entropic measure captures the degree of intercomponent
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FIG. 7. Time evolution of the von Neumann entropy in the course
of the droplet breathing motion induced by various quenches of the
trap frequency at distinct interspecies couplings (see legend). The
symmetric bosonic mixture with NA = NB = N = 20 experiences
gA = gB = 0.1 (see legend). The finite entropy evinces the presence
of intercomponent entanglement, while its sharp increase for suffi-
ciently large δg and ωf signals the prominent excitation dynamics of
the droplet.

entanglement, namely, a nonentangled state corresponds to
λ1(t ) = 1 and λk �=1(t ) = 0 leading to SVN(t ) = 0. We note
that the entanglement is crucial for quantum droplets since
the widely used MGP approach primarily takes into account
the effects stemming from intraspecies quantum fluctuations.
Instead the interspecies coupling processes should be gener-
ally introduced perturbatively in terms of δg/g as it has been
argued in Refs. [2,41,54,74,81].

The harmonically confined droplets discussed herein, offer
a promising setting for exploring beyond-LHY effects in the
course of the time evolution. Indeed, the dynamics is induced
by applying a quench on the trap frequency while keeping
fixed the interaction parameters (gA, gB and gAB). This allows
us to study the build-up of intercomponent correlations both
in the Gaussian and the FT regimes which occur at strong and
weak attractions respectively.

For postquench amplitudes ωf = 2ωi = 0.02 we observe
that SVN(t ) fluctuates around a mean value determined by
the strength of gAB; see Fig. 7. Generically, the degree of
entanglement is larger for stronger attractions. This behavior
is related to the fact that the breathing motion of the droplet
is nearly stable, exhibiting regular periodic expansion and
contraction for this quench amplitude independently of δg
and excitations do not appear, e.g., on the one-body density
level (not shown). Turning to the case of larger quench am-
plitudes, i.e., ωf = 4ωi = 0.04, the entanglement dynamics
of the droplet is more involved; namely, for Gaussian-shaped
droplets (δg = 0.01) the entropy oscillates around SVN(t ) ≈
0.5. In this regime again the droplet can not sustain excitations
due to its narrow width. Remarkably, within the FT regime
(δg = 0.08) SVN(t ) features initially a moderately increasing
tendency and thereafter exhibits a strong increase when lo-
calized excitations arise in the droplet core as presented in
Fig. 4(a), e.g., for |x| < 20 and t > 700. Subsequently, the
delocalization of the droplet edges as seen in Fig. 4(a), e.g., for
|x| > 20 and t > 1200 is related to a saturation trend of SVN(t )
e.g., towards SVN(t ) ≈ 1.25 for δg = 0.08. Therefore, the ap-

FIG. 8. Breathing mode frequency (ωbr/ω
f ) of the symmetric

mixture with gA = gB = 0.1 in units of the postquench trap fre-
quency for varying interspecies attraction and atom number (see
legend). The predictions of ωbr/ω

f are given within the MB approach
(solid lines), the MF (dashed lines) and variational (dotted lines) ap-
proximation. A monotonic decreasing behavior of ωbr/ω

f is observed
for increasing either δg or NA = NB = N . The breathing frequency is
(slightly) smaller in the MB approach as compared to the MF and the
variational approximation.

pearance of higher-lying motional excitations at the droplet
center is accompanied by a noticeable increase of interspecies
correlations which then approach a plateau behavior as long
as the droplet delocalizes.

C. Droplet breathing mode frequency

Next, we employ the position variance of the bosonic cloud〈
X 2

σ (t )
〉 = 〈�(t )|x̂2

σ |�(t )〉 − 〈�(t )|x̂σ |�(t )〉2, (8)

where x̂σ denotes the σ -species position operator and
〈�(t )|x̂σ |�(t )〉 = 0 due to the preserved “parity” symme-
try. This experimentally accessible measure via time-of-flight
imaging [82,83], captures the breathing motion of the cloud
and its spectrum contains the respective breathing mode fre-
quency, ωbr. The latter is provided in Fig. 8, upon considering
a quench with ωf = 4ωi = 0.04, as a function of δg for
various particle numbers composing the droplet and within
different approaches. These approaches refer to the full MB
treatment including the correlations of the mixture, the MF ap-
proximation where correlations are neglected and a variational
approximation (VA) within the LHY theory. The latter was
also exploited in Ref. [37] to estimate ωbr of 1D droplets in the
absence of an external trap. It is based on a time-dependent
Gaussian ansatz (see details in the Appendix) providing an
approximate analytical solution of the eGPE (2) by utilizing a
Gaussian wave function with variationally optimal width. This
explicit time dependence of this ansatz can provide semiana-
lytical insights into the dynamical droplet properties, e.g., the
breathing frequency (see the discussion below).

