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The scattering properties of spin-polarized Fermi gases are dominated by p-wave interactions. Besides their
inherent angular dependence, these interactions differ from their s-wave counterparts as they also require the
presence of a finite effective range in order to understand the low-energy properties of the system. In this article
we examine how the shear viscosity and thermal conductivity of a three-dimensional spin-polarized Fermi gas
in the normal phase depend on the effective range and the scattering volume in both the weakly and the strongly
interacting limits. We show that, although the shear viscosity and the thermal conductivity both explicitly depend
on the effective range near resonance, the Prandtl number which parametrizes the ratio of momentum to thermal
diffusivity does not have an explicit interaction dependence both at resonance and for weak interactions in the
low-energy limit. In contrast to s-wave systems, p-wave scattering exhibits an additional resonance at weak
attraction from a quasi-bound state at positive energies, which leads to a pronounced dip in the shear viscosity at
specific temperatures.
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I. INTRODUCTION

Spin-polarized Fermi gases have become an excellent plat-
form for studying quantum systems with higher partial-wave
interactions. Due to the Pauli exclusion principle, the leading
short-ranged interactions are p wave in nature (� = 1, where �

is the angular momentum quantum number). For this reason,
there have been numerous theoretical investigations into the
physics of p-wave Fermi gases, such as p-wave supercon-
ductivity and topological physics in two dimensions [1–6]
and the three-body loss rate [7–10] and its application to
one-dimensional physics [11–17]. Such physics is not purely
theoretical, but has become the focus of recent experimental
investigations in both 40K and 6Li, as there is a p-wave Fesh-
bach resonance [18–29].

The main difference between p-wave (� = 1) and s-wave
(� = 0) scattering in three dimensions (3D) is the presence
of the centrifugal barrier. The centrifugal barrier limits the
overlap between two-body bound states and scattering states
to a region at short inter-particle distances, making the reso-
nance inherently narrow. As a corollary, the two-body bound
state is quite long-lived near resonance, even for positive
energies when the two-body bound state is inside the scat-
tering continuum, i.e., the bound state becomes a long-lived
quasi-bound state. In other words, the wave function for the
two-body bound state remains localized even near resonance,
in contrast to s-wave systems where the two-body bound state
size approaches infinity as one approaches resonance.

The presence of the centrifugal barrier and the narrowness
of the resonance are related to the relevancy of the effective
range in the scattering amplitude. For p-wave scattering in 3D,

the inverse p-wave scattering amplitude is

f −1
�=1 = −i − 1

p3v
− R

p
+ O(p), (1)

where p is the magnitude of the relative momentum, related
to the relative scattering energy, E = p2/m, with m being
the single-particle mass. We also define v as the 3D p-wave
scattering volume with units of volume, and R as the p-wave
effective range parameter with units of momentum. The first
term represents the unitary scattering, while the second and
third terms define the scattering parameters. As one can see
from the effective range expansion, both the scattering volume
and the effective range terms in the scattering amplitude are
parametrically more important than the unitary term at low en-
ergies. Furthermore, one can show that the low-energy limit,
E � R2/m, and the zero-range limit, R → 0, cannot be taken
simultaneously, in contradistinction to s-wave interactions.
Thus, the low-energy scattering physics depends on both the
scattering volume and the effective range.

Since the effective range is a relevant quantity to under-
stand the low-energy scattering, the energetics and dynamics
will also crucially depend on the effective range. Previous
studies have examined this in the context of the necessity of
two thermodynamic contacts in describing the energetics in
the normal phase [30,31], the Landau liquid parameters [32],
and the three-body recombination rate [8,10]. In these studies,
the effective range was found to be important in describing
the leading behavior. This ought to be compared to s-wave
physics where the effective range merely adds a perturbative
correction [33–36].
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In terms of transport, a previous study examined the bulk
viscosity [37] for the p-wave Fermi gas. There it was shown
that the effective range produces a finite bulk viscosity at
resonance (i.e., when v−1 = 0) proportional to ζ ∝ T 5/2/R2.
In the weakly interacting limit, the bulk viscosity is propor-
tional to v2T 9/2. If one tries to take the zero-range limit, the
bulk viscosity at resonance diverges, which is a hallmark of
the relevancy of the effective range. This is in contrast to
the s-wave case where the bulk viscosity only depends on the
s-wave scattering length a in the strongly interacting limit, and
vanishes at resonance, a−1 = 0 [38–43].

An interesting open question is how the remaining
transport coefficients, the shear viscosity and the thermal
conductivity, depend on the scattering parameters in both the
weakly and strongly interacting limit. For s-wave interactions,
it is known that these two quantities become divergent near
the noninteracting point (a = 0) as a−2, while near resonance
the shear viscosity and the thermal conductivity depend only
on the equation of state, i.e., the density and the temperature
[41,44–52]. It is unclear how this picture is modified for p-
wave Fermi gases in 3D, even in the experimentally applicable
limit of a small but finite effective range.

In this work we consider this issue and evaluate the shear
viscosity η and the thermal conductivity κ using the kinetic
theory approach [53,54]. We find that the shear viscosity and
the thermal conductivity scattering times explicitly depend
on the scattering parameters, even at resonance. Although
the shear viscosity and the thermal conductivity explicitly
depend on the interaction parameters, we show that the Prandtl
number, which describes the ratio of momentum and thermal
diffusion, approaches a universal constant in these two limits
that does not explicitly depend on the interaction, similar to
the case of s-wave physics.