Focusing on the outcome of the MB and the MF ap-
proaches it is found that overall ωbr is close to the prediction
in the ideal gas limit, i.e., ωbr ≈ 2ωf , for strong interspecies
attraction (or otherwise small δg), while it shows a weakly
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decreasing tendency towards the decoupled scenario corre-
sponding to increasing δg. This behavior of ωbr in terms of
δg holds also independently of N , but ωbr also decreases for a
larger atom number since for an increasing N the effective MF
interactions (∝ δgN) are enhanced. Thus, deviations from the
noninteracting limit become more prominent. This reduced
trend of ωbr for smaller gAB has also been reported in free
space using a quantum Monte Carlo method [55]. Moreover,
by closely inspecting ωbr it can be deduced that within the
MF approximation it is smaller for stronger attractions and
larger in the reverse case as compared to the MB result.
Interestingly, the crossing point with respect to δg between the
two predictions shifts towards the MF balance point (δg = 0)
for larger N . This is due to the fact that the contribution
of the LHY term to the breathing frequency is positive for
δg ≈ 0 and negative when δg �= 0, as we shall explicate below
using the VA method; see in particular Eq. (10). Additionally,
the deviations of the MB and the MF results become more
pronounced in the few-body limit, e.g., N = 5, due to the
involvement of higher-order correlations.

Turning to the VA method we observe that it fails to capture
ωbr, especially for few-body systems (e.g., N = 5). Still, it im-
proves significantly for increasing N , and it approaches more
closely the MB prediction as compared to the MF approxima-
tion at the FT regime, e.g., around δg = 0.08 for N = 20. We
remark that this agreement between the VA and the MB cases
solely occurs for the breathing frequency, while the density
profile is not appropriately captured by the VA (not shown).
However, the VA approximation completely overestimates ωbr

for stronger attractions such as δg = 0.01. In particular, for
large N � 1 and stronger attractions such that δg ≈ 0 (LHY
fluid) it can be proven, following the minimization of the un-
derlying effective potential [see Eq. (A4)], that the breathing
frequency scales as

ωVA
br ∝ N2/3. (9)

Hence, within the VA a diverging breathing frequency at the
limit of the LHY fluid for increasing particle numbers is
encountered.

On the other hand, for finite values of δg and ω the scal-
ing of the optimal width of the Gaussian wave function is
dominated by the average MF repulsion, with the LHY term
providing only a higher-order correction leading to a stronger
localization, namely, W ≈ ( δgN

mω2
√

2π
)1/3 − 81/4

3π h̄ω

√
(g3/δg). In

this case within VA the breathing frequency reads

ωVA
br ≈

√
3ω − O[g3/4(δgN )−1/6], (10)

where the correction term originates from the LHY contribu-
tion. It is also worth mentioning that, in the thermodynamic
limit N → ∞, where the above-discussed results become
exact, the VA prediction reduces to the one of the usual
Gross-Pitaevskii equation [84]. Indeed, for N → ∞ we obtain
a breathing frequency ωVA

br ≈ √
3ω, which is nearly reached,

e.g., for N = 100 as shown by the dotted brown line in Fig. 8.

D. Dynamics of interaction-imbalanced mixtures

In an attempt to generalize the persistence of the droplet
excitation processes in the course of its breathing motion

FIG. 9. Time evolution of the position variance of droplets within
the MB method. (a) The case of a trap quenched (ωf = 4ωi = 0.04)
homonuclear mixture, characterized by gB = 2gA = 0.1, N = 20, for
varying interspecies attractions (see legend) is depicted. The collapse
and revival pattern observed in the weakly attractive mixture consti-
tutes an imprint of the droplet excitations during its breathing motion.
(b), (c) Same as (a) but for a heteronuclear mixture with mB = 2.1mA,
gB = 1.6gA = 0.08, and N = 20, following (b) a sudden increase of
the trap frequency according to ω f = 2ωi and (c) a species-selective
quench where ωf

B = 2ωi
B = 0.02 and ωf

A = ωi
A = 0.015. The dy-

namics change from being out of phase to phase locked among the
two components for increasing attraction.

we also investigate interaction-imbalanced homonuclear mix-
tures with gB = 2gA = 0.1, gAB < 0, mA = mB ≡ m and NA =
NB = N = 20, for its ground state characteristics. Generically
imbalanced mixtures are, among others, particularly prone
to experience higher-order correlation phenomena, due to
the different degrees of miscibility that may emerge. These
systems are far less explored, and they are described by a
set of coupled eGP equations as has been reported, e.g., in
Refs. [41,52] instead of the simple reduced single-component
eGPE (2). In order to seed the breathing motion of the mixture
we perform a quench of the trap frequency towards ωf =
4ωi = 0.04 and track the dynamics through the σ -species
variance 〈X 2

σ (t )〉 [Eq. (8)] shown in Fig. 9(a). For stronger
attractions (δg = 0.01), both 〈X 2

A (t )〉 and 〈X 2
B (t )〉 undergo

almost constant amplitude oscillations being in phase among
each other; see in particular the dashed lines in Fig. 9(a).
The minor deviations between the oscillation amplitude of
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(a) (b)

(c) (d)

FIG. 10. Density evolution of the σ component (see legends) of a heteronuclear mass-imbalanced mixture with mB = 2.1mA, gB = 1.6gA =
0.08, NA = NB = N = 20 and strong intercomponent attraction δg = 0.01. The dynamics induced by quenching the trap frequency, ωf

σ = 4ωi
σ ,

is monitored within (a), (c) the MB and (b), (d) MF approaches. Evidently, the build-up of correlations leads to a dephasing of the breathing
mode amplitude at long evolution times.

〈X 2
A (t )〉 and 〈X 2

B (t )〉 in the long time dynamics (t > 1300)
evinces the suppressed degree of intercomponent mixing in
this interaction regime which is caused by the strong attractive
coupling. Notably, the persistence of the amplitude of the
position variances implies that excitations do not form in this
two-component droplet scenario.

However, for weaker interspecies attractions (δg = 0.06)
the ensuing motion of the two components is drastically al-
tered. Specifically, the components expand and contract in
a periodic manner initially (0 < t < 150) with almost the
same amplitude. The latter progressively differentiates be-
tween 〈X 2

A (t )〉 and 〈X 2
B (t )〉, while afterwards a pronounced

damping (i.e., reduction of the oscillation amplitude) is evi-
dent followed by a revival pattern at least for the more strongly
repulsively interacting B component which exhibits a FT pro-
file; see the solid lines in Fig. 9(a). This distinct behavior
of 〈X 2

A (t )〉 and 〈X 2
B (t )〉 along with their damping is an imprint

of the excitations building upon each component in the course
of its breathing motion. In particular, the density of the B com-
ponent experiences similar structural deformations in this case
(δg = 0.06) with the interaction balanced mixture depicted in
Fig. 4(a). Instead, the A component having a Gaussian-shaped
ground state density profile features a significantly lower de-
gree of spatial delocalization.

E. Heteronuclear mixtures: Breathing dynamics

Next, we examine the main features of the breathing
dynamics of mass-imbalanced heteronuclear bosonic mix-
tures, e.g., consisting of 41K and 87Rb isotopes that have
been experimentally realized [11]. In this sense, we consider

a mass-imbalanced mixture mB = 2.1mA, with fixed in-
traspecies repulsions gB = 1.6gA = 0.08, particle numbers
NA = NB = N = 20, and varying interspecies attraction
gAB < 0; see also Sec. III B for the ground state properties of
this system. In order to study the response of this setting, a
sudden change of the original trap frequencies ωi

A = 1.5ωi
B =

0.015 is applied and the breathing motion of each cloud is
initiated. Below, our investigations are restricted within the
ML-MCTDHX framework and the common MF treatment.
We remark that the respective eGPE for mass-imbalanced
mixtures in three dimensions was used in Refs. [11,51] but
with the LHY contribution possessing a somewhat compli-
cated form. To the best of our knowledge, the exact form of
the 1D, mass-imbalanced eGPE has not yet been reported.