The remainder of this article is organized as follows. In
Sec. II we present the two-body scattering properties for spin-
polarized Fermi gases and obtain the two-body T matrix.
From there we give a brief overview in Sec. III of the kinetic
theory approach and how it applies to the shear viscosity and
the thermal conductivity. We then present the results for the
shear and the thermal scattering times in Sec. IV for arbi-
trary values of the scattering volume. For negative scattering
volumes, when the bound state becomes a long-lived quasi-
bound state we find nonmonotonic behavior for the transport
properties which is further discussed in Sec. V. From there we
discuss the Prandtl number in Sec. VI, and finally we conclude
our discussions in Sec. VII.

II. TWO-BODY p-WAVE SCATTERING

In this article we consider a single-channel model for a
spin-polarized Fermi gas with p-wave interactions:

H =
∫

d3x
1

2
∇xψ

†(x)∇xψ (x)

+
∫

d3x
g

4
ψ†(x)

←→∇ xψ
†(x)ψ (x)

←→∇ xψ (x), (2)

where ψ (†)(x) is the annihilation (creation) operator for
spin-polarized Fermions, the bidirectional gradient is

←→∇ x =

(
←−∇ x − −→∇ x)/2, g is the p-wave coupling constant, and we

have set h̄ and the atomic mass m to unity.
As is custom, we renormalize this theory by examining

the two-body scattering. Consider the two-body T matrix
between states with the center-of-mass momentum Q, the rel-
ative momenta p and q, |Q/2 ± p(q)〉, and the total complex
frequency E . In the presence of the many-body background
the T matrix has the following form [31,37]:〈

Q
2

± p

∣∣∣∣T
∣∣∣∣Q

2
± q

〉
= p · q T (Q, E )

T −1(Q, E ) = 1

24π

[
1

v
+

(
E − Q2

4
+ 2μ

)
R

+
(

−E+Q2

4
− 2μ

)3/2

+Amb(Q, E )

]
,

(3)

where μ is the chemical potential, and Amb(Q, E ) is the
contribution due to the many-body background which is re-
ported in Appendix A. Such a term captures the effects of
Fermi blocking in the intermediate scattering states on an
equal footing with the Fermi factors in the collision integral
[see below, Eq. (7)].

The T matrix in the first line of Eq. (3) splits into two
pieces [55]. The first piece is the form factor of the p-wave
interaction potential, p · q [see also Eq. (2)]. The second
piece, T (Q, E ), describes the dependence of the scattering on
the center-of-mass momentum Q and the total energy E . Due
to the presence of the many-body background, the scattering
is no longer Galilean invariant, which is described by the
nontrivial dependence on the center-of-mass momentum in
Amb(Q, E ).

Equation (3) is already renormalized, and both the scatter-
ing volume v and the effective range R are defined in terms of
the coupling constant g and the ultraviolet cutoff in the theory,
�:

1

24πv
= 1

g
− �3

18π2
,

R

24π
= �

6π2
. (4)

This renormalization ensures that the p-wave scattering am-
plitude in the absence of the many-body background has the
form shown in Eq. (1) since

f�=1 = − p3T (Q, Eo.s )

24π
, (5)

where now Eo.s = Q2

4 + p2 − 2μ + iδ is the on-shell energy
for two-particle scattering.

In this theory there are two two-body bound states at en-
ergies defined as the poles of Eq. (3). The first is a shallow
dimer with Eb = −1/(vR). For positive values of the scatter-
ing volume, this is a true two-body bound state. Therefore, we
call the regime where Eb < 0 the Bose-Einstein Condensate
(BEC) side. For negative values of the scattering volume,
Eb > 0, the dimer is a long-lived quasi-bound state. We label
this side as the BCS side. The second bound state is a deep
dimer with energy −R2. Both the shallow and the deep dimer
bound states are threefold degenerate for � = 1. The state with
energy −R2 is actually unphysical as it possesses a negative
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norm [56,57]. To avoid this issue, we work in the low-energy
limit where all energy scales E satisfy E � R2, so that the
presence of such an unphysical state is unimportant.

We note that often a single-channel model is inadequate
for describing p-wave scattering in terms of the microscopic
parameters that parametrize the two-body interaction poten-
tial, e.g., the van der Waals length. In this study we are only
interested in the general properties of the transport in terms
of the low-energy scattering parameters v and R. For our
purposes, the single-channel model suffices after the proper
renormalization of the T matrix is taken into account [see
Eq. (8)]. However, for more in-depth knowledge of the indi-
vidual p-wave scattering parameters, a two-channel model is
required [31,37].

III. KINETIC THEORY

In order to calculate the shear viscosity and the thermal
conductivity we employ the standard kinetic theory approach
using the Boltzmann equation [53,54]

∂np

∂t
+ p · ∇xnp = I[np], (6)

where np = np(x, t ) is the local quasiparticle distribution
function. The collision integral I[np] is defined as

I[np] =
∫

d3q
(2π )3

∫
d3q′

(2π )3

∫
d3p′

(2π )3
W (p, q, p′, q′)

× [(1 − np)(1−nq)np′nq′−(1 − np′ )(1−np′ )npnq].