We first excite the breathing mode of the system, by
suddenly doubling the harmonic trap frequencies for each
species, i.e., ωf

σ = 2ωi
σ . Monitoring the time evolution of

the σ -species position variance [Eq. (8)] it becomes apparent
that each component expands and contracts [Fig. 9(b)] but
importantly the response of 〈X 2

σ (t )〉 depends strongly on gAB.
Specifically, for weak attractions, e.g., δg = 0.05 the widths
〈X 2

σ (t )〉 feature a phase difference and distinct frequencies
(ωA

br ≈ 1.3ωB
br) during the dynamics. Notice that this breathing

frequency ratio is slightly smaller than that of the respec-
tive traps, namely ωA ≈ 1.5ωB. This reduced frequency ratio
evinces that the heavier component B possesses a higher
breathing frequency compared to the mass-balanced case;
see also the stable breathing mode of the strongly attractive
interaction-imbalanced mixture depicted in Fig. 9(a). Fur-
thermore, the oscillation amplitude of the heavier species is
nearly constant, in contrast to the one of the lighter component
which becomes significantly suppressed when it oscillates out
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of phase with the heavier species. On the other hand, for
stronger attractions δg = 0.01, the heavier component “effec-
tively” traps the lighter one, and they oscillate in phase with
ωbr ≈ 2ωf

B.
To further exploit the asymmetries of our system, we ap-

ply a species-selective quench on the harmonic trap of the
heavier species, i.e., ωf

B = 2ωi
B whilst ωf

A = ωi
A [Fig. 9(c)].

A close inspection of 〈X 2
σ (t )〉 for stronger attractions such as

δg = 0.01, reveals that the heavy component imparts at the
initial stages of the dynamics (t < 100) part of its energy
to the lighter species which is subsequently set to breathing
motion. The two components oscillate almost in phase but
with distinct amplitudes among each other and also varying
in the course of the evolution. We remark that this response
is in sharp contrast to the high degree of delocalization that
species-selective quenches excite on mass-balanced mixtures
(not shown). Turning to weaker attractions (δg = 0.05), we
observe a somewhat delayed energy transfer towards the
lighter species. The latter consequently undergoes breathing
dynamics characterized by two dominant breathing frequen-
cies while exhibiting a phase difference with the heavier
species as shown by the dashed lines in Fig. 9(c). 〈X 2

A (t )〉
exhibits distorted oscillations leading to a slightly larger fre-
quency ωbr

A at long evolution times (t > 1500), than at the
initial stages of the dynamics (t < 500). As a consequence, at
long evolution times (t > 1500) there is a breathing frequency
ratio ωbr

B /ωbr
A ≈ 1.23 between the two components. This ratio

is slightly smaller than that of their respective postquench
traps, i.e., ωf

B/ωf
A ≈ 1.33, similar to the breathing evolution

of the mass-imbalanced setting discussed above [Fig. 9(b)].
It is worth to be mentioned that small deviations between the
MB and the MF predictions are again evident in the respective
one-body density evolution, especially for smaller particle
numbers, e.g., N = 5, which manifests that few-body effects
come into play (not shown).

Performing a more intense quench characterized by ωf
σ =

4ωi
σ , we observe a prominent beyond MF effect for the

strongly attractive (δg = 0.01) mass-imbalanced droplet con-
figurations (Fig. 10). At short timescales (0 < t < 400) they
exhibit a breathing motion [Figs. 10(a) and 10(c)] whose
amplitude afterwards decays (Fig. 11) as a result of a de-
phasing mechanism due to the build-up of both intra- and
intercomponent correlations, with the former being enhanced
for the heavier species. This dephasing is established faster
in the lighter component (Fig. 11). Evidently, this response is
not captured by the MF approximation, where each compo-
nent performs a breathing motion of nonnegligible amplitude
(Fig. 11) throughout the time evolution accompanied by den-
sity delocalization during the expansion of the clouds; see
Figs. 10(b) and 10(d). We also note in passing that motional
excitations do not emerge in the course of the evolution which
suggests that the observed response corresponds to a collec-
tive mechanism of the mixture.

The dephasing effect is attributed to the competition be-
tween the tendency of the two components to oscillate in
phase in the strongly attractive case and the pronounced differ-
ence of their postquench confinement frequency. In this case,
the heavier species B cannot instantly trap the rapidly oscillat-
ing lighter species A, as in the case of the less intense quench
presented in Fig. 9(b). Instead, significant intercomponent col-

FIG. 11. Time evolution of the σ -species position variance
of a mass-imbalanced heteronuclear mixture characterized by
mB = 2.1mA, gB = 1.6gA = 0.08, NA = NB = N = 20, and strong
intercomponent attraction δg = 0.01. The dynamics induced by a
quench where ωf

σ = 4ωi
σ is monitored within the MB (solid lines)

and MF (dashed lines) approach. A correlation-induced dephasing
behavior is observed in the MB case in sharp contrast to the MF
dynamics where an irregular breathing motion persists.

lisions occur initially (t < 500) rendering the breathing modes
of both components highly distorted, as can also be seen from
the position variance of the mixture (Fig. 11). Subsequently,
the heavier species B imposes its oscillation frequency on the
lighter one, while the respective amplitudes of both species
reduce significantly. However, species A maintains also a sig-
nificant admixture of its initial frequency along with the one
of species B resulting in a prominent dephasing behavior of
〈X 2

A (t )〉; see, e.g., Fig. 11 in the interval t = [500–900]. The
above description also applies in the MF case [Figs. 10(c)
and 10(d)]; see the agreement with the MB results in the
variance for t < 200 in Fig. 11. However, in the absence of
correlations, the heavier component B is not able to impose its
oscillation frequency to the lighter one (Fig. 11). Rather, inter-
component collisions dominate throughout the time evolution,
leading to irregular breathing dynamics and a high degree
of spatial delocalization; see, e.g., t ≈ 500 and t ≈ 1600 in
Figs. 10(c) and 10(d). This discrepancy, among the MF and
MB predictions, could be interpreted as a manifestation of the
self-bound nature of quantum droplets. Indeed, we overall ob-
serve an enhanced stability in the dynamics of heteronuclear
mixtures, which is in accordance with the recent experimental
observations in three dimensions [11].

V. DIPOLE DROPLET DYNAMICS

The presence of the external trap allows us to excite the
dipole motion of the droplet by quenching the position of the
trap center according to the protocol V (x) → V (x + δxσ ). The
ensuing dynamics can be monitored through the σ -species
one-body densities and the average position of the center
of mass 〈Xσ (t )〉 = 〈�(t )|x̂σ |�(t )〉 whose spectrum provides
the dipole mode frequency. The properties of this collective
droplet mode have not been previously addressed in detail,
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(a)

(b)

(c)

FIG. 12. One-body density evolution of a droplet building upon a weakly attractive symmetric mixture with NA = NB = N = 20, gA =
gB = 0.1, and δg = 0.08 after an abrupt displacement of the trap center by δxσ . (a) The displacement is performed in both components,
where δxA = δxB = 10, resulting in a stable dipole motion having a frequency equal to the one of the trap. (b), (c) A species-selective quench
with δxA = 10 and δxB = 0 leads to an energy transfer from species A to B and consequent out-of-phase dipole oscillations of the individual
components. All results were obtained within the MB approach.

since these self-bound structures have been predominantly
studied in flat geometries, where the translational invariance
of the system leads to a vanishing dipole mode [38].

We first consider a FT droplet building upon a symmet-
ric mixture characterized by NA = NB = N = 20, gA = gB ≡
g = 0.1, δg = 0.08, and mA = mB, while being subjected to
a sudden displacement of the trap position, i.e., δxA = δxB =
10, of both species. The emergent dipole motion of this self-
bound configuration corresponding to a collective oscillation
of the droplet cloud around x = −10 with a frequency equal
to the trap one is showcased in Fig. 12(a). We have verified
that it is perfectly stable for long evolution times and inde-
pendent of the interparticle interactions [see the dashed lines
in Fig. 13(a)]. The interaction-independent character of the
droplet dipole mode persists for different atom numbers, as
well as for interaction-imbalanced mixtures irrespectively of
the FT or Gaussian-shape of the homonuclear droplet. This
behavior can be readily inferred from the insensitivity of the
〈Xσ (t )〉 for various system parameters depicted in Fig. 13(a).
The only impact of the value of the involved interaction
strengths on the dipole motion is on the constant spatial width
of the oscillating droplet, which is determined by the respec-
tive ground state configuration (Figs. 1 and 2). As we shall
explicate below this stable dipole response is a characteristic
of homonuclear droplets after symmetrically quenching both
components. The above-described insensitivity of the dipole
mode takes equally place also within the different approaches,
i.e., the MF and the eGPE (not shown), by means that its
frequency and oscillation amplitude remain the same but the
width of the droplet changes among the distinct frameworks,

a result that can be traced back to the impact of correlations
on the droplet initial width.