(7)

Equation (7) depends on the transition rate W (p, q, p′, q′) be-
tween particles with incoming momenta p and q and outgoing
momenta p′ and q′, defined in terms of the on-shell T matrix,
T (Q, p) = T (Q, Eo.s.):

W (p, q, p′, q′) = (2π )4δ(p + q − p′ − q′)

× δ

(
p2

2
+ q2

2
− p′2

2
− q′2

2

)(
p − q

2
· p′ − q′

2

)2

×
∣∣∣∣T

(
p + q,

p − q
2

)∣∣∣∣
2

. (8)

Following kinetic theory we linearize the Boltzmann equa-
tion by writing np = n0

p + δnp, where n0
p is the local equilib-

rium distribution function,

n0
p = [eβ((p−v)2/2−μ) + 1]−1, (9)

that depends on the local inverse temperature β(x, t ) =
1/T (x, t ), the velocity v(x, t ), and the chemical potential
μ(x, t ). We have muted the spatial and temporal coordinates
of the thermodynamic variables for simplicity. The correction
to the distribution function in response to an external pertur-
bation is denoted by δnp. It is subject to the constraints of
conserved number, momentum, and energy:

0 =
∫

d3p
(2π )3

{
1, p,

p2

2

}
δnp. (10)

It can be written in the form δnp = βn0
p(1 − n0

p)φ(p), with

φ(p) = −
[
φi j (p − v)

Vi, j

2
− φ(p − v) · ∇x ln β

]
(11)

and Vi, j = ∂iv j + ∂ jvi − 2/3δi, j∇x · v.
Due to rotational invariance, we only need to consider per-

turbations of the forms φxy(p) (shear) and φx(p) (heat current).
Following the kinetic theory approach [42,53] the linearized
Boltzmann equation leads to equations that determine φxy(p)
and φx(p):

px py=
∫

d3q
(2π )3

∫
d3p′

(2π )3

∫
d3q′

(2π )3
n0

q

(
1−n0

q

)
W (p, q, p′, q′)

× [φxy(p) + φxy(q) − φxy(p′) − φxy(q′)], (12)

px

(
p2

2
− w

)
=

∫
d3q

(2π )3

∫
d3p′

(2π )3

∫
d3q′

(2π )3
n0

q

(
1 − n0

q

)
× W (p, q, p′, q′)[φx(p) + φx(q) − φx(p′)

− φx(q′)]. (13)

In Eq. (13), w is the enthalpy per particle, w = (ε + p)/n,
with ε as the energy density, p as the pressure, and n as the
density. The functions φxy(p) and φx(p) which solve Eqs. (12)
and (13) are then related to the shear viscosity η and the
thermal conductivity κ , respectively:

η = β

∫
d3p

(2π )3
n0

p

(
1 − n0

p

)
px pyφxy(p), (14)

κ

β
= β

∫
d3p

(2π )3
n0

p

(
1 − n0

p

)
px

(
p2

2
− w

)
φx(p). (15)

To solve Eqs. (12)–(15), we expand the functions φxy(p)
and φx(p) in terms of a set of orthogonal basis functions:

φxy(p) = β
∑

j

cη
jU

η
j (p), (16)

φx(p) = β
∑

j

cκ
j U

κ
j (p), (17)

where c(η,κ )
j are expansion coefficients, and the first basis

functions are U η

1 = px py and U κ
1 = px(p2/2 − w). In terms of

these modes, Eqs. (12)–(15) are more conveniently expressed
as

δi,1 =
∑

j

A(η,κ )
i, j c(η,κ )

j , A(η,κ )
i, j =

(
U (η,κ )

i ,LU (η,κ )
j

)
(
U (η,κ )

1 ,U (η,κ )
1

) . (18)

In Eq. (18) we have introduced the inner product

(A, B) =
∫

d3p
(2π )3

n0
p

(
1 − n0

p

)
A(p)B(p) (19)

as well as the linearized collision integral operator

LB = β

1 − n0
p

∫
d3q

(2π )3

∫
d3p′

(2π )3

∫
d3q′

(2π )3
n0

q

(
1 − n0

q

)
W (p, q, p′, q′)[B(p) + B(q) − B(p′) − B(q′)]. (20)
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FIG. 1. Shear and thermal scattering rates as functions of the
fugacity z. In all calculations we set the effective range β1/2R = 100.
The lines from bottom to top indicate the direction towards reso-
nance, |βEb| → 0. The solid lines are the full numerical solution
to the Boltzmann equation, while the dashed lines represent the
corresponding high-temperature approximation which is linear in z.

In this notation the shear viscosity and the thermal conductiv-
ity have a simple form:

η = β2(Aη )−1
1,1

(
U η

1 ,U η

1

)
,

κ

β
= β2(Aκ )−1

1,1

(
U κ

1 ,U κ
1

)
. (21)

The quantity β(Aη,κ )−1
1,1 has units of time and defines the

shear scattering time τη and the thermal scattering time τκ ,
respectively:

τη,κ = β(Aη,κ )−1
1,1. (22)

In principle, as the number of basis modes increases, the
accuracy of the calculation improves. The case of a single
mode is special and is equivalent to the relaxation time ap-
proximation (RTA) [53,54]. For our purposes we will work
with two basis modes as that provides a drastic improvement
in the calculation. This is discussed further below. We label
this as beyond the relaxation time approximation (BRTA).

IV. SHEAR AND THERMAL SCATTERING TIMES

The linearized Boltzmann equation (18) is amenable to nu-
merical calculation of the shear and thermal scattering times,
τη and τκ , via Eq. (22). For our purposes we consider two basis
modes both on the BCS and on the BEC side. The details
of the calculation are shown in Appendix B, while we only
discuss the results here.

The shear and thermal scattering times are presented in
Fig. 1 as functions of the fugacity z for various values of
the binding energy βEb = −β/(vR). The dashed straight lines
correspond to the high-temperature limit where β/τη,κ ∝ z.
As the temperature is lowered (larger z), the deviations from
the high-temperature limit become more pronounced, and we
find that the shear and thermal scattering rates become smaller
than the predictions from the high-temperature theory. This
reduction of scattering is a consequence of Fermi blocking.