To exploit the inherent two-component nature of the sym-
metric droplet we perform a species-selective quench on the
trap position. Namely, we shift the trap of species A by
δxA = 10 while keeping the trap of species B intact (δxB = 0).
Within the FT regime (δg = 0.08), the quenched species A is
set to dipole motion while slowly transferring energy to com-
ponent B, due to the finite interspecies coupling [70,85,86],
and thus inducing to it a small amplitude dipole motion; see
Figs. 12(b), 12(c) and Fig. 13(b). Subsequently, component B
is further perturbed due to its collisions with component A;
see, e.g., Fig. 13(b) at t ≈ 500. As such, both components
exhibit an oscillatory motion around the center of their re-
spective trap, i.e., xA = −10 and xB = 0. Their oscillations
are characterized by a temporally varying amplitude and a
phase difference stemming from their periodic collisions and
the initial slow energy transfer respectively. For instance, the
oscillation amplitude of species A reduces from X max

A (t ≈
297) ≈ 8.6 to X max

A (t = 1789) ≈ 4.9, while the respective
amplitude of species B increases from X max

B (t = 400) ≈ 3.9
to X max

B (t = 1916) ≈ 6.7 as can seen in Fig. 13(b). This
change of amplitudes further indicates the nonnegligible en-
ergy transfer from the quenched component A to the externally
unperturbed component B. An interesting perspective from
the above-described process would be to study under which
conditions a periodic energy exchange among the compo-
nents takes place. In contrast, for stronger attractions, e.g.,
δg = 0.01 the quenched component A induces a dipole motion
to component B almost instantly as shown in Fig. 13(b). Af-
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FIG. 13. Dynamics of the spatially averaged position of the σ -species center of mass 〈Xσ (t )〉 following a sudden displacement of the
trap center by an amount δxσ within the MB approach. (a) The case of homonuclear interaction-imbalanced gB = 2gA = 0.1 (solid lines)
and balanced with gB = gA = 0.1 (dashed lines) bosonic mixtures subjected to quenches with δxA = δxB = 10 for different interactions and
atom numbers (see legends) is depicted. The emergent dipole motion is independent of the system parameters. Species-selective quenches
with (b) δxA = 10, δxB = 0 and (d) δxA = −δxB = 10 in a symmetric mixture characterized by gA = gB = 0.1, NA = NB = N = 20. (c) Dipole
motion induced by δxA = δxB = −10 in a mass-imbalanced heteronuclear mixture where mB = 2.1mA, gB = 1.6gA = 0.08, and NA = NB =
N = 20. Apparently, following either species-selective quenches or using mass-imbalanced mixtures gives rise to a more complex dipole
dynamics, with a strong dependence on δg.

terwards, both components perform a nearly in-phase dipole
motion centered towards the midpoint of their respective trap
origins (i.e., x = −5) and having an amplitude which is half
of the symmetric dipole mode [Fig. 13(a)]. The small asym-
metries appearing in the amplitude of each component motion
are attributed to their mutual interactions.

Next, we explore the impact of intercomponent mass im-
balance on the droplet dipole mode which is induced by a
common displacement of the σ -species trap center, i.e., δxA =
δxB = −10. Indeed, the dipole dynamics of the heteronu-
clear mixture (mB = 2.1mA, gB = 1.6gA = 0.08, and NA =
NB = N = 20) is interaction-dependent [see Fig. 13(c)] in
sharp contrast to homonuclear settings [Fig. 13(a)]. In par-
ticular, similarly to the breathing mode response analyzed
in Sec. IV E for mass-imbalanced systems, a stronger in-
terspecies attraction (e.g., here δg = 0.01) enforces the two
components to oscillate with the same dipole frequency as
shown in Fig. 13(c). Conversely, weaker attractions such as
δg = 0.05 lead to distinct dipole motions among the two
components characterized by frequencies slightly higher than
the ones of their respective traps. Moreover, the presence
of the heavier B species causes the lighter one (A) to ex-
hibit an enhanced or reduced oscillation amplitude when it
evolves in-phase or with π -phase difference with respect to
B [Fig. 13(c)]. Additionally, the dipole mode frequency of
the heavier component, B, reduces with decreasing attraction,

namely, ω
dip
B (δg = 0.05) ≈ 0.9ω

dip
B (δg = 0.01).2 This is to

be opposed with the dipole motion of homonuclear mix-
tures [Fig. 13(a)], which is independent of the interspecies
attraction.

Concluding, a counterdisplacement of the component trap
centers, i.e., δxA = −δxB = 10 is applied on the symmet-
ric mixture aiming to induce intercomponent collisions; see
Fig. 13(d). Close to the decoupling limit, e.g., δg = 0.08,
the droplets undergo stable in time and nearly independent
dipole oscillations, with opposite phase, whose amplitudes are
reduced by approximately 15% as compared to the common
dipole motion of the symmetric case depicted in Fig. 12(a) and
Fig. 13(a). Importantly, within this weakly attractive regime
the droplets feature elastic intercomponent collisions around
x = 0 in a periodic manner as can be deduced by their con-
stant oscillation amplitude. It is also worth mentioning that
in spite of the smooth center-of-mass droplet oscillations, the
respective densities do not remain unaffected in the course of
the evolution. Instead, they develop enhanced density peaks at
their collision events which become suppressed at maximum
separation. Moreover, the droplets maintain their FT profile

2Note that a similar comparison for the lighter component A is not
possible since it adopts the dipole frequency of the heavier species in
the more strongly attractive case (δg = 0.01), as we discussed above
[Fig. 13(c)].
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at maximum separation while exhibiting a flattened “wave-
front” close to their oscillation centers (not shown). Turning to
strong attractions, e.g., δg = 0.01, the droplets remain tightly
self-bound at the origin. However, certain density portions are
emitted from the droplet edges and reattach to it periodically.
This results in the fluctuations captured by the mean position
of the cloud [Fig. 13(d)].

VI. SUMMARY AND OUTLOOK

We have studied the ground state properties and quench
dynamics of 1D harmonically confined droplet configura-
tions appearing in both homonuclear (interaction balanced
or imbalanced) and heteronuclear (mass-imbalanced) bosonic
mixtures. To appreciate the role of beyond-LHY correlations
different theoretical approaches are employed and compared,
namely the ab initio ML-MCTDHX approach the so-called
eGPE as well as the standard MF approximation.

Regarding the ground state of the trapped interaction bal-
anced mixtures we identify a transition from Gaussian shaped
to FT droplets due to beyond-LHY correlations for either
weak attractions or larger atom numbers. This result is in
contrast to the predictions of both the MF and the eGPE
frameworks, with the former recovering FT droplet struc-
tures when tending to the homogeneous limit as discussed
in Ref. [56]. For interaction or mass-imbalanced mixtures
it is shown that the involved components become spatially
mixed. In the case of interaction-imbalanced systems the
strongly repulsive component experiences FT signatures for
reduced intercomponent attraction, while the remaining one
has a Gaussian profile. A similar behavior occurs for mass-
imbalanced mixtures where the heavier component exhibits
FT structures for weaker attractions. Furthermore, a robust
antibunching behavior is identified at the same location of
the droplet, while two bosons are correlated when placed at
opposite sides of the droplet.

Following, a quench of the trap frequency seeds the droplet
breathing dynamics. For homonuclear mixtures we explicate
that in addition to the expected contraction and expansion
each cloud also experiences a complex excitation process
in the long-time evolution. Specifically, a progressive spatial
delocalization of the droplet takes place accompanied by the
build-up of motional excitations around its core along with the
simultaneous expulsion of density portions. These excitation
mechanisms originate from the participation of higher-lying
orbitals of the MB wave function and are associated with the
development of enhanced intercomponent entanglement and
long-range two-body correlations. The breathing frequency of
the droplet is close to the ideal gas prediction for stronger
attractions, while it shows a reduction for weaker ones where
the FT is attained. Our results are corroborated through an-
alytical estimations of the breathing frequency in the large
atom limit by invoking a variational time-dependent Gaussian
ansatz. In heteronuclear mixtures the components undergo an
in-phase breathing at strong attractions, while experiencing a
phase difference towards the decoupling limit. Interestingly, a
pronounced dephasing develops for sufficiently strong quench
amplitudes emanating from the competition between the
tendency to phase-lock and the difference of the species trap

frequencies. Instead, in the absence of correlations solely in-
tercomponent collisions dominate the dynamics.