At resonance, βEb = 0, the shear and thermal scattering
times are proportional to βR2 in the low-energy limit, up to

a correction of order O(1), as can be seen from Appendix B.
This is a consequence of defining the low-energy physics as
{T, E , μ, . . .} � R2. This leads us to an important result: the
presence of the effective range is necessary for understand-
ing the shear viscosity and the thermal conductivity in the
strongly interacting limit. Such a conclusion is not necessarily
obvious, as one might expect that for a small effective range
the transport would predominantly depend on the equation of
state since scale symmetry is only broken slightly. However,
this is not the case as the low-energy constraint renders the ef-
fective range a relevant quantity. This should be contrasted to
the spin-1/2 s-wave Fermi gas, where the resonant scattering
times are only functions of the temperature and the density
because of the scale symmetry.

In the weakly interacting limit, a similar analysis shows
that the shear and thermal scattering times are proportional to
v−2. This is the standard result for weakly interacting systems;
the scattering times become infinite as one approaches the
noninteracting limit.

Although the shear and thermal scattering times have ex-
plicit interaction dependencies in the strongly and the weakly
interacting limits, the two scattering times actually have the
same interaction dependencies to leading order. This is readily
seen in Appendix B where we provide explicit formulas in
the high-temperature limit. This leads us to our second main
result: since both scattering times have the same leading-
order dependence on the scattering parameters both in the
strongly and the weakly interacting limits, the ratio of the
two scattering times in the strongly and the weakly interacting
limits is only a function of the equation of state: τη/τκ =
F (βμ) + O(1/(βR2)) with a dimensionless function F (x).
Such behavior also occurs for spin-1/2 Fermi gases with s-
wave interactions, but this is because scale symmetry requires
that the scattering times themselves are only functions of the
equation of state. In the p-wave case, the scale symmetry is
still broken and thus the individual scattering times depend
on the interactions, but their ratio will not depend on the
scattering volume or the effective range at leading order.

Let us first consider the results for the ratio of the shear to
thermal scattering times in the high-temperature limit shown
in Fig. 2 as a function of the bound-state energy Eb. In the
RTA, the ratio of the scattering times is independent of the
fugacity and the scattering parameters for arbitrary interaction
strength, τη/τκ = 2/3 (see Appendix B). In the BRTA, the
ratio of the scattering times becomes interaction dependent.
In the strongly and the weakly interacting limits, the ratios
can be evaluated analytically to give

τη

τκ

∣∣∣∣
res.

= 2

3
− 14

2727
≈ 0.662,

τη

τκ

∣∣∣∣
weak int.

= 2

3
− 250

3729
≈ 0.600. (23)

In these limits the ratio of the scattering times does not explic-
itly depend on the interaction parameters v and R, the fugacity
z, and the inverse temperature β. The individual values of τη

and τκ are shown in Appendix B.
On the BEC side (right) the behavior of the ratio of scat-

tering times is monotonic, while on the BCS side (left) there
are two points where it saturates the RTA value. This can be
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FIG. 2. BEC-BCS crossover for the ratio of scattering times
τη/τκ in the high-temperature limit with β1/2R = 100. In this limit
the ratio of scattering times coincides with the Prandtl number. The
left-hand side corresponds to the BCS side, while the right-hand
side is the BEC side. The solid, dashed, and dashed-dotted lines
correspond to the RTA prediction, the BRTA prediction at resonance,
and the BRTA prediction for weak interactions, respectively. The
vertical dashed lines correspond to the points where the Prandtl
number saturates the RTA value, βEb ≈ 0 and 7/2.

understood as a consequence of the quasi-long-lived bound
state (see Appendix B). Specifically these resonances occur
when the off-diagonal matrix elements of A(η,κ ) vanish. To
leading order this occurs when the two-body bound-state
energy is approximately βEb ≈ 0 and 7/2. Since this reso-
nance requires the two-body bound-state energy to be positive,
this secondary resonance where the ratio of scattering time
saturates the RTA value cannot occur for s-wave-interacting
systems.

As one lowers the temperature, however, we do expect de-
viations to occur from Fig. 2. In particular, we expect that the
ratio of the scattering times to leading order in 1/(βR2) will be
a dimensionless function of the equation of state, but not of the
interaction strength, in the strongly and the weakly interacting
limit. In Fig. 3 we examine the ratio of the two scattering times
both (a) as a function of fugacity and (b) as a function of the
binding energy Eb on the BEC side. The universal limits in
Eq. (23) are shown as the dashed and dash-dotted lines, re-
spectively. The black solid line corresponds to the RTA result
of 2/3. The two major trends are an increase of the ratio of
scattering times as the temperature is lowered and a decrease
in the ratio as one goes to the weakly interacting limit. On the
BCS side, v < 0, we find that the many-body corrections are
not as important as the scattering physics is highly dominated
by the quasi-long-lived bound state. Hence, the physics is
accurately captured by the high-temperature physics. Thus,
even in the presence of the many-body background, there will
still be a nonmonotonic behavior of the ratio of the scattering
times, with the BRTA saturating to the RTA value at around
βEb ≈ 7/2.

V. MINIMUM IN THE SHEAR VISCOSITY AND THE
THERMAL CONDUCTIVITY ON THE BCS SIDE

The presence of the quasi-bound state and the nonmono-
tonic behavior of the ratio of the scattering times on the BCS

(a)

(b)

FIG. 3. Ratio of shear to thermal scattering times as a function of
the fugacity z (a) and the binding energy Eb (b). The black solid line,
the black dashed line, and the black dashed-dotted line correspond
to the high-temperature results in the RTA, the resonant limit in the
BRTA, and the weakly interacting limit in the BRTA, respectively.
The lines from bottom to top indicate the direction towards (a) reso-
nance, |βEb| → 0, and (b) the low-temperature limit.

side have important consequences for the shear viscosity and
the thermal conductivity. In particular, if the average energy
of the atoms, which is proportional to T , is of the order
of the quasi-bound-state energy, the scattering will become
maximal and equivalently the transport coefficient will exhibit
a minimum. Thus, it is instructive to look at the shear viscosity
at fixed density and variable temperature, as we expect a dip
to occur on the BCS side when the temperature is comparable
to the quasibound-state energy.

We investigated this issue by calculating the shear viscosity
at fixed density as a function of temperature within the RTA.
Corrections from the BRTA are smaller than the Fermi block-
ing effect included in the RTA at lower temperatures and do
not produce qualitative differences (see Fig. 7 of Appendix B).
In order to address the thermodynamics, we have assumed a
noninteracting equation of state of spin-polarized Fermions.
Such an approximation is reasonably valid in the BCS limit
where no molecules exist, in contrast to the BEC limit dis-
cussed below where a Bose-Fermi model is used [31]. The
results of this calculation are shown in Fig. 4 for Eb = 20EF ,
Eb = 10EF , and Eb = 0 (resonance).

As one can see from Fig. 4, there is a dip in the shear vis-
cosity due to the resonant scattering at the quasi-bound-state
energy. The minimum in the shear viscosity occurs roughly
for T/TF ≈ 0.2Eb/EF . At resonance, there is no quasi-bound
state and hence there is no minimum of the shear viscosity
in the normal state. It is interesting to note that for p-wave
scattering this minimum in the shear viscosity appears for T >

TF , while for s-wave Fermi gases it occurs at lower tempera-
tures [48]. Similarly, when the shear viscosity is expressed in
units of entropy density s, it will also have a minimum. For
example when Eb/EF = 5, η/s reaches a minimum value of
approximately 0.5h̄/kB at a temperature of T ≈ TF , compara-
ble to the value found for the s-wave unitary Fermi gas [48]
and slightly larger than the Kovtun-Son-Starinets bound [58].
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FIG. 4. Shear viscosity as a function of temperature for fixed
density and various values of the binding energy Eb on the BCS side
(Eb > 0). In this figure, TF and EF are the Fermi temperature and
the Fermi energy, while the solid and the dashed lines correspond to
the RTA calculation and the high-temperature limit, respectively. The
dip in the shear viscosity is associated with an increased scattering
at the quasi-bound-state energy. This dip in the shear viscosity does
not appear at resonance, Eb = 0, as zero-energy scattering is strongly
suppressed for p-wave interactions. Similar physics will occur for the
thermal conductivity.

VI. PRANDTL NUMBER

Given the ratio of the shear to thermal scattering times, it
is straightforward to calculate the Prandtl number. The Prandtl
number is the ratio of the shear to thermal diffusivity, defined
as

Pr = η

κ

Cp

n
, (24)

where Cp is the specific heat at constant pressure per unit vol-
ume, and n is the density. In this work we calculate the shear
viscosity and the thermal conductivity according to Eq. (21),
while we calculate the specific heat at constant pressure and
density using the Bose-Fermi model (see below).

At high temperatures, Cp/n = 5/2 while η/κ = 2τη/5τκ ,
so that Pr = τη/τκ . This was presented in Fig. 2 for the whole
BEC-BCS crossover. As one can see, the Prandtl number is
a nonmonotonic function of Eb on the BCS side, while it is
monotonic on the BEC side.

We evaluate the thermodynamics using the Nozières–
Schmitt-Rink (NSR) approximation [59]. This scheme in-
volves calculating the free energy using the in-medium T
matrix. In this way we calculate the free energy and the
scattering times consistently at the same level of approxima-
tion. Such a calculation was done previously in the context
of p-wave Fermi gases using a two-channel model [31], but
we have verified that their predictions are equivalent to the
single-channel model after renormalization of the many-body
T matrix [see Eq. (4)].

The free-energy calculated in the NSR scheme is equiva-
lent to a model describing a noninteracting mixture of bosons
and fermions (see Appendix D). The Bose-Fermi model is an
accurate description of the thermodynamics of a normal state
p-wave Fermi gas in 3D for the entire BEC-BCS crossover

(a)

(b)

FIG. 5. Prandtl number on the BEC side as a function of the
fugacity z and the density through the Fermi temperature TF , for var-
ious values of the binding energy βEb. For the panel (a) [ panel (b)],
the lines from bottom to top denote towards (away from) resonance.
In general, decreasing the interaction decreases the Prandtl number,
while lowering the temperature (increasing the fugacity or increasing
the density) tends to an ultimate decrease of the Prandtl number by
about 25%.

[31]. Here we restrict ourselves to the high-temperature limit
which is defined as Eb � T � R2. The results of our calcu-
lations are shown in Fig. 5. As one can see for the BEC side,
the Prandtl number is nonmonotonic, but ultimately decreases
as temperature decreases or density increases to about 25% of
the resonant value. At fixed fugacity, the Prandtl number also
decreases slightly as the interaction parameters are decreased.

VII. CONCLUSIONS

In this article we have examined the shear viscosity and
the thermal conductivity of a 3D p-wave spin-polarized Fermi
gas. We found that the scattering times are proportional to
R2 near resonance and v−2 for weakly interacting systems.
This means that the transport properties explicitly depend on
the scattering parameters for arbitrary interaction strengths.
However, the Prandtl number in the weakly and the strongly
interacting limits is indeed a function of only the equation of
state, like the Prandtl number for spin-1/2 s-wave Fermi
gases. Unlike the spin-1/2 s-wave Fermi gas, there is no scale
symmetry restricting the Prandtl number to be this way.