The droplet dipole motion is triggered by a sudden dis-
placement of the trap’s position which turns out to be
remarkably stable and insensitive to parametric variations of
the homonuclear mixture. However, the individual compo-
nents of heteronuclear mixtures feature phase-locked dipole
motions for strong interspecies attraction, otherwise they ex-
hibit a phase difference. Furthermore, irregular dipole patterns
occur due to component collisions and intercomponent energy
transfer, when considering species-selective quenches of the
trap position. Concluding, after a counter displacement of
each component trap center the droplets experience elastic
collisions for weak attractions while they remain to a large
extent bound for stronger ones.

Our findings pave the way for various interesting future re-
search directions. A fruitful prospect is to utilize beyond-LHY
correlations to reveal droplet mixed states in species-selective
traps and study their dynamical response following time-
dependent rampings of the intercomponent attraction across
the identified phases. Also, an explicit derivation of the
LHY or higher-order contributions in the presence of external
confinement would be at least theoretically desirable. Fur-
thermore, the investigation of self-bound state formation in
the crossover from highly particle imbalanced to balanced
settings is another interesting perspective. Certainly, the in-
terplay of beyond-LHY correlations and entanglement for
the droplet formation in three-component mixtures [87,88] is
another promising route to follow.
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APPENDIX: VARIATIONAL ANSATZ
FOR CONFINED DROPLETS

To provide further insights into the stationary and dy-
namical properties of quantum droplets in the main text
we have employed, besides the MB ML-MCTDHX and the
eGPE approaches, also a so-called variational approximation
(VA) [84]. It relies on the eGPE framework and utilizes a
time-dependent Gaussian ansatz. This method was recently
employed to solve the reduced single-component eGPE in
free space [37], while relevant generalizations have also been
reported for dipolar settings [13]. Particularly, it was argued
that it fails to capture the ground state one-body density of the
system, especially close to the FT regime. However, it can pro-
vide adequate estimates regarding the frequency of the droplet
collective excitations. Here we seek to apply this method to
confined droplets, where it is anticipated that the density of
the system can be better approximated by a Gaussian profile,
due to the presence of the harmonic trap.
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To construct this VA scheme we initially define the La-
grangian density of the eGPE (2)

L = ih̄

2
(��∗

t − �∗�t ) + h̄2

2m
|�x|2 + δg

2
|�|4

− 2
√

2m

3π h̄
g

3
2 |�|3 + 1

2
mω2x2|�|2. (A1)

The subscripts x, t refer to the space and time derivatives
respectively. Then, a Gaussian ansatz characterized by time-
dependent amplitude [A(t )], width [W (t )], and phases [φ(t ),
b(t )] is introduced:

�(x, t ) = A(t ) exp

[
iφ(t ) + ib(t )x2 − x2

2W (t )2

]
. (A2)

It is normalized to the particle number, namely, N =
A(t )2W (t )

√
π .

Substituting this wave function ansatz into the Lagrangian
density of Eq. (A1) and integrating over the entire space
[−∞, ∞], we arrive at the effective Lagrangian per particle

LVA

N
= h̄φ̇ +

[
h̄ḃ + 2h̄2

m

(
b2 + 1

4W 4

)
+ mω2

2

]
W 2

2

+ Nδg

2
√

2πW
−

√
2mg3

3
3
2 π

5
4 h̄

√
N

W
. (A3)

The corresponding Euler-Lagrange equations of motion in
terms of φ, W and b reduce to a classical equation of motion
for the width, namely, mẄ = − dUeff

dW . Hence, in the framework
of the VA method the stationary optimal Gaussian solution
corresponds to the minimum of the effective potential

Ueff (W ) = mω2

2
W 2 + h̄2

2mW 2
+ Nδg√

2πW
− 2

√
2mg3

π
5
4 h̄

√
N

W
.

(A4)

Having determined the optimal width (Wmin) of our Gaussian
ground state ansatz, the energy per particle of the system is
given by E = Ueff (Wmin/2) and the frequency of the breathing
mode is the lowest eigenvalue of the Hessian matrix

[
ωVA

br

]2 = 1

m

d2Ueff

dW 2

∣∣∣∣∣
Wmin

. (A5)

As discussed in the main text, this approximation can ade-
quately describe the breathing frequency of quantum droplets
especially in the vicinity of the FT regime. However, it fails
to capture the underlying density profiles in most of the cases.
Interestingly, the obtained analytical predictions, in the large
particle number limit, provide invaluable insights on the scal-
ing of the droplet breathing frequency in terms of the system
parameters and importantly on the LHY contribution.
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