Our analysis is valid at high temperatures in the normal
phase. It quantifies the role of two-body correlations in the
transport properties of spin-polarized Fermi gases in 3D. As
one goes to lower temperatures, it is important to also account
for three-body correlations and losses. Such losses have been
previously examined [7–10,18,19,21–24] and were found to
become quite strong at the p-wave Feshbach resonance. These
three-body losses are suppressed in the high-temperature limit
as they are of order z3. Obviously these losses will have an
important contribution to the transport at lower temperatures,
but for temperatures T � TF the transport properties are de-
termined by the two-body scattering processes discussed in
this work. We predict a pronounced dip in the viscosity at
temperatures above TF that could be observed in experiment.
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APPENDIX A: MANY-BODY CONTRIBUTION
TO THE TWO-BODY T MATRIX

The many-body contribution to the two-body T matrix has
the following form:

Amb(Q, E ) = 24π

∫
d3k

(2π )3
k2

× 1 − u2

2

nF (ξk )

E − 1
2 Q2 − k2 − Qku + 2μ

, (A1)

where u = Q̂ · k̂, ξk = k2/2 − μ, and nF (x) = (eβx + 1)−1 is
the Fermi-Dirac distribution function. In writing Eq. (A1),
we have neglected terms that produce a contribution to the T
matrix of the form (p · Q)(Q · q)T̃ (E ), as these vanish when
the ultraviolet cutoff is taken to infinity.

The angular integration in Eq. (A1) can be performed ana-
lytically to give

Amb(Q, E ) =
∫ ∞

0

dk

2π2
k4 e− β

2 k2
z

1 + e− β

2 k2
z

×
{

E + 2μ − k2 − Q2/2

2Q2k2

+ (E + 2μ − k2 − Q2/2)2 − Q2k2

4Q3k3

× ln

[
E + 2μ − 1

2 k2 − 1
2 (Q + k)2

E + 2μ − 1
2 k2 − 1

2 (Q − k)2

]}
. (A2)

For our purposes we evaluate Eq. (A2) numerically.

APPENDIX B: DERIVATION OF THE SHEAR
AND THERMAL MATRICES IN EQ. (18)

In this Appendix we derive the relevant expressions for the
matrices A(η,κ ) in Eq. (18), using two basis modes. For both
the shear viscosity and the thermal conductivity the matrices
A(η,κ ) have the form

Ai, j = β

(U1,U1)

∫ ∞

0

dQ

2π2

∫ ∞

0

d p

2π2

∫
d�Q

4π

∫
d�p

4π

∫
d�q

4π

Q2 p7

4π
(p̂ · q̂)2|T (Q, p)|2

× 1

2

1

cosh(a) + cosh(bQ̂ · p̂)

1

2

1

cosh(a) + cosh(bQ̂ · q̂)

[
Ui

(
Q
2

+ p
)

+ Ui

(
Q
2

− p
)]

×
[
Uj

(
Q
2

+ p
)

+ Uj

(
Q
2

− p
)

− Uj

(
Q
2

+ q
)

− Uj

(
Q
2

− q
)]

, (B1)

where we have used the identity

n Q
2 +pn Q

2 −p

(
1 − n Q

2 +q

)(
1 − n Q

2 −q

)
= 1

4

1

cosh (a) + cosh(bQ̂ · p̂)

1

cosh (a) + cosh(bQ̂ · q̂)
, (B2)

as well as a = β(Q2/8 + p2/2 − μ) and b = βQp/2. We
have also explicitly suppressed the η and κ indices in Eq. (B1)
as it is valid for both the shear viscosity and the thermal
conductivity.

Let us begin by considering the shear viscosity. The two
basis modes we consider are

U η

1 = px py, U η

2 = px pyβ(p2 − wη ). (B3)

The constant wη can be determined from the Gram-
Schmidt method and is such that the two modes are orthogonal
with the inner product (19). Given these two modes, one can
then evaluate Eq. (B1).

However, special care is needed in performing the angular
integrations. As an example consider the case i = 1 and j = 1.

In this case Eq. (B1) becomes

Aη

1,1 = β

(U1,U1)

∫ ∞

0

dQ

2π2

∫ ∞

0

d p

2π2

∫
d�Q

4π

×
∑

μ,ν=x,y,z

Q2 p11

π
|T (Q, p)|2[Fμ,ν

η,2 Fμ,ν
η,0 − Fμ,ν

η,1 Fμ,ν
η,1

]
.

(B4)

The functions Fμ,ν
η,n are the angular averages

Fμ,ν
η,n =

〈
1

2

1

cosh(a) + cosh(b cos θp)
p̂μp̂ν (p̂xp̂y)n

〉
�p

, (B5)

where a = β(Q2/8 + p2/2 − μ) and b = βQp/2, while 〈·〉�p

denotes angular averages over p̂. As shown in Appendix C,
the angular averages can be decomposed into a sum of terms
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FIG. 6. Comparison of the full angular average of Eq. (B4)
(black line) and the solution from Eq. (B7) (red dashed line) for
various values of a = β(Q2/8 + p2/2 − μ) and b = βQp/2. The
approximation is quite successful at capturing the full structure of
the angular average for the desired parameter regime, a, b � 1.

depending on different components of the center-of-mass unit
vector Q̂ and the integrals:

In(Q, p) =
∫ 1

−1

dx

4

Pn(x)

cosh(a) + cosh(bx)
, (B6)

where Pn(x) is the Legendre polynomial.

The dominant contribution to Eq. (B5) comes from the
term proportional to I0(Q, p), which is equivalent to making
the substitution

Fμ,ν
η,n ≈ I0(Q, p)〈p̂μp̂ν (p̂xp̂y)n〉�p . (B7)

This approximation becomes exact in the high-temperature
limit where Eq. (B2) is angular independent and can be pulled
out of the angular average, such that only the term propor-
tional to I0 survives. To test the accuracy of this approximation
at lower temperatures, we plotted the full angular average
contained in Eq. (B4) (solid black line) versus the result after
the approximation in Eq. (B7) (red dashed line) for both fixed
a and b in Fig. 6. In the nondegenerate regime, the dominant
contribution to Fμ,ν

n comes from a, b � 1. The approximation
of retaining only the terms proportional to I0 is exceptionally
good and simplifies the calculation enormously especially in
the required parameter regime (cf. also Ref. [49]).

With these approximations the Aη

1,1 becomes

Aη

1,1 = β(
U η

1 ,U η

1

) ∫
dQ

2π2

∫
d p

2π2

Q2 p11

75π
|T (Q, p)|2I2

0 (Q, p).

(B8)

One can then repeat the following analysis for the other ele-
ments of the matrix Aη. The final result is

Aη = β(
U η

1 ,U η

1

) ∫ ∞

0

dQ

2π2

∫ ∞

0

d p

2π2

Q2 p11

75π
|T (Q, p)|2I2

0 (Q, p)

⎡
⎢⎢⎣

1 β
(

7Q2

12 + p2 − wη

)

β
(

7Q2

12 + p2 − wη

)
β2

[(
7Q2

12 + p2 − wη

)2
+ 7Q4

90

]
⎤
⎥⎥⎦. (B9)

An identical analysis can be done for the thermal conductivity. The two basis modes are given by

U κ
1 = px

(
p2

2
− w

)
, U κ

2 = px

(
p2

2
− w

)
β

(
p2

2
− wκ

)
, (B10)

where w is the enthalpy per particle and wκ is a constant that ensures that the two basis modes are orthogonal, similar to the case
for shear viscosity.

We again assume that the angular averages can be approximated in the manner of Eq. (B7). The final result for the matrix Aκ

is

Aκ = β(
U κ

1 ,U κ
1

) ∫ ∞

0

dQ

2π2

∫ ∞

0

d p

2π2

Q4 p11

270π
|T (Q, p)|2I0(Q, p)2

×

⎡
⎢⎢⎣

1 β
(

7Q2

20 + p2 − w − wκ

)

β
(

7Q2

20 + p2 − w − wκ

)
β2

[(
7Q2

20 + p2 − w − wκ

)2
+ 3Q4

200

]
⎤
⎥⎥⎦. (B11)

In the high-temperature limit, one can analytically perform the integration over Q to obtain the following:

Aη = 23/2z

75π

∫ ∞

0

dε

(2π )2
e−εε5|T (0,

√
ε)|2

[
1 ε − 7

2

ε − 7
2

(
ε − 7

2

)2 + 77
6

]
, (B12)

Aκ = 2

3

23/2z

75π

∫ ∞

0

dε

(2π )2
e−εε5|T (0,

√
ε)|2

[
1 ε − 7

2

ε − 7
2

(
ε − 7

2

)2 + 7

]
. (B13)
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FIG. 7. Comparing the predictions of the scattering rates τη,κ

from the relaxation time approximation (RTA), beyond the relaxation
time approximation (BRTA), and the high-temperature approxima-
tion for the BRTA. For this simulation, βEb = 0 and β1/2R = 100.
The scattering times in the BRTA are larger than the RTA values,
which are smaller than the high-temperature results. This is consis-
tent with the basic structure of the BRTA.

There are several important properties of the matrices Aη,κ .
Consider the relaxation time approximation (RTA). In the
RTA we only retain the first mode in Aη,κ . This approximation
gives the following expressions for the scattering times:

τ (1)
η = β

Aη

1,1

, τ (1)
κ = β

Aκ
1,1

. (B14)

Beyond the relaxation time approximation (BRTA), we keep
both basis modes and evaluate the whole matrix, Aκ,η, in order
to determine the scattering times. In general one can write the
scattering times in the BRTA approximation in terms of the
RTA approximation:

τ (2)
η

τ
(1)
η

= 1

1 − A

τ (2)
κ

τ
(1)
κ

= 1

1 − B
, (B15)

where τ (2)
η and τ (2)

κ are the scattering times in the BRTA
approximation, and the constants A and B are defined as

A =
(
Aη

1,2

)2

Aη

1,1A
η

2,2

, B =
(
Aκ

1,2

)2

Aκ
1,1Aκ

2,2

. (B16)

In general, the constants A and B are positive because the
eigenvalues of Aη,κ express the (positive) decay rates of
different perturbations. Hence, the BRTA prediction for the
scattering times will be larger than the RTA prediction; this
is in line with the variational formulation that each truncated
basis provides a lower bound on the true transport time τ

[45,51]. In Fig. 7 we show the scattering rates calculated
in both the RTA and the BRTA including finite-temperature
effects. At high temperatures the results for the BRTA are
very close to those for the RTA, making the RTA a good
approximation for the scattering times. As one lowers the
temperature, i.e., increases z, the difference between the RTA
and the BRTA becomes more pronounced.

In the high-temperature limit we find B > A from the spe-
cific structure of the Aη,κ matrices in Eqs. (B12) and (B13),

which implies that τ (2)
κ /τ (1)

κ > τ (2)
η /τ (1)

η . This translates into
the following inequality for the Prandtl number calculated in
the BRTA, Pr(2):

(2)
Pr = τ (2)

η

τ
(2)
κ

=
(1)
Pr

1 − B

1 − A
�

(1)
Pr, (B17)

where Pr(1) is the Prandtl number calculated in the RTA.
The BRTA matches the RTA, Pr(2) = Pr(1), when A = B =

0. In general this occurs when the off-diagonal matrix ele-
ments vanish, Aη,κ

1,2 = 0. In the high-temperature limit, Aη,κ

1,2 =
0 when

0 =
∫ ∞

0
dε

ε5
(
ε − 7

2

)
e−ε

βR2(ε − βEb)2 + ε3
. (B18)

Given βR2 � 1, the approximate solutions for Eq. (B18)
are βEb ≈ 0, 7/2. Numerical evaluation of Eq. (B18) gives
βEb ≈ 0.186 and 3.447, which is consistent with the red
dashed lines in Fig. 2.

Besides these points where Pr(2) = Pr(1), it is important to
note the behavior of the Prandtl number in the strongly inter-
acting (“res.”) limit β3/2v−1 = 0 and in the weakly interacting
(“w.i.”) limit β3/2v−1 � 1, respectively. A direct evaluation of
the scattering times in these two limits yields

τ (1)
η

∣∣
res.

= π√
2T z

25

576

R2

mT
, τ (1)

κ

∣∣
res. = 3

2
τ (1)
η

∣∣
res.

,

τ (1)
η

∣∣
w.i.

= π√
2T z

5

2304

1

v2(mT )3
, τ (1)

κ

∣∣
w.i. = 3

2
τ (1)
η

∣∣
w.i.

,

within the RTA, while in the BRTA

τ (2)
η

∣∣
res.

=
(

1 + 3

202

)
τ (1)
η

∣∣
res.

,τ (2)
κ

∣∣
res. =

(
3

2
+ 3

88

)
τ (1)
η

∣∣
res.

,

τ (2)
η

∣∣
w.i.

=
(

1 + 75

226

)
τ (1)
η

∣∣
w.i.

,τ (2)
κ

∣∣
w.i. =

(
3

2
+ 75

104

)
τ (1)
η

∣∣
w.i.

.

This yields the scattering ratios in the strongly and the weakly
interacting limits that are quoted in the main text in Eq. (23).

APPENDIX C: ANGULAR AVERAGES

We report some general formulas for angular averages of
functions f (x = Q̂ · p̂) over a variable number of unit vectors
p̂. The calculations are straightforward, but become rather
tedious. We restrict ourselves to an even number of unit
vectors:

〈 f (x)〉p̂ =
∫

d�p

4π
f (x) =

∫ 1

−1

dx

2
f (x), (C1)

〈p̂ip̂ j f (x)〉p̂ =
∫

d�p

4π
p̂ip̂ j f (x)

=
∫ 1

−1

dx

2
f (x)

[
1 − x2

2
δi, j + Q̂iQ̂ jP2(x)

]
,

(C2)

023317-9



JEFF MAKI AND TILMAN ENSS PHYSICAL REVIEW A 107, 023317 (2023)

〈p̂ip̂ j p̂kp̂l f (x)〉p̂ =
∫

d�p

4π
p̂ip̂ j p̂kp̂l f (x) =

∫ 1

−1

dx

2
f (x)

×
[

(1 − x2)2

8
(δi, jδk,l+2 permutations)

+−5x4 + 6x2 − 1

8
(Q̂iQ̂ jδk,l + δi, jQ̂kQ̂l

+ 2 perms.) + Q̂iQ̂ jQ̂kQ̂lP4(x)

]
, (C3)

〈p̂ip̂ j p̂kp̂l p̂r p̂s f (x)〉p̂ =
∫

d�p

4π
p̂ip̂ j p̂kp̂l p̂r p̂s f (x)

=
∫ 1

−1

dx

2
f (x)

[
(1 − x2)3

48
(δi, jδk,lδr,s + 14 perms.)

+ 7x6 − 15x4 + 9x2 − 1

48

× (Q̂iQ̂ jδk,lδr,s + δi, jQ̂kQ̂lδr,s + δi, jδk,l Q̂rQ̂s

+ 14 perms.) + −21x6 + 35x4 − 15x2 + 1

48

× (Q̂iQ̂ jQ̂kQ̂lδr,s + Q̂iQ̂ jδk,l Q̂rQ̂s

+ δi, jQ̂kQ̂lQ̂rQ̂s + 14 perms.)

+ Q̂iQ̂ jQ̂kQ̂lQ̂rQ̂sP6(x)

]
. (C4)

In these equations, Pn(x) is the Legendre polynomial. We note
that the only term proportional to P0(x) is the term that is in-
dependent of the center-of-mass momentum Q. Thus, if f (x)

does not depend on x, only the first lines of Eqs. (C1)–(C4)
are nonzero, reducing to the standard formulas for averages of
unit vectors.

APPENDIX D: THE BOSE-FERMI MODEL

In this Appendix we review the thermodynamics of the
Bose-Fermi model, which describes a noninteracting mix-
ture of bosons with mass 2m and chemical potential 2μ −
Ebθ (−Eb) and fermions of mass m and chemical potential μ.
The pressure of the system is then given by

P = 1

(2πβ )3/2β

[−Li5/2(−z)+3 × 23/2Li5/2
(
z2e−βEbθ (−Eb))],

(D1)

where Lia(z) is the polylogarithm function. In Eq. (D1), the
first term is related to the noninteracting Fermi gas, while the
second term describes the noninteracting bosons. The factor
of 3 originates from the 2� + 1 degeneracy of the p-wave
coupling; i.e., there are three bound states corresponding to
coupling in the m� = −1, 0, and 1 channels, where m� is the
azimuthal quantum number.

In this model the density is given by

n = 1

(2πβ )3/2

[−Li3/2(−z) + 6 × 23/2Li3/2
(
z2e−βEbθ (−Eb)

)]
.

(D2)

From Eqs. (D1) and (D2) one can calculate the specific
heat at constant pressure per unit volume and the density for
arbitrary temperature in the normal phase [31]. In this article
we primarily focus on the limit where |βEb| is small, and
hence we ignore the bound-state energy and its correction to
the bosonic chemical potential.
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